@inproceedings{wang-etal-2019-ynuwb,
title = "{YNUWB} at {S}em{E}val-2019 Task 6: K-max pooling {CNN} with average meta-embedding for identifying offensive language",
author = "Wang, Bin and
Zhou, Xiaobing and
Zhang, Xuejie",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2143",
doi = "10.18653/v1/S19-2143",
pages = "818--822",
abstract = "This paper describes the system submitted to SemEval 2019 Task 6: OffensEval 2019. The task aims to identify and categorize offensive language in social media, we only participate in Sub-task A, which aims to identify offensive language. In order to address this task, we propose a system based on a K-max pooling convolutional neural network model, and use an argument for averaging as a valid meta-embedding technique to get a metaembedding. Finally, we also use a cyclic learning rate policy to improve model performance. Our model achieves a Macro F1-score of 0.802 (ranked 9/103) in the Sub-task A.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-ynuwb">
<titleInfo>
<title>YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-embedding for identifying offensive language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system submitted to SemEval 2019 Task 6: OffensEval 2019. The task aims to identify and categorize offensive language in social media, we only participate in Sub-task A, which aims to identify offensive language. In order to address this task, we propose a system based on a K-max pooling convolutional neural network model, and use an argument for averaging as a valid meta-embedding technique to get a metaembedding. Finally, we also use a cyclic learning rate policy to improve model performance. Our model achieves a Macro F1-score of 0.802 (ranked 9/103) in the Sub-task A.</abstract>
<identifier type="citekey">wang-etal-2019-ynuwb</identifier>
<identifier type="doi">10.18653/v1/S19-2143</identifier>
<location>
<url>https://aclanthology.org/S19-2143</url>
</location>
<part>
<date>2019-jun</date>
<extent unit="page">
<start>818</start>
<end>822</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-embedding for identifying offensive language
%A Wang, Bin
%A Zhou, Xiaobing
%A Zhang, Xuejie
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 jun
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F wang-etal-2019-ynuwb
%X This paper describes the system submitted to SemEval 2019 Task 6: OffensEval 2019. The task aims to identify and categorize offensive language in social media, we only participate in Sub-task A, which aims to identify offensive language. In order to address this task, we propose a system based on a K-max pooling convolutional neural network model, and use an argument for averaging as a valid meta-embedding technique to get a metaembedding. Finally, we also use a cyclic learning rate policy to improve model performance. Our model achieves a Macro F1-score of 0.802 (ranked 9/103) in the Sub-task A.
%R 10.18653/v1/S19-2143
%U https://aclanthology.org/S19-2143
%U https://doi.org/10.18653/v1/S19-2143
%P 818-822
Markdown (Informal)
[YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-embedding for identifying offensive language](https://aclanthology.org/S19-2143) (Wang et al., SemEval 2019)
ACL