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Abstract

Recent studies have shown that pre-trained
contextual word embeddings, which assign
the same word different vectors in different
contexts, improve performance in many tasks.
But while contextual embeddings can also be
trained at the character level, the effective-
ness of such embeddings has not been stud-
ied. We derive character-level contextual em-
beddings from Flair (Akbik et al., 2018), and
apply them to a time normalization task, yield-
ing major performance improvements over the
previous state-of-the-art: 51% error reduction
in news and 33% in clinical notes. We ana-
lyze the sources of these improvements, and
find that pre-trained contextual character em-
beddings are more robust to term variations,
infrequent terms, and cross-domain changes.
We also quantify the size of context that pre-
trained contextual character embeddings take
advantage of, and show that such embeddings
capture features like part-of-speech and capi-
talization.

1 Introduction
Pre-trained language models (LMs) such as ELMo
(Peters et al., 2018), ULMFiT (Howard and Ruder,
2018), OpenAI GPT (Radford et al., 2018), Flair
(Akbik et al., 2018) and Bert (Devlin et al., 2018)
have shown great improvements in NLP tasks
ranging from sentiment analysis to named entity
recognition to question answering. These models
are trained on huge collections of unlabeled data
and produce contextualized word embeddings, i.e.,
each word receives a different vector representa-
tion in each context, rather than a single common
vector representation regardless of context as in
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014).

Research is ongoing to study these models and
determine where their benefits are coming from

(Peters et al., 2018; Radford et al., 2018; Khandel-
wal et al., 2018; Qi et al., 2018; Zhang and Bow-
man, 2018). The analyses have focused on word-
level models, yet character-level models have been
shown to outperform word-level models in some
NLP tasks, such as text classification (Zhang et al.,
2015), named entity recognition (Kuru et al., 2016),
and time normalization (Laparra et al., 2018a).
Thus, there is a need to study pre-trained contex-
tualized character embeddings, to see if they also
yield improvements, and if so, to analyze where
those benefits are coming from.

All of the pre-trained word-level contextual em-
bedding models include some character or sub-
word components in their architecture. For ex-
ample, Flair is a forward-backward LM trained
over characters using recurrent neural networks
(RNNs), that generates pre-trained contextual word
embeddings by concatenating the forward LM’s
hidden state for the word’s last character and the
backward LM’s hidden state for the word’s first
character. Flair achieves state-of-the-art or compet-
itive results on part-of-speech tagging and named
entity tagging (Akbik et al., 2018). Though they
do not pre-train a LM, Bohnet et al. (2018) simi-
larly apply a bidirectional long short term memory
network (LSTM) layer on all characters of a sen-
tence and generate contextual word embeddings
by concatenating the forward and backward LSTM
hidden states of the first and last character in each
word. Together with other techniques, they achieve
state-of-the-art performance on part-of-speech and
morphological tagging. However, both Akbik et al.
(2018) and Bohnet et al. (2018) discard all other
contextual character embeddings, and no analyses
of the models are performed at the character-level.

In the current paper, we derive pre-trained con-
textual character embeddings from Flair’s forward-
backward LM trained on a 1-billion word corpus of
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English (Chelba et al., 2014), and observe if these
embeddings yield the same large improvements for
character-level tasks as yielded by pre-trained con-
textual word embeddings for word-level tasks. We
aim to analyze where improvements come from
(e.g., term variations, low frequency words) and
what they depend on (e.g., embedding size, context
size). We focus on the task of parsing time normal-
izations (Laparra et al., 2018b) , where large gains
of character-level models over word-level models
have been observed (Laparra et al., 2018a). This
task involves finding and composing pieces of a
time expression to infer time intervals, so for exam-
ple, the expression 3 days ago could be normalized
to the interval [2019-03-01, 2019-03-02).

We first take a state-of-the-art neural network for
parsing time normalizations (Laparra et al., 2018a)
and replace its randomly initialized character em-
beddings with pre-trained contextual character em-
beddings. After showing that this yields major per-
formance improvements, we analyze the improve-
ments to understand why pre-trained contextual
character embeddings are so useful. Our contribu-
tions are:
• We derive pre-trained contextual character

embeddings from Flair (Akbik et al., 2018),
apply them to a state-of-the art time normal-
izer (Laparra et al., 2018a), and obtain major
performance improvements over the previous
state-of-the-art: 51% error reduction in news
and 33% error reduction in clinical notes.
• We demonstrate that pre-trained contextual

character embeddings are more robust to
term variations, infrequent terms, and cross-
domain changes.
• We quantify the amount of context leveraged

by pre-trained contextual character embed-
dings.
• We show that pre-trained contextual character

embeddings remove the need for features like
part-of-speech and capitalization.

2 Framework

The parsing time normalizations task is based
on the Semantically Compositional Annotation of
Time Expressions (SCATE) schema (Bethard and
Parker, 2016), in which times are annotated as
compositional time entities. Laparra et al. (2018a)
decomposes the Parsing Time Normalizations task
into two subtasks: a) time entity identification us-
ing a character-level sequence tagger which detects
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Figure 1: Architecture of Laparra et al. (2018a)’s time
identification system. The input is the 4th of May (trun-
cated for space). 4th is a DAY-OF-MONTH, with an im-
plicit LAST over the same span. At the feature layer, 4
is a digit (Nd), t and h are lowercase letters (Ll), and
4th has the cardinal number (CD) part-of-speech tag.

the spans of characters that belong to each time ex-
pression and labels them with their corresponding
time entity; and b) time entity composition using
a simple set of rules that links relevant entities to-
gether while respecting the entity type constraints
imposed by the SCATE schema. These two tasks
are run sequentially using the predicted output of
the sequence tagger as input to the rule-based time
entity composition system. In this paper, We focus
on the character-level time entity identifier that is
the foundation of Laparra et al. (2018a)’s model.

The sequence tagger is a multi-output RNN with
three different input features, shown in Figure 1.
Features are mapped through an embedding layer,
then fed into stacked bidirectional Gated Recur-
rent Units (bi-GRUs), and followed by a softmax
layer. There are three types of outputs per Laparra
et al. (2018a)’s encoding of the SCATE schema, so
there is a separate stack of bi-GRUs and a softmax
for each output type. We keep the original neu-
ral architecture and parameter settings in Laparra
et al. (2018a), and experiment with the following
embedding layers:
Rand(128): the original setting of Laparra et al.

(2018a), where 128-dimensional character em-
beddings are randomly initialized.

Rand(4096): 4096-dimensional character embed-
dings are randomly initialized, matching the di-
mensionality of the Flair forward-backward LM
hidden states, i.e., matching the dimensionality
of Cont(4096).

Cont(4096): 4096-dimensional pre-trained con-
textual character embeddings are derived by run-



70

Model Domain Ident. Parsing Interv.
Rand(128)-ori News 61.5 51.2 76.4
Rand(128) News 59.4 50.5 64.6
Rand(4096) News 64.8 54.1 68.2
Cont(4096) News 80.3 66.8 81.5
Rand(128)-ori Clinical 84.7 57.9 72.1
Rand(128) Clinical 92.8 65.3 82.1
Rand(4096) Clinical 93.2 65.3 83.8
Cont(4096) Clinical 95.2 67.3 85.8

Table 1: Results on Identification (Ident.), Parsing
and Interval extraction (Interv.) of time expressions
for News and Clinical domain. Rand(128)-ori refers
to the original implementation, and Rand(128) and
Cont(4096) refer to our re-implementation1.

ning Flair forward-backward character-level LM
Flair’s forward and backward character-level lan-
guage models over the text, and concatenating
the hidden states from forward and backward
character-level LMs for each character .

We evaluate in the clinical and news domains, the
former being more than 9 times larger and the latter
having a more diverse set of labels. Three differ-
ent evaluation metrics are used for parsing time
normalization tasks: identification of time entities,
which evaluates the predicted span (offsets) and
the SCATE type for each entity; parsing of time
entities, which evaluates the span, the SCATE type,
and properties for each time entity; interval extrac-
tion, which interprets parsed annotations as inter-
vals along the timeline and measures the fraction of
the correctly parsed intervals. The SemeEval task
description paper (Laparra et al., 2018b) has more
details on dataset statistics and evaluation metrics.

3 Results

Table 1 shows that the model using pre-trained
contextual character embeddings, Cont(4096), out-
performs the model of Laparra et al. (2018a) on all
three metrics: identification of time entities, pars-
ing, and interval extraction. For identification, our
primary focus as we are only modifying the identifi-
cation portion of Laparra et al. (2018a), Cont(4096)
reduces error by 51% (59.4 to 80.3 F1) on news,
and by 33% (92.8 to 95.2 F1) on clinical notes.
For the following experiments, we only use the
identification metric to evaluate the performance.

1We upgraded Keras from 1.2 to 2.1 and fixed a code bug
that allowed predictions to be made on padding tokens.

Domain Dev Test
Rand(128) News 76.5 59.4
Rand(4096) News 82.7 64.8
Cont(4096) News 87.4 80.3
Rand(128) Clinical 92.9 92.8
Rand(4096) Clinical 92.6 93.2
Cont(4096) Clinical 94.7 95.2

Table 2: Performance (F1) of time entity identification.

News Clinical
Dev Test Dev Test

Variation
+var +8.4 +15.0 +1.2 +1.3
-var +1.6 +8.7 +1.2 +1.4

Frequency
≤10 +8.1 +17.6 +2.0 +4.2
>10 +2.4 +5.0 +1.1 +1.1

Table 3: Effect of term variations and frequency: im-
provement in F1 of Cont(4096) over Rand(4096).

4 Where the improvements come from

4.1 Larger character embeddings

Table 2 compares different embedding sizes. Mov-
ing from random 128-dimensional to random 4096-
dimensional embeddings improves the model:
Rand(4096) statistically outperforms2 Rand(128)
on news dev (p = 0.0001), news test (p = 0.0291),
and clinical test (p = 0.0301), though it is not sta-
tistically different on clinical dev (p = 0.2524).
Pre-trained contextual embeddings provide addi-
tional benefits: Cont(4096) significantly outper-
forms Rand(4096) on all datasets (p < 0.001 in
all cases). We conclude that pre-trained contex-
tual character embeddings provide more than just
greater model capacity.

4.2 Robustness to variants and frequency

Table 3 shows how pre-trained contextual character
embeddings improve performance on both term
variations and low frequency words.

We define term variations as time entities that
appear in the training data in the following pat-
terns: both upper-case and lower-case, e.g., DAY,
Day, and day; abbreviation with and without punc-
tuation, e.g., AM and A.M.; or same stem, e.g.,
Month and Months, previously and previous. In the
dev and test sets, 30.4-35.6% of entities are term
variations. The first 2 rows of table 3 show the
performance improvements in F1 of Cont(4096)

2We used a paired bootstrap resampling significance test.
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Train Target Dev Test
Rand(128) Clinical News 63.4 65.5
Rand(4096) Clinical News 62.6 66.9
Cont(4096) Clinical News 68.3 78.5
Rand(128) News Clinical 45.3 46.3
Rand(4096) News Clinical 43.8 44.3
Cont(4096) News Clinical 57.1 59.5

Table 4: Effect of domain change on performance: (F1)
on News and Clinical datasets.

over Rand(4096) on time entities with (+var) and
without (-var) term variations. Cont(4096) is al-
ways better than Rand(4096) so all differences are
positive, but the improvements in +var are much
larger than those of -var in the news domain (+8.4
vs. +1.6 and +15.0 vs. +8.7). In the clinical do-
main, where 9 times more training data is available,
both +var and -var yield similar improvements. We
conclude that pre-trained contextual character em-
beddings are mostly helpful with term variations
in low data scenarios.

We define infrequent terms as time entities that
occur in the training set 10 or fewer times. In the
dev and test sets, 73.9-86.9% of terms are infre-
quent, with about one third of infrequent terms
being numerical3. The bottom two rows of table 3
show the improvements in F1 of the Cont(4096)
over Rand(4096) on frequent (>10) and infrequent
(≤10) terms. Cont(4096) is always better than
Rand(4096), and in both domains the improve-
ments on low frequency terms are always greater
than those on high frequency terms (+8.1 vs. +2.4
in news dev, +17.6 vs. +5.0 in news test, etc.).
We conclude that pre-trained contextual character
embeddings improve the representations of low fre-
quency words in both low and high data settings.

4.3 Robustness to domain differences

To illustrate the ability of pre-trained contextual
character embeddings to handle unseen data, we
train the models in one domain and evaluate in the
other, as shown in Table 4. We find that Rand(128)
and Rand(4096) achieve similar cross-domain per-
formance, e.g., Rand(128) achieves 63.4% of F1 on
news dev and Rand(4096) achieves 62.6% F1. But
Cont(4096) achieves much better cross-domain per-
formance than Rand(128) or Rand(4096): 78.5%
vs. 65.5% or 66.9% F1 on news test, 59.5% vs.
46.3% or 44.3% on clinical test, etc. All these

3Numbers are common in time expressions.

improvements are significant (p < 0.001). We
conclude that pre-trained contextual character em-
beddings generalize better across domains.

4.4 Greater reliance on nearby context

Inspired by Khandelwal et al. (2018)’s analysis of
the effective context size of a word-based language
model, we present an ablation study to measure per-
formance when contextual information is removed.
Specifically, when evaluating models, we retain
only the characters in a small window around each
time entity in the dev and test sets, and replace all
other characters with padding characters.

Figures 2a and 2b evaluate the Cont(4096),
Rand(4096) and Rand(128) models across differ-
ent context window sizes on the news dev and test
set, respectively. Rand(128) performs similarly
across all context sizes, suggesting that it makes
little use of context information. Both Rand(4096)
and Cont(4096) depend heavily of context: with-
out any context information (context size 0), they
perform worse than Rand(128). Cont(4096) is sen-
sitive to the nearby context, with a ∼10 point gain
on news dev and ∼15 point gain on news test from
just the first 10 characters of context, putting it
easily above Rand(128). Rand(4096) doesn’t ex-
ceed the performance of Rand(128) until at least
50 characters of context.

Figures 2c and 2d shows similar trends in the
clinical domain, except that the Rand(128) model
now shows a small dependence on context, with
a ∼5 point drop on clinical dev and a ∼3 drop on
clinical test in the no-context setting. Cont(4096)
again makes large improvements in just the first 10
characters, and Rand(4096) now takes close to 100
characters of context to reach the performance of
Rand(128). We conclude that pre-trained contex-
tual character embeddings make better use of local
context, especially within the first 10 characters.

4.5 Encoding word categories

We perform a feature ablation to see if pre-trained
contextual character embeddings capture basic syn-
tax (e.g., part-of-speech) like pre-trained contex-
tual word embeddings do (Peters et al., 2018; Ak-
bik et al., 2018). Table 5 shows that removing
both part-of-speech and unicode category features
from Cont(4096) does not significantly change
performance: news dev (p = 0.8813), news test
(p = 0.1672), clinical dev (p = 0.5367), clinical
test (p = 0.8537). But ablating part-of-speech tags
and unicode character categories does decrease per-
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Figure 2: Effect of the context information on the performances for Cont(4096), Rand(4096) and Rand(128) on
the dev and test sets. The dashed lines are the performances of models using the original context setting.

News Clinical
Set Dev Test Dev Test

Rand(128) C 73.6 56.1 91.9 92.1
Rand(128) CUP 76.5 59.4 92.9 92.8
Rand(4096) C 80.5 62.4 91.7 92.2
Rand(4096) CUP 82.7 64.8 92.6 93.2
Cont(4096) C 87.9 78.1 94.7 95.5
Cont(4096) CUP 87.4 80.3 94.7 95.2

Table 5: Effect of features on performance: Perfor-
mance (F1) with different feature sets, including char-
acters (C), part-of-speech tags (P), and unicode charac-
ter categories (U).

formance for both Rand(128) and Rand(4096) in
all cases. For example, Rand(4096) with all fea-
tures achieves 82.7 F1 on news dev, significantly
better than the 80.5 F1 of using only characters
(p = 0.0467). We conclude that pre-trained con-
textual character embeddings encode a variety of
word category information such as part-of-speech,
capitalization, and punctuation.

5 Conclusion

We derive pre-trained character-level contextual
embeddings from Flair (Akbik et al., 2018), a word-

level embedding model, inject these into a state-of-
the-art time normalization system, and achieve ma-
jor performance improvements: 51% error reduc-
tion in news and 33% in clinical notes. Our detailed
analysis concludes that pre-trained contextual char-
acter embeddings are more robust to term varia-
tions, infrequent terms, and cross-domain changes;
that they benefit most from the first 10 characters
of context; and that they encode part-of-speech,
capitalization, and punctuation information.
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A Appendices
A.1 Examples of the improvement

We analyzed a few examples where Cont(4096)
makes correct predictions, but Rand(4096) does
not.

Robustness to variants
“. . . with year-earlier profit of millions. . . ”
In this sentence, the Cont(4096) model labeled ear-
lier correctly, while the Rand(4096) model missed
it. In the news training set, earlier occurs a few
times, but none of them have “-” nearby.

Robustness to frequency
“. . . in the first days after President. . . ”
In this sentence, the Cont(4096) model labeled first
correctly, while the Rand(4096) model labeled it
incorrectly. In the news training set, first only oc-
curred once when followed by another time entity,
but there were several similar sentences for second
and third in the training set.

Robustness to word order
“. . . until twenty years after the first astronauts. . . ”
“. . . comes barely a month after Qantas. . . ”
“. . . Retaliating 13 days after the deadly. . . ”
In each of the sentences above, the Cont(4096)
model labeled after correctly, while Rand(4096)
labeled it incorrectly. In the training set, there
were a few examples where after occurred near a
time entity, but always before the time entity (e.g.,
after ten years, after 22 months, after three days,
after a 16-hour flight) rather than after it as in the
examples above. Cont(4096) may have learned a
better representation for after that allows it to be
less dependent on exact word order.


