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Abstract 
In this paper, we investigate an unsupervised approach to 
Relation Extraction to be applied in the context of automatic 
generation of multiple-choice questions (MCQs). The approach 
aims to identify the most important semantic relations in a 
document without assigning explicit labels to them in order to 
ensure broad coverage, unrestricted to predefined types of 
relations. The paper examines three different surface pattern 
types, each implementing different assumptions about linguistic 
expression of semantic relations between named entities. Our 
main findings indicate that the approach is capable of achieving 
high precision rates and its enhancement with linguistic 
knowledge helps to produce significantly better patterns. The 
intended application for the method is an e-learning system for 
automatic assessment of students’ comprehension of training 
texts; however it can also be applied to other NLP scenarios, 
where it is necessary to recognise important semantic relations 
without any prior knowledge as to their types. 
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1. Introduction 
Information Extraction (IE) is an important problem in 
many information access applications. The goal is to 
identify instances of specific semantic relations between 
named entities of interest in the text. As is known from 
the literature, Relation Extraction in the biomedical 
domain is quite difficult compared to other domains, 
such as news domain, due to the inherently complex 
nature of its texts: biomedical Named Entities (NEs) are 
expressed in various linguistic forms such as 
abbreviations, plurals, compounds, coordination, 
cascades, acronyms and apposition. Sentences in such 
texts are syntactically complex as the subsequent 
Relation Extraction phase depends upon the correct 
identification of the named entities and correct analysis 
of linguistic constructions expressing relations between 
them (e.g., [3, 21]).  
The main advantage of the approach presented in this 
paper is that it can cover a potentially unrestricted range 
of semantic relations while most supervised and semi-
supervised approaches can learn to extract only those 
relations that have been exemplified in annotated text, 

seed patterns or seed named entities. Moreover, our 
approach is suitable in situations where a lot of 
unannotated text is available as it does not require 
manually annotated text or seeds. These properties of the 
method can be useful, specifically, in such applications 
as Multiple-Choice Question generation [12] or a pre-
emptive approach in which viable IE patterns are created 
in advance without human intervention [20,15].  
In the future, we plan to employ the Relation Extraction 
method for automatic MCQ generation, where it will be 
used to find relations and named entities in educational 
texts that are important for testing students’ familiarity 
with key facts contained in the texts. In order to achieve 
this, we need an IE method that has a high precision and 
at the same time works with unrestricted semantic types 
of relations (i.e. without reliance on seeds), while recall 
is of secondary importance to precision. 

2. Related Work 
There is a large body of research dedicated to the 
problem of extracting relations from general-domain 
texts, and from biomedical texts in particular. Most 
previous work focused on supervised methods and tried 
to both extract relations and assign labels describing their 
semantic types [16 and 5, among many others]. As a rule, 
these approaches required a manually annotated corpus, 
which is very laborious and time-consuming to produce. 
Semi-supervised and unsupervised approaches relied on 
seeds patterns and/or examples of specific types of 
relations [1, 17, 20, and 15]. They often employ 
bootstrapping techniques which use a small set of seeds 
in order to start the learning process. An unsupervised 
approach based on clustering of candidate patterns for 
the discovery of the most important relation types among 
NEs from a newspaper domain was presented by [6]. In 
the biomedical domain, most approaches were supervised 
and relied on regular expressions to learn patterns [4], 
while semi-supervised approaches exploited pre-defined 
seed patterns and cue words [2, 7, 11].  
Supervised approaches or those based on manually-
written extraction rules that have been previously used 
for Relation Extraction in the biomedical domain are 
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inadequate in scenarios where relation types of interest 
are not known in advance. In the following section, we 
describe our method for finding such relations in an 
unsupervised manner. 

3. Extraction of candidate patterns 
Our general approach to the discovery of interesting 
extraction patterns consists of two main stages: (i) the 
construction of potential patterns from an unannotated 
domain corpus and (ii) their relevance ranking.  

3.1 Pre-processing steps 
The first step in constructing candidate patterns is to 
perform part-of-speech tagging and NE recognition in an 
unannotated domain corpus. To do that, we employed the 
Genia1 tagger. The Genia tagger tags the following five 
types of biomedical named entities: Protein, DNA, RNA, 
Cell Type, and Cell Line. The Genia PoS tagger has been 
reported to achieve over 96% accuracy on a general 
corpus (Wall Street Journal) and over 98% on the 
biomedical Genia corpus [18, 19].  

3.2 Linguistic types of patterns 
Once the training corpus has been tagged with the Genia 
tagger, the process of pattern building takes place. Its 
goal is to identify which NEs are likely to be 
semantically related to each other. The procedure for 
constructing candidate patterns is based on the idea that 
important semantic relations are expressed with the help 
of recurrent linguistic constructions, and these 
constructions can be recognised by examining sequences 
of content words (nouns, verbs, adjectives and adverbs) 
appearing between NEs. To find such constructions, we 
impose a limit on the number of content words 
intervening between two NEs. We experimented with 
different thresholds and finally settled on minimum one 
content word and maximum three content words to be 
extracted between two NEs. The reason for introducing 
this condition is that if there are no content words 
between two NEs then, although some relation might 
exist between them, it is likely to be a very abstract 
grammatical relation. For example, in “X of Y” there is a 
relation between X and Y, but the phrase does not 
explicitly express any domain-specific knowledge. On 
the other hand, if there are too many content words 
intervening between two NEs, then it is likely they are 
not related at all. We build patterns using this approach 
and store each pattern along with its frequency in a 
database. In this paper we describe experiments with 
three different pattern types: 

1. Untagged word patterns 
2. PoS-tagged word patterns 

                                                                 
1 http://www-tsujii.is.s.u tokyo.ac.jp/GENIA/tagger/ 

3. Verb-centred patterns 
Untagged word patterns consist of named entities and 
the content words intervening between them. The reason 
for choosing these different types of surface patterns is 
that verbs typically express semantic relations between 
nouns that are used as their arguments. Some examples 
of untagged word patterns along with their frequencies 
are shown in Table 1. Table 2 (PoS-tagged word 
patterns) contains the PoS of each content word, while 
Table 3 (verb-centred patterns) contains patterns where 
the presence of a verb is compulsory in each pattern. We 
require the presence of a verb in the verb-based patterns 
as verbs are the main predicative class of words, 
expressing specific semantic relations between two 
named entities. 
Table 1: Examples of untagged word patterns 

Patterns Frequency 
PROTEIN activation PROTEIN 53 

DNA contain DNA 46 
PROTEIN bind DNA 39 

CELL_TYPE express PROTEIN 31 
Table 2: Examples of PoS-tagged patterns  

Patterns Frequency 
PROTEIN activation_n PROTEIN 53 

PROTEIN include_v PROTEIN 43 
PROTEIN activate_v PROTEIN 32 

DNA encode_v PROTEIN 27 
Table 3: Examples of verb-centred patterns  

Patterns Frequency 
PROTEIN  bind_v DNA 39 

PROTEIN induce_v PROTEIN 29 
PROTEIN express_v CELL_TYPE 19 
PROTEIN stimulate_v CELL_LINE 11 

 

Moreover, in the pattern building phase, patterns 
containing passive forms of the verb like: 
PROTEIN be_v express_v CELL_TYPE 
are converted into the active voice form of the verb: 
CELL_LINE express_v PROTEIN 
Because such patterns were taken to express a similar 
semantic relation between NEs, passive to active 
conversion was carried out in order to relieve the 
problem of data sparseness: it helped to increase the 
frequency of unique patterns and reduce the total number 
of patterns. For the same reason, negation expressions 
(not, does not, etc) were also removed from the patterns 
as they express a semantic relation between NEs 
equivalent to one expressed in patterns where a negation 
particle is absent. 

4. Pattern Ranking 
After candidate patterns have been constructed, the next 
step is to rank the patterns based on their significance in 
the domain corpus. The ranking method we use requires 
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a general corpus that serves as a source of examples of 
pattern use in domain-independent texts. To extract 
candidates from the general corpus, we treated every 
noun as a potential named-entity holder and the 
candidate construction procedure described above was 
applied to find potential patterns of the three different 
types in the general corpus. In order to score candidate 
patterns for domain-relevance, we measure the strength 
of association of a pattern with the domain corpus as 
opposed to the general corpus.  The patterns are scored 
using the following methods for measuring the 
association between a pattern and the domain corpus: 
Information Gain (IG), Information Gain Ratio (IGR), 
Mutual Information (MI), Normalised Mutual 
Information (NMI)2, Log-likelihood (LL) and Chi-
Square (CHI). These association measures were included 
in the study as they have different theoretical principles 
behind them: IG, IGR, MI and NMI are information-
theoretic concepts while LL and CHI are statistical tests 
of association. 
Information Gain measures the amount of information 
obtained about domain specialisation of corpus c, given 
that pattern p is found in it. 
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where p is a candidate pattern, c – the domain corpus, p' 
– a pattern other than p, c' – the general corpus, P(c) – 
the probability of c in “overall” corpus {c,c'}, and P(p) – 
the probability of p in the overall corpus. 
Information Gain Ratio aims to overcome one 
disadvantage of IG consisting of the fact that IG grows 
not only with the increase of dependence between p and 
c, but also with the increase of the entropy of p. IGR 
removes this factor by normalizing IG by the entropy of 
the patterns in the corpora: 

}{
∑

∈

−
=

',

)(log)(
),(),(

ppg

gPgP
cgIGcpIGR

 
Pointwise Mutual Information between corpus c and 
pattern p measures how much information the presence 
of p contains about c, and vice versa: 
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Chi-Square and Log-likelihood are statistical tests which 
work with frequencies and rank-order scales, both 
calculated from a contingency table with observed and 

                                                                 
2 Mutual Information has a well-known problem of being 

biased towards infrequent events. To tackle this problem, we 
normalised the MI score by a discounting factor, following 
the formula proposed in [9]. 

expected frequency of occurrence of a pattern in the 
domain corpus. Chi-Square is calculated as follows. 
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where O is the observed frequency of p in domain and 
general corpus respectively and E is the expected 
frequency of p in two corpora. 
Log-likelihood is calculated according to the following 
formula: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

2
2

1

1
1 loglog2),(

E
OO

E
OOcpLL

 

where O1 and O2 are observed frequencies of p in the 
domain and general corpus respectively, while E1 and E2 
are its expected frequency values in the two corpora. 
In addition to these six measures, we introduce a meta-
ranking method that combines the scores produced by 
several individual association measures, in order to 
leverage agreement between different association 
measures and downplay idiosyncrasies of individual 
ones. Because the association functions range over 
different values (for example, IGR ranges between 0 and 
1, and MI between +∞ and -∞), we first normalise the 
scores assigned by each method3:  
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where s(p) is the non-normalised score for pattern p, 
from the candidate pattern set P. The normalised scores 
are then averaged across different methods and used to 
produce a meta-ranking of the candidate patterns. 
Given the ranking of candidate patterns produced by a 
scoring method, a certain number of highest-ranking 
patterns can be selected for evaluation. We studied two 
different ways of selecting these patterns: (i) one based 
on setting a threshold on the association score below 
which the candidate patterns are discarded (henceforth, 
score-thresholding method) and (ii) one that selects a 
fixed number of top-ranking patterns (henceforth, rank-
thresholding method). During the evaluation, we 
experimented with different rank- and score-thresholding 
values. 

5. Evaluation 
5.1 Experimental data 
We used the Genia Corpus as the domain corpus while 
British National Corpus (BNC) was used as a general 
corpus. Genia corpus consists of 2,000 abstracts 
extracted from the MEDLINE containing 18,477 
sentences. In the evaluation phase, Genia Event 

                                                                 
3 Patterns with negative MI scores are discarded. 
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Annotation corpus4 is used [8]. It consists of 9,372 
sentences.  

5.2 Evaluation method 
In order to evaluate the quality of the extracted patterns, 
we examined their ability to capture pairs of related 
named entities in the manually annotated evaluation 
corpus, without recognising the type of semantic relation. 
Selecting a certain number of best-ranking patterns, we 
measure precision, recall and F-score. To test the 
statistical significance of differences in the results of 
different methods and configurations, we used a paired t-
test, having randomly divided the evaluation corpus into 
20 subsets of equal size; each subset containing 461 
sentences on average.  

6. Results 
Table 4 shows the results of top-ranked patterns for each 
approach respectively while Table 5 shows the results of 
the score-thresholding method for each approach 
respectively (for space considerations, the tables show 
only precision scores; “Untagged” stands for “untagged 
word patterns”, “PoS” – for “PoS-tagged word patterns”, 
“VC” – for “verb-centred patterns”). 

Table 4: Precision results of rank-thresholding method  
 IG IGR MI NMI LL CHI Meta 
Top 100 Ranked Patterns 
Untagged  .56 .62 .33 .68 .62 .74 .69 
PoS .79 .80 .43 .84 .80 .90 .86 
VC .65 .65 .38 .79 .65 .83 .83 
Top 200 Ranked Patterns 
Untagged  .55 .55 .30 .54 .55 .63 .56 
PoS .74 .74 .42 .71 .74 .75 .76 
VC .70 .69 .36 .72 .69 .74 .76 
Top 300 Ranked Patterns 
Untagged  .53 .52 .34 .53 .52 .56 .55 
PoS .72 .73 .46 .72 .72 .74 .73 
VC .71 .70 .41 .60 .70 .62 .67 
Top 400 Ranked Patterns 
Untagged  .51 .53 .33 .49 .53 .52 .50 
PoS .70 .70 .45 .64 .70 .69 .69 
VC .65 .66 .42 .55 .66 .55 .59 
Top 500 Ranked Patterns 
Untagged  .51 .51 .32 .47 .51 .49 .48 
PoS .68 .68 .42 .61 .68 .62 .63 
VC .59 .59 .45 .51 .59 .51 .54 

 

Table 5: Precision results of score-thresholding method  
 IG IGR MI NMI LL CHI Meta 
Threshold score > .06 
Untagged  .68 .68 .34 .34 .68 .72 .33 
PoS .72 .73 .43 .43 .73 .88 .44 
VC .68 .68 .44 .44 .68 .76 .44 
Threshold score > .07 
Untagged  .65 .65 .34 .34 .65 .73 .55 
PoS .74 .74 .43 .43 .74 .87 .44 

                                                                 
4http://www-tsujii.is.s.u-

tokyo.ac.jp/GENIA/home/wiki.cgi?page=Event+Annotation 

VC .70 .71 .44 .44 .71 .89 .44 
Threshold score > .08 
Untagged  .62 .62 .34 .34 .62 .78 .55 
PoS .71 .71 .43 .43 .71 .92 .72 
VC .66 .69 .44 .44 .69 .88 .76 
Threshold score > .09 
Untagged  .57 .57 .34 .34 .57 .82 .56 
PoS .70 .72 .43 .43 .72 .96 .72 
VC .67 .67 .44 .44 .67 .88 .75 
Threshold score > .1 
Untagged  .50 .50 .34 .34 .50 .81 .55 
PoS .70 .70 .43 .43 .70 .95 .74 
VC .65 .66 .44 .44 .65 .95 .75 
Threshold score > .2 
Untagged  0 0 .34 .34 0 .86 .82 
PoS .86 .86 .43 .44 .86 1.00 .90 
VC .85 .85 .43 .44 .85 1.00 .87 

6.1 Ranking methods 
In both tables, the results of the best performing ranking 
method are shown in bold font.  
The CHI-score method performs best for the selected 100 
top ranked patterns while the meta-ranking method 
comes out second best in all three patterns types. The 
difference between CHI-score and the second-best 
method (meta-ranking) is significant at p < 0.05 level. In 
Table 5, the CHI-score ranking method outperforms all 
the other ranking methods for all three patterns types 
while IG, IGR and LL come out second best for most of 
the thresholding score values.  Here also the difference 
from the second-best ranking method is significant (p < 
0.05). IG, IGR and LL ranking methods perform quite 
similarly to each other and in general, there is no 
statistically significant difference between them. While 
literature on the topic suggests that IGR performs better 
than the IG [14, 10], we found that in general there is no 
statistically significant difference between IG and IGR, 
IGR and LL in all three pattern types.  In both sets of 
experiments, obviously due to the aforementioned 
problem, MI performs quite poorly; the normalised 
version of MI helps to alleviate this problem. Moreover, 
there exists a statistically significant difference (p < 0.01) 
between NMI and the other ranking methods in all three 
pattern types. 
The meta-ranking method did not improve on the best 
individual ranking method as expected. In Table 4, the 
meta- ranking method comes out second best for 100, 
200 and 300 top ranked patterns but then its performance 
decreases. Similarly for thresholding score values it 
comes out second best for all thresholds greater than 
0.09. Moreover, we found that there is a statistically 
significant difference (p < 0.05) between the meta-
ranking method and all the other ranking methods for all 
three patterns types. 

6.2 Score vs. rank thresholding 
We also find out that score-thresholding method 
produces better results than rank-thresholding as we are 
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able to achieve up to 100% precision with the former 
technique. 

6.3 Types of patterns 
PoS-tagged word patterns and verb-centred patterns 
perform better than untagged word patterns. Verb-
centred patterns work well, because verbs are known to 
express semantic relations between named entities using 
syntactic arguments to the verb; PoS-tagged word 
patterns add important semantic information into the 
pattern and possibly disambiguate words appearing in the 
pattern. In order to find out that whether the differences 
between the three patterns types are statistically 
significant, we carried out a paired t-test again.  We 
found that there is no statistically significant difference 
between PoS-tagged word patterns and verb-centred 
patterns. Apart from IG, IGR and LL there is a 
statistically significant difference between all the ranking 
methods of untagged word patterns and PoS-tagged word 
patterns, untagged word patterns and verb-centred 
patterns respectively.  

6.4 Precision vs. F-measure optimisation 
The score-thresholding method achieves higher precision 
than the rank-thresholding method. High precision is 
quite important in applications such as MCQ generation. 
In thresholding scores, it is possible to optimise for high 
precision (up to 100%), though F-measure is generally 
quite low. MCQ applications rely on the production of 
good questions rather than the production of all possible 
questions, so high precision plays a vital role in such 
applications. 

7. Conclusion 
In this paper, we have presented an unsupervised 
approach for Relation Extraction from surface-based 
patterns intended to be deployed in an e-Learning system 
for automatic generation of multiple choice questions. 
We experimented with three different surface-based 
approaches and showed that PoS-based and verb-centred 
patterns achieve higher precision compared to untagged 
word patterns. We explored different ranking methods 
and found that the Chi-Square ranking method obtained 
higher precision than the other ranking methods. We 
employed two techniques: the rank-thresholding method 
and score-thresholding method and found that 
thresholding scores perform better.  
For future work, we are going to investigate other meta-
ranking methods and carry out a task-embedded 
evaluation, in the context of the multiple-choice question 
generation problem. 
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