
Proceedings of the Australasian Language Technology Workshop 2005, pages 15–23,
Sydney, Australia, December 2005.

Learning of Graph Rules for Question Answering

Diego MOLLA and Menno VAN ZAANEN
Centre for Language Technology, Macquarie University

Sydney,
Australia,

{diego,menno}@ics.mq.edu.au

Abstract

AnswerFinder is a framework for the devel-
opment of question-answering systems. An-
swerFinder is currently being used to test the
applicability of graph representations for the de-
tection and extraction of answers. In this paper
we briefly describe AnswerFinder and introduce
our method to learn graph patterns that link
questions with their corresponding answers in
arbitrary sentences. The method is based on
the translation of the logical forms of questions
and answer sentences into graphs, and the ap-
plication of operations based on graph overlaps
and the construction of paths within graphs.
The method is general and can be applied to
any graph-based representation of the contents
of questions and answers.

1 Introduction

Text-based question answering (henceforth QA)
is the process whereby an answer to an arbi-
trary question formulated in plain English is
found by searching through unedited text doc-
uments and returned to the user. The current
availability of increasingly large volumes of text
for human consumption has prompted an inten-
sive research in QA. A well-known forum for
the evaluation of QA systems is the question-
answering track of the Text REtrieval Confer-
ence1 (Voorhees, 2001), where systems devel-
oped by some of the most active researchers in
the area are compared within the context of a
common task. In addition, QA technology is
being deployed in practical applications. For
example, several Web-based question-answering
systems are currently available (e.g. START2,
AnswerBus3), and recently popular Web search
engines have started incorporating automated

1http://trec.nist.gov
2http://www.ai.mit.edu/projects/infolab/
3http://www.answerbus.com/index.shtml

question-answering techniques (e.g. Google4, as
for September 2005).

The development of successful QA technol-
ogy requires solid foundations both in the ar-
eas of software engineering and natural lan-
guage processing. The nature of text-based
question answering requires the use of a wide
range of techniques, some of which are described
in (Hirschman and Gaizauskas, 2001; Voorhees,
2001). For example, traditional document re-
trieval techniques are typically used to prese-
lect the documents or document fragments that
may contain the answer to the question. In
addition, information extraction techniques are
commonly used to extract all the named enti-
ties in the question and the preselected text,
on the ground that fact-based questions typi-
cally expect one of these named entities as an
answer. To analyse the questions, techniques
range from the use of regular expressions to the
use of machine-learning techniques that classify
the questions according to the type of the ex-
pected answer. Finally, to find the answer, tech-
niques may vary from a bag of words compar-
ison of keywords used in the question and the
answer sentence, to the use of full parsers and
logical proof tools such as OTTER5. Additional
resources are typically used, notably the Word-
Net lexical resource.6 Consequently, the most
successful QA systems are complex pieces of en-
gineering that require frequent development and
testing, such as (Moldovan et al., 2003). An un-
welcome side-effect of this is that much of the
effort spent in developing a QA system is spent,
not in the developing of QA methodologies, but
in defining the optimal parameters of a system.

On the other hand, QA presents challenging
theoretical issues. One of the most salient the-
oretical challenges is related to the problem of

4http://www.google.com
5http://www-unix.mcs.anl.gov/AR/otter/
6http://wordnet.princeton.edu/

15

paraphrasing. There are many ways of express-
ing the same piece of information. For example,
the simple question Where was Peter born? can
be similarly asked as:

1. In what city was Peter born?

2. What is Peter’s birthplace?

3. What is the birthplace of Peter?

4. Name Peter’s birthplace

Whereas it may not be difficult to manually
devise rules that account for the most popular
ways of rephrase a question, variations in the
sentences containing the answer are much less
predictable. A human would not have any prob-
lem to find the answer to the above questions
in the following examples:

1. Peter was born in Paris.

2. Paris is Peter’s birthplace.

3. Paris, Peter’s birthplace, is located in
France.

4. Mrs Smith gave birth to Peter in Paris.

However, a machine would need to have ac-
cess to lexical, syntactic, and world knowledge
information if it is to find the answer.

The above are simple constructed examples.
Real text with much more complex examples
abounds, but the examples above suffice to il-
lustrate the problem encountered by any text-
based question-answering system. For fur-
ther details about the problem of paraphrasing
within the context of QA, see (Rinaldi et al.,
2003).

Some systems have attempted to systemat-
ically build rules that link questions with an-
swer sentences. For example, (Soubbotin, 2001)
used a complex hierarchy of rules on surface
strings. Other systems, such as (Echihabi et
al., 2004), use a method for the automatic learn-
ing of surface-level rules. Other systems, such
as (Bouma et al., 2005), use hand-crafted rules
based on syntactic information.

Our hypothesis is that the accuracy of
question-answering systems would improve if
these rules are based on linguistic features lo-
cated at a deeper level. Furthermore, to handle
the problem of paraphrasing, the rules must be
automatically learnt based on a representative
corpus of questions and answers. In this paper
we present our current work for developing and

testing this hypothesis. Our work is being inte-
grated in the AnswerFinder QA system, which
is briefly described in Section 2. Section 3 de-
scribes the Logical Graph notation that we use
to represent the logical contents of questions
and answer sentences. Section 4 presents the
rules based on Logical Graphs, and how they
are automatically learnt from a corpus of ques-
tion/answer pairs. Section 5 shows the use of
these rules to find the exact answer to a ques-
tion, and Section 6 shows the results of our
evaluations. Sections 7 and 8 point to related
research and give the final conclusions, respec-
tively.

2 AnswerFinder, a Framework for
Question Answering

Our solution to the need to use software engi-
neering techniques for the development of prac-
tical QA systems is AnswerFinder. Initially de-
signed as a simple QA prototype, AnswerFinder
is currently being redesigned to allow the rapid
development and test of QA techniques. Its
primary application is the TREC Question An-
swering track,7 but we also envisage its use, di-
rectly or indirectly, in other evaluation frame-
works such as CLEF,8 DUC,9 and the PASCAL
Recognising Text Entailment challenge.10 For
this reason, AnswerFinder’s architecture is flex-
ible and configurable, allowing to plug and test
various modules easily.

The design of the system is functional and
object-oriented. Focusing on function (instead
of data) makes it easier to replace functions of
the system with others. The system is imple-
mented in C++. C++ was selected because it
is a high-level language on the one hand, but
can also be used in a more low-level way. It in-
terfaces well with C, which allows for easy inte-
gration of many external systems. Furthermore,
the resulting executable is relatively fast.

AnswerFinder consists of two main compo-
nents, the client and the server. The client can
get information from the server about the al-
gorithms and files/document collections it pro-
vides to clients. The client can also send in-
formation to the server requesting question(s)
to be processed using specific algorithms and
data collections. The server can be fully config-
ured via XML. For example, if the client calls

7http://trec.nist.gov
8http://www.clef-campaign.org/
9http://www-nlpir.nist.gov/projects/duc/

10http://www.pascal-network.org/Challenges/RTE/

16

the server without any configuration informa-
tion, the server replies with an XML document
listing all the available services. The client can
then call the server with an XML file containing
all the configuration information.

The request the server receives from the client
contains all information needed to process the
question(s). It specifies the document collection
and the algorithms that should be used. The
server then runs the required services by creat-
ing algorithm objects. An algorithm defines the
full question-answering process, and it may use
sub-algorithms for specific phases (such as ques-
tion classification, document preselection, etc).
The sub-algorithms are designed so that they
can be called by any algorithm. Thus, different
ways of trying QA techniques can be easily im-
plemented by defining new algorithms that call
the specific sub-algorithms with specific param-
eters.

The following sub-algorithms are currently
defined in AnswerFinder. They are classified
by the question-answering phase in which they
are used:
Document Selection. Sub-algorithms in
this phase are used to preselect the candidate
documents.

• NIST Doc Selection: This sub-
algorithm returns the documents provided
by NIST for the TREC QA task.

Question Classification. Sub-algorithms in
this phase are used to analyse and classify the
question.

• Regexp Q Classification: This is a set
of regular expressions that determines the
type of the expected answer according to a
simple hierarchy of types.

Sentence Selection. Sub-algorithms in this
phase are used to determine what sentences
are likely to contain an answer. These sub-
algorithms can be cascaded to provide the final
ranking of sentences.

• Word Overlap: Count the number of
words in common between the question and
the answer sentence. This sub-algorithm
allows the use of a list of stop words that
are not considered in the overlap.

• Grammatical Relations Overlap:
Count the number of grammatical rela-
tions in common. We used a subset of the

grammatical relations defined by (Carroll
et al., 1998).

• Logical Form Rules: Count the num-
ber of logical form predicates in common,
after applying a set of logical form rules.
The process is explained in (Mollá and Gar-
diner, 2004).

• Logical Graph Rules: Count the graph
overlap between the question and the an-
swer after applying graph transformation
rules. This process is explained in the re-
mainder of this paper.

Named Entity. sub-algorithms in this phase
are used to detect all named entities in the text
(person and organisation names, locations, etc).

• LingPipe: This sub-algorithm uses the
Alias-i LingPipe named entity recogniser.11

3 Logical Graphs

We are developing a graph notation for the
expression of the logical contents of questions
and answer sentences. Our Logical Graphs are
inspired on Conceptual Graphs (Sowa, 1979),
though our graphs do not attempt to encode
the full semantics of a sentence. Instead, the fo-
cus of our Logical Graphs is on robustness and
practicability.

Robustness. It should be possible to auto-
matically produce the Logical Graph of any sen-
tence, even of those sentences that are not fully
grammatical. The importance of this feature
becomes obvious once one looks at the quality
of the English used in typical corpora used for
QA.

Practicability. The Logical Graphs should
be automatically constructed in relatively short
run time. The operations with the graphs
should be computable within relatively short
time.

Like Sowa’s Conceptual Graphs, our Logical
Graphs are directed, bipartite graphs with two
types of vertices, concepts and relations:

Concepts. Examples of concepts are objects
dog, table, events and states run, love, and prop-
erties red, quick. Concepts may be arranged in
a network of word relations (such as ontologies),
though our method does not yet exploit this
possibility in full.

11http://alias-i.com/lingpipe/

17

Relations. Relations act as links between
concepts. Traditional examples of relations
are grammatical roles and prepositions. How-
ever, to facilitate the production of the Logical
Graphs we have decided to use a labelling of
relations which is relatively close to the syntac-
tic level of linguistic information. For example,
instead of using the usual thematic roles agent,
patient, and so forth, we use syntactic roles sub-
ject, object, etc. For convenience, and to avoid
entering into a debate about the possible names
of the syntactic roles, we have decided to use
numbers. Thus, the relation 1 indicates the link
to the first argument of a verb (that is, what is
usually a subject). The relation 2 indicates the
link to the second argument of a verb (usually
the direct object), and so forth.

Figure 1 shows various examples of Logical
Graphs. The first example shows the use of a
relation 1 to express the subject of the go event,
and two relations, to and by, that represent two
prepositions. The second example shows the use
of lattice structures to represent complex enti-
ties (such as the ones formed when a conjunc-
tion is used). This use of lattices is inspired from
the treatment of plurals and complex events
(Link, 1983; Mollá, 1997). Finally, the third ex-
ample shows the expression of clauses and con-
trol verbs. These examples only cover a few of
the linguistic features but we hope they will suf-
fice to show the expressive power of our Logical
Graphs.

The Logical Graphs are constructed auto-
matically from the output of the Conexor
dependency-based parser (Tapanainen and
Järvinen, 1997). The choice of the parser was
arbitrary, and it would be easy to produce the
same or similar graphs from the output of any
dependency-based parser. It would be also pos-
sible to use the output of a constituency-based
parser by applying well-known methods to con-
vert from constituency structures to depen-
dency structures like those described by Schnei-
der (1998), or practical methods like the one
described by Harabagiu et al. (2000).

4 Logical Graph Rules

The Logical Graph rules used by AnswerFinder
are based on the concepts of graph overlap and
path between two subgraphs in a graph.

The graph overlap between two sentences is
the overlap of the Logical Graphs of the two
sentences. A näıve definition of the overlap be-
tween two graphs would be the graph consisting

of all the common concepts and relations. The
actual definition of an overlap, however, must be
made more complicated on the light of the exis-
tence of repeated vertex labels. The third exam-
ple of Figure 1, for example, shows that the re-
lations named 1 and 2 appear twice in the same
graph. Concept labels can also be repeated in a
graph if the sentence uses the same word to ex-
press two different concepts. For example, the
sentence John bought a book and Mary bought a
magazine describes two distinct events of buy-
ing.

Graph overlaps must therefore be defined on
the basis of a correspondence relation so that
each vertex (edge) of a graph correlates with one
and only one vertex (edge) in the other graph
(Montes-y-Gómez et al., 2001). Thus, there is a
projection from the graph overlap to a subgraph
of each of the original graphs, such that there
is a correspondence from every vertex (or edge)
of the graph overlap to a vertex (or edge) of the
projected subgraphs. Figure 2 shows an exam-
ple of two graph overlaps and their projections
to subgraphs in the original graphs.

There could be several overlaps between two
graphs. Of these, the most useful ones are
the maximal overlaps, that is, the overlaps
that are not subgraphs of any other overlaps.
There could still exist several maximal overlaps
between two graphs. For example, Figure 2
shows two different maximal overlaps between
the Logical Graphs of two sentences.

A path between two subgraphs in a graph G
is a subgraph of G that connects the two sub-
graphs. As is the case with graph overlaps,
there may be several paths between two sub-
graphs, especially when the graphs have a high
density of edges.

Each rule r will contain three components.
For the sake of completion the components are
listed here but their use will be described in
detail in Section 5.

ro An overlap between a question and its an-
swer sentence. This overlap is used to de-
termine when the rule should trigger.

rp A path between the overlap and the actual
answer in the answer sentence. This path
is used to find the location of the exact an-
swer.

ra A graph representation of the exact answer.

18

john 1 go to boston

by

bus

John is going to Boston by bus

person 1 be between

≤rock ≤ place

prop

hard

A person is between a rock and a hard place
tom 1 believe 2

want1mary 2

marry1 2

sailor

Tom believes that Mary wants to marry a sailor

Figure 1: Examples of logical graphs

john 1 see 2 book

and and

table2see1mary

john 1 see 2 table2see1

john 1 see 2 table

Figure 2: Graph overlaps of sentences John saw a book and Mary saw a table and John saw a table.
The two overlaps are shown in thick lines. The dashed lines show the correspondence relation
from the graph vertices of each overlap and the projected subgraphs in the original graphs (the
correspondence relation from the edges is not shown to improve readability).

4.1 Learning of Logical Graph Rules

With the help of a training set of questions and
sentences containing the answers, a set of Log-
ical Graph rules can be learnt. Figure 3 shows
an example of a rule learnt between two sen-
tences. The graph notation has been simplified
by replacing the relation vertices with labelled
edges.

The algorithm for learning rules is fairly
straightforward and is shown in Figure 4. Rules
learnt with this algorithm are very specific to
the question/answer pair. For example, the

bear peter where1 2 prop

Q:Where was Peter born?

peter birthplace be paris
genitive 1 2

A:Peter’s birthplace was Paris

peter birthplace be paris
genitive 1 2

The Rule (ro in regular lines, rp in dashed
lines, ra in thick lines)

Figure 3: A logical graph rule

19

FOR every question/answerSentence pair
Gq = the graph of the question
Gs = the graph of the answer sentence
Ga = the graph of the exact answer
FOR every overlap O between Gq and Gs

FOR every path P between O and Ga

Build a rule R of the form
Ro = O
Rp = P
Ra = Ga

Figure 4: Learning of graph rules

rule in Figure 3 would only trigger for ques-
tions about Peter and it would not trigger, say,
for the question Where was Mary born?. The
rule needs to be generalised. Our generalisation
method is very simple: relations do not gener-
alise (relations express syntactic or semantic re-
lations and it is not advisable to over-generalise
them), and concepts generalise to “ ” (that is,
concepts that would unify with anything). The
generalisation process applies to every concept
except those that belong to a specific list of
“stop concepts” (in analogy to the idea of stop
words in Information Retrieval). The current
list of stop concepts is:

and, or, not, nor, if, otherwise, have,
be, become, do, make

The resulting generalised rules may then over-
generalise and therefore they must be weighted
according to their ability to detect the correct
answer in the training corpus. The weightW(r)
of a rule r is computed following the formula:

W(r) =
correct answers found

answers found

5 Graph-based Question Answering

Given a question q with graph Q and a sen-
tence s with graph S, the process to find the
answer iterates over all the rules. A rule r trig-
gers if the overlap component of the rule ro is a
subgraph of Q (which can be easily determined
by checking that ovl(ro, Q) = ro). When that
happens, the graph of the question is expanded
with the rule path rp, producing a new graph
Qrp . The resulting graph is more likely to pro-
duce a large overlap with an answer sentence
similar to the one that generated the rule and,

most importantly, the graph contains an indi-
cation of where the answer is located.

Once the graph of the question has been ex-
panded with the path, one only needs to com-
pute the overlap between this expanded graph
and that of the answer sentence ovl(Qrp , S). If
the overlap retains part of the exact answer that
was marked up by the graph rule, then we have
found a possible answer.

The above method will cover simple cases,
but it needs to be extended to cover two spe-
cial cases that arise from the fact that the ques-
tion/sentence pairs that generated the rule are
likely to be different from the actual question
and sentence being tested. First of all, a ques-
tion may trigger several rules, and each rule may
extract a different answer from the answer sen-
tence. And second, it is possible that the over-
lap between the expanded graph and the sen-
tence does not contain the complete answer but
part of it. We will explain how to handle these
two cases below.

To identify the correct answer among a set
of possible answers it is necessary to establish
a measure of “answerhood” so that the correct
answer has a higher score than the score of other
candidates. The rule weight gives an indication
of the quality of the answer extracted, but we
also need to keep in account the similarity (or
otherwise) between the text originating the rule
and the text being tested. Given that the graph
of the question has been expanded with the path
linking the question and the exact answer deter-
mined in the training corpus, then the size of the
overlap between the expanded graph of the test
question and the graph of the test answer can
be used as an estimation. Thus, the measure
of answerhood A(pa) of a possible answer pa is
the product of the weight of the rule used r, and
the size of the best overlap between the graph
of the question sentence expanded with the rule
path and the graph S of the answer sentence:

A(a) = W(r)× size(ovl(Qrp , S))

The size of a graph is computed as the
weighted sum of all concepts and relations in
the path. The formula to determine the weight
of each concept and relation is inspired on the
use of the Inverse Document Frequency (IDF)
measure used in Document Retrieval. The ac-
tual formula that we use is:

Wi =
1

log N
log

N

n

20

35.1
When did Jack Welch become chairman of General Electric?
Jack Welch took over GE in <answ>1981</answ>.
Welch became GE’s chief executive in April <answ>1981</answ>.
Welch was named chief executive in <answ>1981</answ>.

35.4
How many people did he fire from GE?
He sold off underperforming divisions and fired about <answ>100,000</answ> people.
More than <answ>100,000</answ> GE jobs have been axed under Welch.

Figure 5: Extract of the training corpus

n = total number of sentences using the concept
(or relation) i

N = total number of sentences

The formula includes the constant factor
1/ log N to ensure that the values range between
0 and 1.

6 Evaluation and Results

We have conducted an initial evaluation of the
use of these rules within the task of ques-
tion answering. For this evaluation we cre-
ated a training and testing corpus based on
the first 111 questions of the question-answering
track of TREC 2004 (Voorhees, 2004). For
each question, we applied Ken Litkowsky’s pat-
terns12 to automatically extract sentences in
the AQUAINT corpus containing possible an-
swers. These sentences were checked manually,
and only sentences containing the answer and a
justification were selected. As a result we ob-
tained about 560 question/answer pairs. The
exact answers in the answer sentences of the
training corpus were manually marked up to en-
sure a corpus without wrong answers. Figure 5
shows an extract of the training corpus.

The question/answer training corpus was
split in 5 sets, and a 5-fold cross-validation
was performed. Table 1 shows the results. In
this table, the accuracy indicates the percentage
of questions that are answered correctly. The
MRR measure is as used in the TREC eval-
uations (Voorhees, 2001), and it measures the
mean reciprocal rank for ranks from 1 to 5. For
example, if the correct answer was ranked 3 (i.e.
the system ranked two wrong answers higher
than the correct answer), then the reciprocal
rank is 1/3. If the correct answer was ranked

12Ken Litkowsky’s patterns are available from the
TREC website (http://trec.nist.gov).

beyond 5, then the reciprocal rank is 0. The
MRR is the mean of the reciprocal ranks across
all questions. Given that the results indicate an
MRR with value higher than the accuracy, we
can deduce that the system sometimes finds the
correct answer but it does not assign it the top
rank.

Accuracy MRR
Test 1 25.76% 28.91%
Test 2 26.92% 31.09%
Test 3 9.21% 16.56%
Test 4 26.47% 29.78%
Test 5 18.82% 23.53%
Average 21.44% 25.97%

Table 1: Graph-based question answering re-
sults. The accuracy is the percentage of ques-
tions that are correctly answered. The MRR
measure is as used in the TREC evaluations (see
text).

Figure 6 shows the distribution of weights
among the rules learnt (this is the sum of all
the rules produced in all the five runs). To avoid
computational overhead of handling rules with
low weight we decided to set a threshold of 0.5.
Any rules with weight below 0.5 were discarded.
The figure indicates two clear regions, one with
rules of weight lower than 0.6 and one with rules
of weight above 0.9. It is probably desirable to
set a threshold of 0.9 for a larger training cor-
pus to ensure that only good quality rules are
used. We refrained from doing so with our small
corpus to avoid ending up with too few rules.

It is difficult to compare the above results
with those of existing evaluations for various
reasons. First of all, the system used in our
evaluation did not have the usual modules of a
full-blown QA system as described in Section 1.
Second, the task is a simplification of a real QA

21

360

64 76 76

240

0.5 0.6 0.7 0.8 0.9 1.0

100

200

300

400

N
um

.
R
ul

es

Weight

Figure 6: Distribution of weights among the
rules learnt

task in that the answer is known to exist in the
answer candidate. An area of further work is
therefore to integrate this method into the An-
swerFinder QA system and to evaluate the sys-
tem in a task such as the QA track of TREC.

7 Related Work

There have been several attempts to automati-
cally learn the correspondence between a ques-
tion and an answer. For example, (Echihabi
et al., 2004) describes three approaches to use
question/answer rules, two of which use ma-
chine learning methods. In one approach, the
system uses a methodical series of web searches
containing a question phrase and the answer
to collect a corpus of substrings linking the
question phrase with the answer. The other
machine-learning method described by Echich-
abi et al. uses techniques based on statistical
machine translation to automatically learn the
“translation” between a question and an an-
swer.

A system that uses syntactic information in
machine learning for QA has been recently pub-
lished by Shen et al. (2005). This system is
based on the extraction of dependency chains
connecting a question word with an answer.
The information is combined with other statis-
tical features and fed to a Maximum Entropy
model that ranks the answer candidates. The
use of dependency chains in this system is sim-
ilar in principle with our use of graph paths in
that it provides a way to connect a question
with its answer. We have not had time however
to study this system in detail.

Another system that uses syntactic informa-
tion to develop patterns is described by Bouma
et al. (2005). Their system uses the output
of a dependency parser combined with a set of

equivalence rules between sets of dependency re-
lations that paraphrase each other. In contrast
with our method, however, the rules were de-
veloped manually and there were no indications
in the paper about how to develop a method
to automatically learn the rules. A method to
discover similar sets of dependencies has been
described by Lin and Pantel (2001), so in prin-
ciple it is feasible to learn paraphrase rules and
apply them to QA. However, the paraphrase
rules described by these two systems do not at-
tempt to connect a question with an answer, as
we do.

The only system using logical-form rules that
we are aware of is AnswerFinder at the time of
participation in TREC 2004 (Mollá and Gar-
diner, 2004). The rules were based on An-
swerFinder’s minimal logical forms, and they
were built manually. The system presented in
our paper is a continuation of this research.
Other than AnswerFinder, we are not aware
of any QA system that attempts to learn rules
based on logical forms.

There is some work on the use of concep-
tual graphs for information retrieval (Montes-
y-Gómez et al., 2000; Mishne, 2004). However,
we are not aware of any publication about the
use of conceptual graphs (or any other form
of graph representation) for question answering
other than our own.

8 Conclusions and Further Work

We have introduced a methodology for the
learning of graph patterns between questions
and answers. Rules are learnt on the basis of
two graph concepts: graph overlap, and paths
between two subgraphs in a graph.

The techniques presented here use graph rep-
resentations of the logical contents between
questions and answer sentences. These tech-
niques are being tested in AnswerFinder, a
framework for the development of question-
answering techniques that is easily configurable.

We believe that our method can generalise to
any graph representation of questions and an-
swer sentences. Further work will include the
use of alternative graph representations, includ-
ing the output of a dependency-based parser.

Finally, we plan to continue our evaluation
of the method by integrating it into the An-
swerFinder system and other QA systems to
fully assess its potential.

22

9 Acknowledgements

This research is funded by the Australian
Research Council, ARC Discovery Grant no
DP0450750.

References

Gosse Bouma, Jori Mur, and Gertjan van No-
ord. 2005. Reasoning over dependency rela-
tions for qa. In Proc. IJCAI-05 Workshop
on Knowledge and Reasoning for Answering
Questions, pages 15–20.

John Carroll, Ted Briscoe, and Antonio Sanfil-
ippo. 1998. Parser evaluation: a survey and
a new proposal. In Proc. LREC98.

Abdessamad Echihabi, Ulf Hermjakob, Eduard
Hovy, Daniel Marcu, Eric Melz, and Deepak
Ravichandran. 2004. How to select an an-
swer string? In Tomek Strzalkowski and
Sanda Harabagiu, editors, Advances in Tex-
tual Question Answering. Kluwer.

Sanda Harabagiu, Dan Moldovan, Marius
Paşca, Rada Mihalcea, Mihai Surdeanu,
Răzvan Bunescu, Roxana Gı̂rju, Vasile Rus,
and Paul Morărescu. 2000. Falcon: Boosting
knowledge for answer engines. In Ellen M.
Voorhees and Donna K. Harman, editors,
Proc. TREC-9, number 500-249 in NIST Spe-
cial Publication, pages 479–488. NIST.

Lynette Hirschman and Rob Gaizauskas. 2001.
Natural language question answering: The
view from here. Natural Language Engineer-
ing, 7(4):275–300.

Dekang Lin and Patrick Pantel. 2001. Discov-
ery of inference rules for question-answering.
Natural Language Engineering, 7(4):343–360.

Godehard Link. 1983. The logical analysis of
plurals and mass terms: a lattice-theoretical
approach. In Rainer Bauerle, Christoph
Schwarze, and Arnim von Stechov, editors,
Meaning, Use and Interpretation of Lan-
guage, pages 250–209. de Gruyter, Berlin.

Gilad Mishne. 2004. Source code retrieval us-
ing conceptual graphs. Master’s thesis, Uni-
versity of Amsterdam.

Dan Moldovan, Marius Pas ca, Sanda
Harabagiu, and Mihai Surdeanu. 2003.
Performance issues and error analysis in an
open-domain question answering system.
ACM Transactions on Information Systems,
21(2):133–154.

Diego Mollá and Mary Gardiner. 2004. An-
swerfinder - question answering by combining
lexical, syntactic and semantic information.
In Ash Asudeh, Cécile Paris, and Stephen

Wan, editors, Proc. ALTW 2004, pages 9–16,
Sydney, Australia. Macquarie University.

Diego Mollá. 1997. Aspectual Composition and
Sentence Interpretation: a formal approach.
Ph.D. thesis, University of Edinburgh.

Manuel Montes-y-Gómez, Aurelio López-López,
and Alexander Gelbukh. 2000. Information
retrieval with conceptual graph matching. In
Proc. DEXA-2000, number 1873 in Lecture
Notes in Computer Science, pages 312–321.
Springer-Verlag.

Manuel Montes-y-Gómez, Alexander Gelbukh,
and Ricardo Baeza-Yates. 2001. Flexi-
ble comparison of conceptual graphs. In
Proc. DEXA-2001, number 2113 in Lecture
Notes in Computer Science, pages 102–111.
Springer-Verlag.

Fabio Rinaldi, James Dowdall, Kaarel Kalju-
rand, Michael Hess, and Diego Mollá. 2003.
Exploiting paraphrases in a question answer-
ing system. In Proc. Workshop in Paraphras-
ing at ACL2003, Sapporo, Japan.

Gerold Schneider. 1998. A linguistic compar-
ison of constituency, dependency and link
grammar. Master’s thesis, University of
Zurich. Unpublished.

Dan Shen, Geert-Jan M. Kruijff, and Dietrich
Klakow. 2005. Exploring syntactic relation
patterns for question answering. In Robert
Dale, Kam-Fai Wong, Jian Su, and Oi Yee
Kwong, editors, Natural Language Processing
IJCNLP 2005: Second International Joint
Conference, Jeju Island, Korea, October 11-
13, 2005. Proceedings. Springer-Verlag.

M. M. Soubbotin. 2001. Patterns of potential
answer expression as clues to the right an-
swers. In Ellen M. Voorhees and Donna K.
Harman, editors, Proc. TREC 2001, number
500-250 in NIST Special Publication. NIST.

John F. Sowa. 1979. Semantics of conceptual
graphs. In Proc. ACL 1979, pages 39–44.

Pasi Tapanainen and Timo Järvinen. 1997. A
non-projective dependency parser. In Proc.
ANLP-97. ACL.

Ellen M. Voorhees. 2001. The TREC question
answering track. Natural Language Engineer-
ing, 7(4):361–378.

Ellen M. Voorhees. 2004. Overview of the trec
2004 question answering track. In Ellen M.
Voorhees and Lori P. Buckland, editors, Proc.
TREC 2004, number 500-261 in NIST Special
Publication. NIST.

23

	Disambiguating Conjunctions in Named Entities

