
Proceedings of the Student Research Workshop associated with RANLP 2011, pages 97–102,
Hissar, Bulgaria, 13 September 2011.

Heterogeneous Natural Language Processing Tools via

Language Processing Chains

Diman Karagiozov

Tetracom IS Ltd.

diman@tetracom.com

Abstract

One of the most recent developments in NLP

is the emergence of linguistic annotation meta-

systems which make use of existing

processing tools and implement pipelined

architecture. In this paper we describe a

system that offers a new perspective in

exploiting NLP meta-systems by providing a

common processing framework. This

framework supports most of common NLP

tasks by chaining tools that are able to

communicate on the basis of common formats.

As a demonstration of the effectiveness of the

system to manage heterogeneous NLP tools,

we developed an English processing chain,

pipelining OpenNLP-based and C++ NLP

implementations. Furthermore, we conducted

experiments to test the stability and measure

the performance of the English processing

chain. A baseline processing chain for the

Bulgarian language illustrates the capabilities

of the system to support and manage

processing chains for more languages.

1 Introduction

Increasingly complex digital content needs to be

retrieved, stored and aggregated for future

access. In addition, it should be organized,

annotated and structured. However, it is difficult

to manage the information flow because of its

volume, rapidly evolving structure and its

multilinguality.

The usage and integration of natural language

processing and understanding tools (NLP and

NLU) is vital for processing digital content. The

different input and output formats, supported

operating systems and programming languages

determine the existence of the wide range of

NLP tools. Furthermore, the choice of available

tools makes their integration in content

management systems, analytical tools and in-

house systems very difficult.

One of the latest developments in NLP is the

emergence of linguistic annotation meta-systems

which make use of existing processing tools and

implement pipelined processing architecture

(Cristea and Pistol, 2008). This paper describes a

system that exploits NLP meta-systems and

provides a common processing framework

capable to host a variety of tools for different

natural languages that are able to communicate

on the basis of common formats. Furthermore,

our system provides a well-defined integration

API, so that 3
rd

 party software components can

use the NLP services provided by the system.

The paper is organized as follows: Section 2

overviews related work, Section 3 describes

system architecture, Section 4 presents the

language processing chains method, Section 5

discusses implementation, evaluation and results,

Section 6 describes the scope of LPC for

Bulgarian and Section 7 sketches further work

and conclusion.

The work reported in sections 3 (NLP System

Architecture), 4 (Language Processing Chain)

and 5 (UIMA Implementation of LPC) was

designed, developed, evaluated and analyzed by

the author of this paper.

2 Related Work

Several standardization approaches have been

made towards the interoperability of the NLP

tools (XCES
1
, TEI

2
, GOLD

3
). None of the pro-

posed standards have been universally accepted,

leading to the development of resources and

tools according to the format of each research

project.

1
 http://www.xml-ces.org/

2
 http://www.tei-c.org/index.xml

3
 http://www.linguistics-ontology.org/gold.html

97

More notably, two systems that facilitate the

access and usage of existing processing tools

have emerged. GATE (Cunningham et al., 2002)

is an environment for building and deploying

NLP software and resources that allows

integration of a large amount of built-ins in new

processing pipelines.

UIMA (Unstructured Information

Management Application)

(Ferrucci and Lally,

2004) offers the same general functionalities as

GATE but once a processing module is

integrated in UIMA it can be used in any further

chains without any modifications (GATE

requires wrappers to be written to allow two or

more modules to be connected in a chain).

Currently, UIMA is the only industry OASIS

standard
4

 (Ferrucci et al., 2006) for content

analytics.

3 NLP System Architecture

The processing of unstructured text in system is

split into three independent subtasks, executed

sequentially.

Pre-processing – at this stage the text is

extracted from the input source (documents in

OpenOffice, PDF, MS Office, HTML, ePub,

FB2 and other formats). Details of the

implementation of the pre-processing engine are

not in the scope of this article.

Processing – at this stage the text is annotated

by several NLP tools, chained in a sequence. We

call the implementation of the processing engine

for a specific language a „Language Processing

Chain‟ (LPC).

Post-processing – at this stage the annotations

are stored in a data store, such as file system,

relational or NoSQL database. Details of the

implementation of the post-processing engine are

not in the scope of this article.

The overall performance of an NLP task

depends on the performance of the atomic NLP

tools, used in the processing engine and the size

of the input text. As the classical request-

response chain cannot be used for such tasks

because the response time cannot be predicted,

we use an asynchronous, message-based,

communication channel between the components

in the system.

A pre-processing engine detects the mime type

of the input source, extracts the text from it,

detects the language of the text and sends it to a

language-specific queue.

4
 http://www.oasis-open.org/committees/uima/

One (of the several) language processing

chains checks-out a message, processes it and

sends the annotated text to an output queue

where a post-processing engine stores the text

annotations in a data store.

“Figure 1” depicts the top-level architecture of

the NLP components in the system.

Figure 1. Top-level architecture.

4 Language Processing Chain

In order to achieve a basic set of low-level text

annotations the following atomic NLP tools have

to be executed in sequence (Cristea and Pistol,

2008): Paragraph splitter (splits the raw text in

paragraphs) → Sentence splitter (splits each

paragraph in sentences) → Tokenizer (splits each

sentence into tokens) → POS tagger (marks up

each token with its particular part of speech tag)

→ Lemmatizer (determines the basic form of

each token) → Word sense disambiguation

(disambiguates the meaning of each token and

assigns a sense to it) → NounPhrase Extractor

(marks up the noun phrases in each sentense) →

NamedEntity Extractor (marks up named entities

in the text).

“Figure 2” overviews the components and the

sequence of execution of the atomic NLP tools,

which are part of a LPC.

98

Figure 2. Components of a language processing

chain.

The key requirements to our system are the

possibility to use heterogeneous NLP tools for

different languages, transparent horizontal

scalability, and transparent hot-swap of linguistic

components. Last but not least is the requirement

of a minimal installation footprint.

After evaluating both GATE and UIMA meta-

systems, in respect to the above requirements, we

based the implementation of the processing

engine on the UIMA framework (JAVA

version). We wrapped the UIMA base

framework with an OSGi shell (OSGi Alliance,

2009), making it available to the rest of the

components in the system. The horizontal

scalability of the NLP functionalities and the

transparent hot-swap of the linguistic

components are empowered by a network-

distributed architecture based on ActiveMQ
5
.

5 UIMA Implementation of LPC

A typical UIMA application consists of: a Type

System Descriptor, describing the annotations

that will be provided by the components of the

application; one or more Primitive Analysis

Engines, each one providing a wrapper for a

NLP tools and adding annotations to the text; an

Aggregate Engine, defining the execution

sequence of the primitive engines (Gordon et al.,

2011).

5 http://activemq.apache.org/

5.1 Type System Descriptor

In order to put the atomic NLP tools in a chain,

they need to be interoperable on various levels.

The first interoperable level, the compatibility of

formats of linguistic information, is supported by

a defined scope of required annotations, de-

scribed as a UIMA Type System Descriptor.

The uniform representation model, required by

the UIMA type system, provides normalized

heterogeneous annotations of the component

NLP tools. Within our system, it covers

properties that are critical for the further

processing of annotated data, e.g. lemma, values

for attributes such as gender, number and case

for tokens necessary to run coreference module

to be subsequently used for text summarization,

automatic categorization and machine

translation.

In order to facilitate the introduction of further

levels and types of annotation, a general

markable type has been introduced, carrying

subtype and reference to another markable

object. In this way we can test and later include

new annotation concepts into the core annotation

model.

“Table 1” enlists the annotations which are

available in the Type System Descriptor of the

system. The parameters of each annotation type,

listed in “Parameters” column, extend the

standard UIMA annotation set of parameters

(begin offset, end offset and covered text).

Annotation type Parameters

Paragraph –

Sentence –

Token POS; MSD (lemma,

gender; number,

case); Word sense

Noun Phrase Head, Lemma

Named Entity Type (one of: date,

location, money,

organization, per-

centage, person,

time); Normalized

value

Markable Type; Reference

Table 1: Summary of the text annotations and

their parameters

5.2 UIMA LPC Components

We have built a reference LPC for English in

order to illustrate the integration of English NLP

tools into a processing chain.

99

Tool type Based on

Paragraph Splitter Regular expres-

sions

Sentence Splitter OpenNLP
6

Tokenizer OpenNLP

Lemmarizer RASP
7

POS tagger OpenNLP

Word sense dis-

ambiguation

C++ LESK

(Banerjee, 2002)
8

NP extractor Rules engine

NE recognizer OpenNLP

Table 2: Tools, wrapped into UIMA primitive

engines, contained in the English LPC.

We have successfully pipelined JAVA-based

NLP tools and external C++ tools into a single

LPC. A challenge, solved during the integration

process, was the different sets of POS tags used

by the OpenNLP and RASP tools. We created a

rule-based converter between the Penn Treebank

and CLAWS tagsets in order to achieve the

interoperability of the tools.

5.3 Evaluation

Furthermore, we extended the standard UIMA

functionalities to measure the performance of the

whole LPC and each individual primitive engine.

We based the current evaluations on the

processing of a corpus of 27‟085 EU law

documents from EUR-Lex
9
. “Table 3” gives an

overview of the contents of the processed corpus.

 Number of

tokens (N)

Docs Avg

tkns
10

C1 N [1,1000) 8‟900 520

C2 N [1000,2500) 4‟863 1‟600

C3 N [2500,7500) 7‟589 4‟600

C4 N [7500,12500) 2‟485 9‟600

C5 N [1250,25000) 2‟082 17‟300

C6 N [25000,50000) 834 34‟800

C7 N ≥ 50000 332 82‟600

Table 3: Distribution by number of tokens of

documents in the processed corpus.

6
 http://incubator.apache.org/opennlp/

7
 http://www.informatics.sussex.ac.uk/research/

groups/nlp/rasp/
8
 We managed to achieve 30 time better performance of the

C++ version compared to the initial Perl LESK tool.
9
 http://eur-lex.europa.eu/

10
 Average number of tokens in a document in a class

“Figure 3” depicts the average processing time

(in milliseconds) of documents belonging to each

of the above categories (C1-C7). The

performance of the English LPC is linearly

related to the number of tokens in the processed

documents.

Figure 3. Average processing time of a document

compared to the average number of tokens in

documents in categories C1 to C7.

“Figure 4” shows the average processing time (in

milliseconds) for each UIMA primitive engine

(PE) for documents in categories C3 and C4. The

performance of each PE is also linearly related to

the number of tokens in the processed

documents. The UIMA overhead time, caused by

the CAS flow controller, is less than 1% of the

total execution time and thus it is not represented

at the “Figure 4”.

Figure 4. Average processing time of the

primitive engines in the English LPC.

The results show that the Named Entitiy (NE)

Recognizer (NERecognizer.OpenNLP) is a

bottleneck in the English LPC mainly because

the recognitions of the 7 different NE types

(date, location, money, organization, percentage,

person, and time) are executed sequentially.

100

Possible solution to this problem is to run the

recognition process in parallel for all 7 NE types.

Another approach that will be evaluated in the

process of further development of the English

LPC is to replace the OpenNLP statistical NE

recognizer with a solution, using language

specific rules and lexicons.

6 Bulgarian LPC

We developed a Bulgarian language processing

chain in order to demonstrate the ability of the

system architecture to support more languages.

The UIMA primitive engine wrappers, within the

Bulgarian LPC, are the same as in the English

one. The baseline NLP tools are developed by

the Department of Computational Linguistics
11

 at

the Bulgarian Academy of Sciences. The

Bulgarian NLP tools, integrated in our system,

are based on the theory of finite-state language

processing (Komani, 1999). The tools are

implemented in C++ and are external for the

JAVA-based UIMA environment.

The evaluation of the Bulgarian LPC was

based on the processing of 200 Bulgarian fiction

books, resulting in an average number of

100‟000 tokens per document. The data,

however, cannot be compared with the English

LPC in terms of performance (average

processing time per document) because of the

different platforms, available tools and

implementation approaches. The evaluation only

demonstrates the capabilities of our system to

support and manage LPCs for different

languages.

7 Conclusion and Further Work

The described architecture of a language

processing chain and its implementation in our

system goes towards the direction of

standardized multilingual online processing of

language resources. The framework can be

extended by integration of new types of tools and

new languages and thus providing wider online

coverage of linguistic services in a standardized

manner.

A future extension of our system is the

implementation of processing chains for other

languages. The final version of German, Greek,

Polish and Romanian LPCs will be available by

the end of 2011.

The core LPC annotation set will be extended

to support annotation of coreference chains by

11

 http://dcl.bas.bg/en/home_en.html

anaphora resolution tools and the results will be

effectively used to improve text summarization

and recognition process of named entities.

Last but not least, the LPC framework will be

made available to a wider range of platforms and

programming languages such as PHP and .Net

via API implementation. Furthermore, we will

provide a LPC engine web service in order to

enable the integration with 3rd party systems in

other languages, such as Python, Ruby, and Perl.

The source code of the pre-processing,

processing and post-processing engines, as well

as the core annotation schema, will be released

as open-source under the GPL3 license as soon

as it becomes mature enough for the open-source

community.

Acknowledgements

The work reported in this paper laid the

foundation of the “Applied Technology for

Language-Aided CMS” project co-funded by the

European Commission under the Information

and Communications Technologies (ICT) Policy

Support Programme (Grant Agreement No

250467). We would like to thank to consortium

members for their guidance and valuable

feedback for refinement, extensions and

standardization of the NLP architecture of

system.

References

A. Kornai, 1999. Extended Finite State Models of

Language. Cambridge University Press. ISBN 0-

521-63198-X.

Banerjee, Satanjeev. 2002. Adapting the Lesk

algorithm for word sense disambiguation to

WordNet. University of Minnesota, Duluth.

Master's thesis.

H. Cunningham, D. Maynard, K. Bontcheva,

V. Tablan. 2002: GATE: A framework and

graphical development environment for robust

NLP tools and applications. In Proceedings of

the 40th Anniversary Meeting of the ACL

(ACL‟02). Philadelphia, US.

D. Ferrucci, A. Lally. 2004: UIMA: an

architectural approach to unstructured

information processing in the corporate

research environment. Natural Language

Engineering 10, No. 3-4, 327-348.

D. Ferrucci, A. Lally, D. Gruhl, E. Epstein, M. Schor,

J.W. Murdock, A. Frenkiel, E. Browm, T. Hampp.

2006, Towards an Interoperability Standard

101

for text and Multi-Modal Analytics, IBM

Research Report, RC24122 (W0611-188).

Cristea D., Pistol, I. 2008. Managing Language

Resources and Tools using a Hierarchy of

Annotation Schemas. In Proceedings of

Workshop 'Sustainability of Language Resources

and Tools for Natural Language Processing',

organized in conjunction with LREC 2008

OSGi Alliance., OSGi Service Platform, 2009

Core Specification, Release 4, Version 4.2.

I. Gordon, A. Wynne, Y. Liu. 2011, Engineering

High Performance Service-Oriented Pipeline

Applications with MeDICi, ICSOC 2010

Workshops, LNCS 6568, pp. 88-99.

102

