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Abstract
This paper describes our approach to
SemEval-2018 Task 2, which aims to predict
the most likely associated emoji, given a tweet
in English or Spanish. We normalized text-
based tweets during preprocessing, following
which we utilized a bi-directional gated
recurrent unit with an attention mechanism
to build our base model. Multi-models with
or without class weights were trained for
the ensemble methods. We boosted models
without class weights, and only strong boost
classifiers were identified. In our system, not
only was a boosting method used, but we also
took advantage of the voting ensemble method
to enhance our final system result. Our method
demonstrated an obvious improvement of
approximately 3% of the macro F1 score in
English and 2% in Spanish.

1 Introduction

As a novel means of enhancing the visual effect
and meaning of short text messages, emojis
are almost indispensable to each social platfor-
m, such as Facebook, Twitter, and Instagram.
These graphic facial expressions and other object
symbols enrich the emotion the user wishes to
express in a text-based message. Although
they are significant as part of social messages,
emojis have scarcely attracted attention from a
natural language processing (NLP) standpoint.
Notable exceptions include studies focused on
emoji semantics and usages (Barbieri et al.,
2017). However, the interplay between text-
based messages and emojis remains virtually
unexplored. The aim of SemEval-2018 task
2 (Barbieri et al., 2018) is to fill this gap by
providing all participants with a large set of text-
based tweets and their related emojis, which were
extracted from original tweet messages, in order to
determine the connection between text words and
emojis.

In recent years, an increasing amount of re-
search work has been conducted on the sentiment
analysis of tweets. Emojis have always played
an important role in the sentiment polarity of
tweets. Novak et al. (2015) proposed a sentiment
map of the 751 most frequently used emojis,
by computing the sentiment emoji from the
sentiment of tweets in which they occurred,
and they determined a significant difference in
the sentiment distribution of tweets with and
without emojis. As opposed to sentiment polarity
prediction of tweets, we further investigated
potential tweet emojis in this task, evoked by the
text part.

Neural networks involving attention mecha-
nisms have been studied extensively in the image
processing and NLP fields, and have demonstrated
remarkable results, particularly convolutional neu-
ral networks (CNNs) (Collobert et al., 2011) and
long short-term memories (LSTMs) (Hochreiter
and Schmidhuber, 1997). Cliche (2017) assem-
bled several CNNs and LSTMs and achieved first
ranking in all of five English subtasks. Raffel
and Ellis (2015) proposed a feed-forward network
model with attention, which selects the most
important element from each time step using
learnable weights, depending on the target. As
a variant of LSTM, the gated recurrent units
(GRUs) (Cho et al., 2014) use gating units directly
in order to modulate the data flow inside the unit,
rather than consisting of separate memory cells.
For this task, we firstly utilized bi-directional
GRUs and the attention mechanism to train the
base model, following which we boosted the base
model with different sample weights. In order
to achieve optimum performance, soft and hard
voting ensemble methods were also used in our
system.

The remainder of paper is structured as follows.
Section 2 provides an overview of task 2. In
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section 3, we describe the architecture of our base
model, particularly the attention mechanism, as
well as the multi-ensemble methods used in our
submission. Section 4 describes our experiment,
which consists of system parameters, evaluation
metrics, and experimental results for the two
subtasks. Finally, in section 5, we list several
possible improvement points, and in section 6, we
outline our main conclusions.

2 Task Overview

This multilingual emoji prediction task consisted
of multi-labeled emoji classification of short tweet
texts, and was divided into two subtasks based on
the text language: subtask 1 in English and subtask
2 in Spanish. The most frequently used emojis in
English and Spanish were employed as labels, so
the two task labels differed.

Subtask-1: Emoji Prediction in English
Given a text of tweets in English, its potential

emojis are predicted from 20 emoji labels, as
follows:

Subtask-2: Emoji Prediction in Spanish
Given a text of tweets in Spanish, its potential

emojis are predicted from 19 emoji labels, as
follows:

2.1 Datasets
The organizers provided a huge amount of training
data, including 500K tweets in English and 100K
tweets in Spanish1. We crawled almost the entire
set of tweets with Twitter APIs2, as parts of the
training tweets were no longer available. Table 1
provides a detailed distribution of the datasets for
subtasks 1 and 2.

Furthermore, all of the used emoji labels
extracted from the tweets are the 20 or 19
most frequently used emojis in the languages
themselves. Data samples for these classes are
gradually decreasing; thus, datasets of the two

1The crawler and extractor for
this task can be downloaded from
https://github.com/fvancesco/Semeval2018-
Task2-Emoji-Detection/tree/master/dataset

2https://apps.twitter.com/

Subtask-1 Subtask-2
Train 489660 98506

Develop 50000 10000
Test 50000 10000

Table 1: Datasets of Task2.

subtasks are both imbalanced. In subtask 1,
the greatest majority class includes 106352
(21.7%) samples, nearly ten times that of the
lowest minority class , which includes only
12190 (2.5%) samples. For subtask 2, similar to
subtask 1, the greatest majority class includes
19640 (19.9%) samples, while the lowest minority
class includes 2525 (2.6%) samples.

Pre-trained Twitter embeddings for English and
Spanish were offered in the task. We validated
these by using another pre-trained embedding
from GloVe3 (Pennington et al., 2014), and the
English embedding offered in the task presented
approximately the same performance in our test.

3 System Description

As these two subtasks were rather similar, with
the exception of different emoji labels, we used
exactly the same thought to train every system of
the respective languages. In order to choose the
best one as our base model, several models were
tested(such as CNN, CNN+LSTM), and superior
performance was achieved by using the multi-
ensemble methods as the following subsection 3.2.

3.1 Base Model

We created our base model with Bi-GRU (Bah-
danau et al., 2014) rather than Bi-LSTM, owing
to its faster, efficient, and superior performance.
Furthermore, the bi-directional model can con-
catenate the sentence matrix vector forward and
backward at each time step to obtain full sentence
information (Irsoy and Cardie, 2014). The atten-
tion mechanism was also involved in our model,
the model architecture of which is illustrated in
Fig. 1, where ht denotes the hidden vector at each
time step, and t means the time step in the input
sequence. Vectors in hidden state sequence ht are
fed into the learnable function to produce attention
weight αt. A single vector is computed as the
weighted average of ht.

3glove.840B.300d from
https://nlp.stanford.edu/projects/glove/
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Figure 1: Architecture of Bi-GRU Model with Attention Mechanism.

The characteristic advantage of the attention
mechanism over other reduction operations is that
it takes an auxiliary context vector as input. The
context vector is crucial because it indicates which
information to discard, and a summary vector is
therefore tailored to the network using it.

3.2 Ensemble

The ensemble classifier is a type of algorithm in
which multiple learners are used to improve the
individual classification performance by combin-
ing hypotheses. In this task, the multiple ensemble
methods of boosting and voting were used to
achieve the optimal result.

3.2.1 Boosting

The concept of boosting involves iteratively train-
ing the base classifier with the re-weighting
method, which assigns a new list of sample
weights to each round of training data samples.
The weight distribution of each sample round
depends on the results of the previous round
classifier. Simple weights to instances are based
on how arduous they are to the classification; thus,
the boost classifier provides additional weights to
those mis-classified instances following a round
of classification in order to boost the following
classifier result. Finally, the sequence-based
linear weighting method was used to combine the
classifiers. Although boosting is not intended
for class imbalance problems, owing to this
characteristic, it has become an ideal method for
class imbalance problems.

3.2.2 Voting
The voting classifier can take a series of machine
learning classification algorithms (possibly con-
ceptually different) and average them to obtain
final predictions. Two voting methods are avail-
able:
Soft voting: Each model outputs a probability
vector for all classes, and the voting model is
average-weighted to obtain a final probability
vector for classification.
Hard voting: Each model outputs what it believes
to be the most likely category, from which the
voting model selects the category with the largest
number of voting models as the final classification.

In several tasks, soft voting may obtain superior
results over hard voting. In this case, both voting
methods were used. We assembled our strong
boosting classifier and weighted Bi-GRUATT by
means of soft voting.

4 Experiment and Results

4.1 Pre-processing
Twitter messages include a great deal of irrelevant
information that is useless for capturing text
message features. Prior to building our model, we
utilized a series of operations to normalize tweet
messages, divided into the following steps.
Lowercase. We integrated all text words by
converting them to lowercase.
Replace Emoticons. We began by pre-processing
tweet messages with emoticon replacement. Typo-
graphic emoticon symbols that appear sideways,
resembling facial expressions, such as :), :-), and
( : all mean “smiley face”, while :-(, :(, and ):
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mean “frowny face”. In spite of the fact that
these emoticons could barely be recognized in the
pre-embedding vocabulary, they visibly advanced
or changed the text message interpretation. We
identified these emoticons and replaced them with
the words “smile” or “sad” in the English task, and
“sonrełr” and “triste” in the Spanish task.

Remove marks. With Twitter as a large social
communication platform, we detected user oper-
ations in order to remove them:

• remove URL link;

• do nothing with “@” and “@user”;

• remove hashtag mark and retweet mark, such
as “#”, “rt”, “&amp”;

• remove numbers and other irrelevant punc-
tuation marks, such as question mark “?”,
exclamatory mark “!”, and quotation.

Revise elongated words. Incorrect words re-
mained in the training samples,, elongated with
a single letter, such as “Helloooooo”. We
searched for words containing repeated letters
consecutively more than three times, and revised
the number of letter replications to one.

Abbreviation. People are likely to use abbrevia-
tions of certain phrase to create Twitter message,
and we changed these abbreviations back into
original phrases in the English task. Above 60
common abbreviations of twitter were replaced
in the pre-processing. For example, “thx” was
changed back to “thanks” and “ASAP” to “as soon
as possible”. We determined to skip this step in the
Spanish task because we were not familiar with
Spanish or its abbreviations.

4.2 Implementation

Following preprocessing, we used a multi-
language tokenizer tool, Unitok4, for tokenization
of each task, and then calculated the token
number of the longest sentences in the training
datasets. All tokens that could be recognized in
the provided word embedding were converted into
a 300-dimension vector, which would be filled
in with zero if it was still unrecognized with the
prefix “#”. All training samples were padded out
to the same length L, which is 40 in English and
38 in Spanish.

We implemented our model using the Python
Keras library with a TensorFlow backend. The

4http://corpus.tools/wiki/Unitok

properties of our Bi-GRUATT model were as
follows.

1. The GRU dropout was set to 0.2, which was
the same as the dropout layer following the
attention layer.

2. The active function of the dense layer was
tanh with a length of 100, and softmax was
used to output the prediction label.

3. Instead of using Sequential.fit to train the
model, the Sequential.fit generator was
used for huge training samples in order to
solve the memory problem.

4. The optimizer Adam and loss function cross
entropy were used to deal with this multi-
labeled task.

5. The training epoch was dependent on the
early stopping monitor. If the training loss
had not improved in the latest 10 epochs,
the training process stopped. Both training
processes in task 2 exhibited extremely slow
improvement in every epoch. In English, the
training epoch was approximately 180 to 230,
and 280 to 400 in Spanish.

As the ratio of the majority to minority classes
could be as high as 10:1, a simple means of
enhancing the minority class performance is a
cost-sensitive method that applies different costs
for mis-classification errors to each class. Usually,
there is a high cost for the minority class and a
low cost for the majority class. We balanced the
training samples with various class weights, and
used these to train the cost-sensitive models in the
English and Spanish tasks.

Boosting and voting were implemented using
the AdaBoosting and Voting classifiers of scikit-
learn (Pedregosa et al., 2011) in Python. During
the boosting processing, we applied the Bi-
GRUATT model with an equal sample weight of
1/N (where N is the total number of training
samples) as the base estimator, and then iteratively
trained a stronger classifier by paying more
attention to mis-classified samples. The boosting
learning rate was set to 0.001 and the number of
estimators was dependent on the result of macro
F1. The boosting model would be stopped if it
already had three weak classifiers. Only the strong
classifier in the boosting process would be used
in the voting ensemble, and weak classifiers were
ignored.
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Figure 2: Macro F1 and Micro F1 of boosting
classifiers in Spanish. (X-axis means the number
of boosting iteration, and number ’0’ refers to the
initial model which was trained with equal sample
weight.)

4.3 Evaluation

For evaluation purposes, the official results were
based on the macro F1 score for the two tasks. The
F1 score was calculated as follows:

Fi =
2πiρi
πi + ρi

(1)

Fmacro =

∑M
i=0 Fi

M
(2)

where Fi is the F1 score of the i-th class, and πi
and ρi denote the precision and recall of the i-th
class, respectively. The macro average provides
an equal weight to all the classes, regardless of
how many samples belong to it. The micro
average provides equal weights to all the samples,
thereby favoring the performance of the majority
classes. The macro F1 as well as micro F1 score
were utilized to evaluate the performance of every
model in our system.

4.4 Results

As the English datasets are fivefold the Spanish
ones, we adjusted the system model and its
parameters with the Spanish datasets in order to
save time. We handled the two subtasks in the
same manner; however, the results indicated that
not all methods were appropriate for both the
English and Spanish tasks.

Subtask-2: Spanish Emoji Prediction
Boosting had generated only six strong or weak

classifiers, and the variation tendencies of the
macro and micro F1 scores are displayed in Fig.
2.

Subtask-2 Macro F1 Micro F1
Boost 0 14.153 29.76
Boost 1 14.47 29.85
Boost 2 14.532 30.05

Soft Voting 15.016 31.55
Bi-GRUATT 1 13.768 18.93
Bi-GRUATT 2 14.144 18.86
Hard Voting 16.015 30.22

Table 2: Results of each model and voting ensem-
ble in Spanish.

38.03 29.39 52.69 0 14.93

24.72 35.11 13.68 8.86 28.43

12.99 1.87 0 2.43 0

14.19 19.77 2.82 4.38

Table 3: Macro F1 of each emoji label in Spanish.

It was found that, as the iteration times in-
creased, the micro F1 score (accuracy) of the
boosting system continuously increased, while the
macro F1 score was increased in the first three
iterations and then decreased in the following
iterations. As the macro F1 score provides
the official evaluation index, we identified the
first three strong boost classifiers for the further
ensemble. In the voting ensemble part, the
three strong boost classifiers were used to achieve
stronger classification by means of soft voting, and
eventually, we integrated the soft voting result and
the results of the two basic Bi-GRUATT models
trained with a balanced class weight (same model
but trained twice). The results of these models can
be seen in Table 2. Soft voting achieved a 0.9%
improvement in the macro F1 score, while the hard
voting achieved 1% compared to the soft voting
results.

Furthermore, hard voting, which provided the
final result, demonstrated a 2% improvement in
the weighted Bi-GRUATT model. Table 3 displays
the macro F1 for each emoji label.

Subtask-1: English Emoji Prediction

Similar to the process of subtask 2, we obtained
four boosting classifiers, the variation tendencies
of which are illustrated in Fig. 3. The macro F1
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Figure 3: Macro F1 and Micro F1 of boosting
classifiers in English. (X-axis means the number
of boosting iteration, and number ’0’ refers to the
initial model which was trained with equal sample
weight.)

Subtask-1 Macro F1 Micro F1
Boost 0 25.248 37.346

Bi-GRUATT 1 25.656 27.556
Bi-GRUATT 2 25.552 27.28
Hard Voting 28.112 35.196

Table 4: Results of each model and voting ensem-
ble in English.

score was decreased following each iteration. We
could not conduct soft voting with only one strong
classifier, but carried out the hard voting directly.
Table 4 presents the results of the weighted Bi-
GRUATT and hard voting. The hard voting in the
English task demonstrated a 2.5% improvement in
the weighted Bi-GRUATT and 2.9% improvement
in the Bi-GRUATT without class weights. The
macro F1 for each emoji label is displayed in Table
5.

All above-mentioned results were obtained
following the competition, and we changed the
learning rate from 0.01 to 0.001 for increased
boost classifiers. The competition submission
only used two boost classifiers for ensemble in
Spanish and one was utilized in English. We
ranked 16th among 48 teams in the English task
and 13th among 21 teams in the Spanish task5.

As indicated in Tables 4 and 5, predictions of
similar smiley face emojis ( in Spanish
and in English) exhibited unstratified
results. There were not many characteristics to
distinguish these from one another, as they all
meant a happy feeling, and people had a different

5Results of all teams can be found in
https://goo.gl/P515KW

44.53 30.6 43.98 15.79 54.17

10.84 17.96 31.46 17.53 16.95

28.09 55.64 37.7 11.59 12.1

25.22 11.68 66.86 24.97 4.59

Table 5: Macro F1 of each emoji label in English.

understanding and favorite emojis, which could
cause certain confusion problems. Compared to
the confused smiley face emojis, the label
demonstrated the best result, although it was a
minority class. It was easy to predict, owing to
the label having an obvious feature to recognize,
such as “tree”, “Christmas Tree” or everything
relevant to Christmas.

Another confused set of emojis were series
of heart emojis, particularly , and in
subtask 2, some of these labels even obtained
a zero result. This illustrates that the model
preferred to predict the highest majority class of
the same series, such as rather than its actual
emoji , or other heart.

5 Discussion

In this section, we briefly discuss several points
that may enhance our system results. For time
reasons, we have not validated these yet.

Pre-processing
1. We simply removed hashtag mark “#”,

however, there were numerous unrecognized
hashtag words, such as “Iamhappy”,
“I am happy” or “I-Am-Happy”. A
preferable method is decomposing the
hashtag to invert it into a sequence of words
that would enrich the information of the
sentence samples (Billal et al., 2016).

2. We did not deal with the mis-spelled words,
and changed all elongated words into the
without repeated letters that would create
mistake words, like “foooood”.

Model
1. As the official evaluation index is the macro

F1 score, we should set the initial sample
weight to be the same as the balanced class
weight in the boosting process.
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2. We only trained less than 10 estimators in
the boosting, which may be too small to
determine the boost variation tendency in this
task.

3. We only used one base model to ensemble.
Assembling with different model types may
achieve improved results, such as CNN, a
combination of CNN and LSTM, and random
forest.

6 Conclusion

In this brief paper, we have presented the system
we used to compete in the SemEval-2018 task
2: Emoji Prediction in English and Spanish.
Our submission system was based on a Bi-
GRU model with an attention mechanism, and
we aimed to ensemble the base model with
multi-method boosting and voting in order to
achieve superior performance. In our work, multi-
ensemble exhibited a 2 to 3% improvement in the
task results.

In the future, we plan to validate the points
in the Discussion section in order to verify their
influence of them, and add useful points to our
system to implement an improved model for emoji
prediction.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (NSFC) under Grant
No.61702443 and No.61762091, and in part by
Educational Commission of Yunnan Province of
China under Grant No.2017ZZX030. We would
like to thank task organisers and the anonymous
reviewers for their helping and constructive
comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? CoRR,
abs/1702.07285.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:

Multilingual Emoji Prediction. In Proceedings
of the 12th International Workshop on Semantic
Evaluation (SemEval-2018), New Orleans, LA,
United States. Association for Computational
Linguistics.

Belainine Billal, Alexsandro Fonseca, and Fatiha
Sadat. 2016. Named entity recognition and hashtag
decomposition to improve the classification of
tweets. In Proceedings of COLING, pages 102–111.

KyungHyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On the
properties of neural machine translation: Encoder-
decoder approaches. CoRR, abs/1409.1259.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.
In Proceedings of SemEval, pages 573–580.

Ronan Collobert, Jason Weston, Lon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing(EMNLP), pages 720–728.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
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