
Thread-level Analysis over Technical User Forum Data

Li Wang, Su Nam Kim and Timothy Baldwin

NICTA VRL

Department of Computer Science and Software Engineering

University of Melbourne

VIC 3010 Australia

li.wang.d@gmail.com, sunamkim@gmail.com, tb@ldwin.net

Abstract

This research focuses on improving in-

formation access over troubleshooting-

oriented technical user forums via thread-

level analysis. We describe a modular task

formulation and novel dataset, and go on

to describe a series of preliminary classifi-

cation experiments over the data. We find

that a class composition strategy achieves

the best results, surpassing multiclass clas-

sification approaches.

1 Introduction

Online forums and discussion boards are online

platforms for people to hold discussions in particu-

lar domains. They are widely used in various areas

such as customer support, community develop-

ment, interactive reporting and online education.

Forums provide one of the primary avenues for

online users to share information on the Internet.

Users post their questions or problems onto on-

line forums and get possible solutions from other

users. Through this simple mechanism, great vol-

umes of data with customised answers to highly

specialised domain-specific questions are created

on a daily basis. However, it is not an easy job to

extract the information latent in the threads.

The aim of our research is to help users to

more easily access existing information in forums

which relate to their questions, by text mining

troubleshooting-oriented, computer-related tech-

nical user forum data (Baldwin et al., 2010). An

example thread from a real-world forum is shown

in Figure 1, which is made up of 4 posts with 3

distinct participants.

Our proposed strategy is to model the “content

structure” of forum threads by analysing requests

for information and provision of solutions in the

thread data. We devise an ontology of problem

sources and solution types with which to analyse

HTML Input Code - CNET Coding & scripting Forums

User A HTML Input Code
Post 1 . . . Please can someone tell me how to create an

input box that asks the user to enter their ID, and
then allows them to press go. . . .

User B Re: html input code
Post 2 Part 1: create a form with a text field. . . .

User C asp.net c# video
Post 3 I’ve prepared for you video.link click . . .

User A Thank You!
Post 4 I have Microsoft Visual Studio 6, what program

should I do this in? . . .

User D A little more help
Post 5 . . . You would simply do it this way: . . .

Figure 1: An extract from a real-world thread

individual threads, paving the way for users to

spell out the general nature of their support need

in their queries. The main contributions of this pa-

per are: (1) designing a modular thread-level class

set; (2) constructing and publishing an annotated

dataset; and (3) performing preliminary thread-

level experiments over the dataset.

2 Related Work

There is very little work that is specifically tar-

geted at the thread-level analysis of web user fo-

rum data. The most closely-related work is that

performed by Baldwin et al. (2007), and our thread

class set was created based on this original work.

Another research line that relates to the thread

classification is discussion summarisation. For

example, technical online IRC (Internet Relay

Chat) discussions are summarised and segmented

in Zhou and Hovy (2005)’s research. The mes-

sage segments are then clustered to find the most

relevant information to users using machine learn-

ing models. There has also been work on email

summarisation, concentrating primarily on sum-

marising and organising email archives by extract-

ing overview sentences to help users find the most

useful email threads (Nenkova and Bagga, 2004;

Li Wang, Su Nam Kim and Timothy Baldwin. 2010. Thread-level Analysis over Technical User Forum Data.

In Proceedings of Australasian Language Technology Association Workshop, pages 27−31

Rambow et al., 2004; Wan and McKeown, 2004).

3 Class Definition

The proposed thread class set is made up of two or-

thogonal Basic Class sets (BASIC), and a Miscel-

laneous Class set (MISC). The first BASIC class

set is Problem Source (PROBLEM), which con-

cerns the targets and sources of the problem de-

scribed in threads. It contains 6 basic classes:

Operating System (OS), Hardware, Software, Me-

dia, Network and Programming. The second BA-

SIC class set is Solution Type (SOLUTION), which

describes the types of the solution presented in

threads in the form of 4 classes: Documentation,

Install, Search and Support. The MISC class set

includes two classes: Other and Spam. A detailed

description of each class in the thread class set is

presented in Table 1.

A given thread is labelled either with one class

label from each of the two BASIC class sets (i.e.

two class labels in total), or alternatively one class

label from the MISC class set. For example, the

thread from Figure 1 would be labelled as Pro-

gramming/Documentation. Therefore, when do-

ing the actual annotation, we used the ALLCLASS

class set containing 26 classes in total, i.e. the

cross product of the two BASIC class sets plus

Other and Spam.

It should be noted that while the design of our

class set is specific to computer-related techni-

cal user forum threads, the idea of the two or-

thogonal BASIC class sets, namely PROBLEM and

SOLUTION, can be applied to troubleshooting-

oriented forum threads from other domains. This

is because most troubleshooting-oriented forum

threads present one or more problems (i.e. PROB-

LEM), and imply possible solution types (i.e. SO-

LUTION), even if the thread is unresolved.

4 Data Collection

This research focuses exclusively on data from

CNET forums.1 Firstly, 1000 threads were

crawled from CNET forums using SiteScraper.2

We only collected threads that contained 2 to 16

posts, as threads containing only 1 post have no

answers and cannot provide solutions, and long

threads tend to be more discussion-oriented and/or

contain multiple sub-threads.

1http://forums.cnet.com
2http://sitescraper.googlecode.com/

The crawled threads were then preprocessed.

Only the title and sub-forum information of each

thread, and the body, title, and author informa-

tion of each post were preserved. Finally, we ran-

domly selected 500 threads from 4 sub-forums of

the CNET forums: Operating Systems, Software,

Hardware, and Web Development.

Two annotators performed a pilot annotation us-

ing a seed set of 150 threads and a dedicated web

annotation tool. The κ value for the pilot anno-

tation (indicating the relative agreement between

the two annotators) was 0.43. The annotators sat

down together to go over every thread where there

were disagreements, and discussed the disagree-

ments based on the class descriptions. Then, the

two annotators annotated 327 new threads, achiev-

ing a more respectable κ value of 0.74. The anno-

tators furthermore met again to resolve any dis-

agreements in the labelling of the 327 threads.

Most of the disagreements arose from confusion

between Hardware and Media in the PROBLEM set,

and Documentation and Support in the SOLUTION

set.

5 Experimental Methodology

We carried out preliminary experiments over the

annotated data, focusing on the implications of the

modular class design for thread classification.

As our feature representation, we firstly re-

moved all punctuation in the threads and nor-

malised the threads to lower case. Then, we

lemmatised the threads using the GENIA Tagger

(Tsuruoka et al., 2005), and removed stopwords.3

Based on the preprocessed threads, we used a bag-

of-words term frequency representation, concate-

nating all posts in the thread into a single meta-

document and thereby treating the task as a docu-

ment categorisation task.

All of our experiments were carried out us-

ing Hydrat (Lui and Baldwin, 2009), a classi-

fier comparison framework. Hydrat integrates sev-

eral machine learning software packages includ-

ing BSVM (Hsu and Lin, 2006), weka (Hall et

al., 2009) and MALLET (McCallum, 2002), in ad-

dition to native implementations of a number of

more basic learners. In our experiments, we tried

a range of machine learning models including

Support Vector Machines (SVM), multinominal

Naive Bayes (NB), and instance-based learners

3Using the stop word list from InfoMap (http://
infomap-nlp.sourceforge.net/).

28

Class Category Description

PROBLEM: OS Operating system
Hardware Core computer components, including core external components (e.g. a keyboard)
Software Software-related issues, including applications and programming tools
Media Hardware which is either a non-standard external component or peripheral device
Network Network issues (e.g. connection speed, and installing a physical network)
Programming Coding and design issues relating to programming

SOLUTION: Documentation How to use a certain function, select a computer/component, or perform a task
Install How to install a component
Search Search for a particular component (e.g. a software package)
Support How to fix a problem with a computer or component

MISC: Other Troubleshooting-related, but the problem source is not included in the PROBLEM set
Spam The thread is not troubleshooting-related

Table 1: The components of the thread class set

(NN). A majority-class model (ZEROR) was used

as the baseline.

The class set was represented in three ways,

based on its two orthogonal components: (1) all 26

multiclasses (ALLCLASS); (2) only the PROBLEM

class sub-set, the Other class and the Spam class,

comprising 8 classes in total (PROBLEM); and (3)

only the SOLUTION class sub-set, the Other class

and the Spam class, comprising 6 classes in total

(SOLUTION). By combining the outputs of classi-

fiers based on the PROBLEM and SOLUTION class

sub-sets (i.e. class composition), it is possible to

construct full ALLCLASS classes, and we addi-

tionally compare the single-pass multiclass clas-

sification strategy with multi-pass class composi-

tion.

All experiments were carried out based on strat-

ified 10-fold cross-validation. The results were

evaluated via both micro-statistics and macro-

statistics. Micro-statistics describe average per-

formance per instance (i.e. thread), as represented

in the micro-averaged precision (Pµ), recall (Rµ)

and F-score (Fµ). Macro-statistics, on the other

hand, describe average performance per class,

as represented in the macro-averaged precision

(PM), recall (RM) and F-score (FM). It should

be noted that the Pµ, Rµ and Fµ are always

the same, as the prediction per document is al-

ways unique. Moreover, because cross-validation

is used, the averaged FM is not necessarily the

harmonic mean of the averaged PM and RM .

Because we were more interested in the clas-

sification effectiveness per thread, the micro-

averaged F-score (Fµ) was used as our primary

evaluation method. We also tested the statistical

significance of the results using randomised esti-

mation with p < 0.05 (Yeh, 2000).

Class Space Learner PM RM FM Pµ/Rµ/Fµ

ZEROR .006 .018 .009 .038
ALLCLASS SVM .268 .248 .246 .382

NB .306 .211 .182 .333

ZEROR .038 .142 .060 .266
PROBLEM SVM .564 .485 .500 .661

NB .574 .483 .481 .691

ZEROR .122 .168 .140 .304
SOLUTION SVM .500 .387 .413 .575

NB .513 .270 .246 .520

Table 2: The performance of different learners

over ALLCLASS, PROBLEM and SOLUTION

6 Results and Evaluation

We performed a series of experiments by applying

the learners described in Section 5 over the three

class sets (i.e. ALLCLASS, PROBLEM and SOLU-

TION). Because NN performed significantly be-

low the other two learners in all experiments, we

only present results from SVM and NB (along

with baseline ZEROR). The performance of dif-

ferent learners over ALLCLASS, PROBLEM and

SOLUTION is shown in Table 2. For each class

space, the best result for each column is presented

in boldface.

There are several things to note in the results

presented in Table 2. First, we can see that the

majority class (ZEROR) results are quite poor, es-

pecially for ALLCLASS. This is due to the effects

of cross-validation, in learning the majority class

from the training data in each fold, but due to rel-

ative class uniformity, often finding that this is not

the majority class in the test data. Second, SVM

has relatively strong performance over all three

tasks, especially in ALLCLASS and SOLUTION

with the best Fµ scores. This is not surprising,

because it is often reported that SVMs have supe-

rior performance in document categorisation tasks

(Yang and Liu, 1999; Joachims, 1998). However,

29

PROBLEM SOLUTION ALLCLASS Results

Learner Learner PM RM FM Pµ/Rµ/Fµ

SVM SVM .345 .313 .314 .434
NB SVM .379 .310 .316 .443

SVM NB .278 .259 .229 .398
NB NB .268 .247 .206 .398

Table 3: Results for class composition of the sep-

arate predictions from the PROBLEM and SOLU-

TION classifiers

it is interesting to note that NB produces the best

Fµ (i.e. 0.691) in the PROBLEM task. Although

this figure is not significantly better than the Fµ

(i.e. 0.661) from SVM, it still may imply that we

should optimise our methodology over each sub-

task.

As is explained in Section 5, the main pur-

pose of the experiments is to examine whether

the modular class set (i.e. PROBLEM and SOLU-

TION as two orthogonal components of the overall

ALLCLASS) has the potential to benefit the clas-

sification task for ALLCLASS. One simple way

is to explore class composition. To be specific,

as PROBLEM and SOLUTION represent orthogo-

nal components of ALLCLASS, it is possible to

perform classification separately over PROBLEM

and SOLUTION, and compose predictions via a

combined class set, to form the ALLCLASS class

set. For example, if a given thread is predicted to

have a PROBLEM class of Hardware and a SOLU-

TION class of Documentation, we can compose the

two predictions into the Hardware/Documentation

class. In order to map the results back onto the

ALLCLASS class set cleanly, we used the com-

bined class set, where the combination of Other

from either PROBLEM or SOLUTION with any

other class from the second class set produces an

overall classification of Other in the ALLCLASS

set, and the combination of Spam/Spam is treated

as Spam.

The combined results for the ALLCLASS class

set are presented in Table 3, with the best outcome

for each column once again indicated in boldface.

From the results we can see that the composi-

tion of NB for PROBLEM and SVM for SOLU-

TION yields the best FM (i.e. 0.316) and Fµ (i.e.

0.443), significantly improving over the best ALL-

CLASS results from Table 2 (0.246 and 0.382 re-

spectively). It would therefore appear to be the

case that class composition is effective in boosting

overall classification performance.

7 Conclusion

This research is aimed towards improving infor-

mation access over troubleshooting-oriented tech-

nical user forum data, focusing on automated

thread-level analysis of the problem sources and

solution types. As first steps in this direction, we

designed a modular thread-level class set, anno-

tated 327 threads, and performed thread classifica-

tion over the data. We proposed a class composi-

tion strategy by first performing classification sep-

arately over the PROBLEM and SOLUTION class

sets, and composing the predictions into an over-

all thread classification. This approach gives us

the best classification performance overall, with an

Fµ of 0.443, well above the best result from doing

the ALLCLASS classification directly.

Much more work could be done in terms of

feature engineering. This could include new fea-

tures such as author name/profile and the num-

ber of posts in the thread. We also speculate that

noise in the threads, such as typos and incorrect

casing/punctuation, reduced overall performance,

suggest that text normalisation may help boost our

classifiers. Additionally, because of the promising

results produced by the class composition strat-

egy and the innate structure of our thread class

set, we could consider more sophisticated hierar-

chical classification methods (Dekel et al., 2004;

Tsochantaridis et al., 2005). We leave these for

future work.

Acknowledgements

NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications

and the Digital Economy and the Australian Research Coun-

cil through the ICT Centre of Excellence program.

References

Timothy Baldwin, David Martinez, and Richard B.
Penman. 2007. Automatic thread classification for
Linux user forum information access. In Proceed-
ings of the 12th Australasian Document Computing
Symposium (ADCS 2007), pages 72–79, Melbourne,
Australia.

Timothy Baldwin, David Martinez, Richard Penman,
Su Nam Kim, Marco Lui, Li Wang, and Andrew
MacKinlay. 2010. Intelligent Linux information ac-
cess by data mining: the ILIAD project. In Pro-
ceedings of the NAACL 2010 Workshop on Compu-
tational Linguistics in a World of Social Media: #So-
cialMedia, pages 15–16, Los Angeles, USA.

Ofer Dekel, Joseph Keshet, and Yoram Singer. 2004.
Large margin hierarchical classification. In Pro-

30

ceedings of the 21st International Conference on
Machine Learning (ICML 2004), Banff, Canada.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA data mining software: An update.
ACM SIGKDD Explorations Newsletter, 11(1):10–
18.

Chih-Wei Hsu and Chih-Jen Lin. 2006. BSVM.
http://www.csie.ntu.edu.tw/˜cjlin/

bsvm/.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In Proceedings of the 10th Euro-
pean Conference on Machine Learning (ECML’98),
pages 137–142, Chemnitz, Germany.

Marco Lui and Timothy Baldwin. 2009. hy-
drat. http://hydrat.googlecode.com.
Retrieved on 25/10/2010.

Andrew Kachites McCallum. 2002. MALLET: A
machine learning for language toolkit. http://

mallet.cs.umass.edu/.

Ani Nenkova and Amit Bagga. 2004. Facilitating
email thread access by extractive summary genera-
tion. In Nicolas Nicolov, Kalina Bontcheva, Galia
Angelova, and Ruslan Mitkov, editors, Recent Ad-
vances in Natural Language Processing III: Selected
Papers from RANLP 2003, pages 287–294. John
Benjamins, Amsterdam, Netherlands.

Owen Rambow, Lokesh Shrestha, John Chen, and
Chirsty Lauridsen. 2004. Summarizing email
threads. In Proceedings of the 4th International
Conference on Human Language Technology Re-
search and 5th Annual Meeting of the NAACL (HLT-
NAACL 2004), pages 105–108, Boston, USA.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large margin
methods for structured and interdependent output
variables. Journal of Machine Learning Research,
6(Sep):1453–1484.

Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim,
Tomoko Ohta, John McNaught, Sophia Ananiadou,
and Jun’ichi Tsujii. 2005. Developing a robust part-
of-speech tagger for biomedical text. In Proceed-
ings of the Advances in Informatics - 10th Panhel-
lenic Conference on Informatics, LNCS 3746, pages
382–392, Volos, Greece.

Stephen Wan and Kathy McKeown. 2004. Generating
overview summaries of ongoing email thread dis-
cussions. In Proceedings of the 20th International
Conference on Computational Linguistics (COLING
2004), pages 549–555, Geneva, Switzerland.

Yiming Yang and Xin Liu. 1999. A re-examination
of text categorization methods. In Proceedings of
the 22nd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR’99), pages 42–49, Berkeley, USA.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Pro-
ceedings of the 18th International Conference on
Computational Linguistics (COLING 2000), pages
947–953, Saarbrücken, Germany.

Liang Zhou and Eduard Hovy. 2005. Digesting Vir-
tual “Geek” Culture: The Summarization of Tech-
nical Internet Relay Chats. In Proceedings of the
43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL 2005), pages 298–305,
Ann Arbor, USA.

31

