@article{bohnet-etal-2013-joint,
title = "Joint Morphological and Syntactic Analysis for Richly Inflected Languages",
author = "Bohnet, Bernd and
Nivre, Joakim and
Boguslavsky, Igor and
Farkas, Rich{\'a}rd and
Ginter, Filip and
Haji{\v{c}}, Jan",
journal = "Transactions of the Association for Computational Linguistics",
volume = "1",
year = "2013",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q13-1034",
doi = "10.1162/tacl_a_00238",
pages = "415--428",
abstract = "Joint morphological and syntactic analysis has been proposed as a way of improving parsing accuracy for richly inflected languages. Starting from a transition-based model for joint part-of-speech tagging and dependency parsing, we explore different ways of integrating morphological features into the model. We also investigate the use of rule-based morphological analyzers to provide hard or soft lexical constraints and the use of word clusters to tackle the sparsity of lexical features. Evaluation on five morphologically rich languages (Czech, Finnish, German, Hungarian, and Russian) shows consistent improvements in both morphological and syntactic accuracy for joint prediction over a pipeline model, with further improvements thanks to lexical constraints and word clusters. The final results improve the state of the art in dependency parsing for all languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bohnet-etal-2013-joint">
<titleInfo>
<title>Joint Morphological and Syntactic Analysis for Richly Inflected Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bernd</namePart>
<namePart type="family">Bohnet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joakim</namePart>
<namePart type="family">Nivre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Igor</namePart>
<namePart type="family">Boguslavsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richárd</namePart>
<namePart type="family">Farkas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Ginter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2013</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre>journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre>academic journal</genre>
</relatedItem>
<abstract>Joint morphological and syntactic analysis has been proposed as a way of improving parsing accuracy for richly inflected languages. Starting from a transition-based model for joint part-of-speech tagging and dependency parsing, we explore different ways of integrating morphological features into the model. We also investigate the use of rule-based morphological analyzers to provide hard or soft lexical constraints and the use of word clusters to tackle the sparsity of lexical features. Evaluation on five morphologically rich languages (Czech, Finnish, German, Hungarian, and Russian) shows consistent improvements in both morphological and syntactic accuracy for joint prediction over a pipeline model, with further improvements thanks to lexical constraints and word clusters. The final results improve the state of the art in dependency parsing for all languages.</abstract>
<identifier type="citekey">bohnet-etal-2013-joint</identifier>
<identifier type="doi">10.1162/tacl_a_00238</identifier>
<location>
<url>https://aclanthology.org/Q13-1034</url>
</location>
<part>
<date>2013</date>
<detail type="volume"><number>1</number></detail>
<extent unit="page">
<start>415</start>
<end>428</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Joint Morphological and Syntactic Analysis for Richly Inflected Languages
%A Bohnet, Bernd
%A Nivre, Joakim
%A Boguslavsky, Igor
%A Farkas, Richárd
%A Ginter, Filip
%A Hajič, Jan
%J Transactions of the Association for Computational Linguistics
%D 2013
%V 1
%I MIT Press
%C Cambridge, MA
%F bohnet-etal-2013-joint
%X Joint morphological and syntactic analysis has been proposed as a way of improving parsing accuracy for richly inflected languages. Starting from a transition-based model for joint part-of-speech tagging and dependency parsing, we explore different ways of integrating morphological features into the model. We also investigate the use of rule-based morphological analyzers to provide hard or soft lexical constraints and the use of word clusters to tackle the sparsity of lexical features. Evaluation on five morphologically rich languages (Czech, Finnish, German, Hungarian, and Russian) shows consistent improvements in both morphological and syntactic accuracy for joint prediction over a pipeline model, with further improvements thanks to lexical constraints and word clusters. The final results improve the state of the art in dependency parsing for all languages.
%9 journal article
%R 10.1162/tacl_a_00238
%U https://aclanthology.org/Q13-1034
%U https://doi.org/10.1162/tacl_a_00238
%P 415-428
Markdown (Informal)
[Joint Morphological and Syntactic Analysis for Richly Inflected Languages](https://aclanthology.org/Q13-1034) (Bohnet et al., TACL 2013)
ACL