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A b s t r a c t  

Current models of story comprehension have 
three major deficiencies: (1) lack of experimen- 
tal support for the inference processes they in- 
volve (e.g. reliance on prediction); (2) indif- 
ference to 'kinds' of coherence (e.g. local and 
global); and (3) inability to find interpretations 
at variable depths. I propose that comprehen- 
sion is driven by the need to find a representa- 
tion that reaches a 'coherence threshold'. Vari- 
able inference processes are a reflection of differ- 
ent thresholds, and the skepticism of an individ- 
ual inference process determines how thresholds 
are reached. 

1 I n t r o d u c t i o n  

Recent research in psychology maintains that 
comprehension is 'explanation-driven' (Graesser 
et al., 1994) and guided by the 'need for coher- 
ence' (van den Broek et al., 1995). The com- 
prehender's goal is construction of a more-or- 
less coherent representation which includes ex- 
planations for and relations between the story's 
eventualities. This representation is generated 
via inferences, which enrich the representation 
until it reaches the threshold specified by the 
comprehender's coherence need (van den Broek 
et al., 1995). 

By contrast, early models of comprehension 
emphasised its expectation-driven nature: pre- 
diction of future eventualities, followed by sub- 
stantiation of these predictions (DeJong, 1979). 
The inference processes described in these early 
models are still implemented in many contem- 
porary systems. 

One problem with these models is their fail- 
ure to account for experimental evidence about 
inferences: predictive inferences are not gener- 
ated at point x in the story, unless strongly sup- 
ported by the story up to point x (Trabasso and 

Magliano, 1996); in addition, predictive infer- 
ences not immediately confirmed by the story 
after point x are not incorporated into the rep- 
resentation (Murray et al., 1993). While it is 
difficult to define 'strong support'  or 'confirma- 
tion', it is clear that an overly-assumptive model 
does not reflect mundane comprehension. 

A second problem is the failure of these mod- 
els to account for differential establishment of 
local and global coherence. Local coherence 
holds between 'short sequences of clauses', while 
global coherence is measured in terms of 'over- 
arching themes' (Graesser et al., 1994). McK- 
oon and Ratcliff (1992) maintain that only local 
coherence is normally established during com- 
prehension (the minimalist hypothesis). Others 
state that readers 'at tempt to construct a mean- 
ing representation that is coherent at both local 
and global levels' (the constructionist hypothe- 
sis) (Graesser et al., 1994). Script-based mod- 
els allow globally-coherent structures to be con- 
structed automatically, contradicting the mini- 
malist hypothesis; the inclusion of promiscuous 
predictive inferences also contradicts the con- 
structionist hypothesis. 

A third problem is that previous models deny 
comprehension's flexibility. This issue is some- 
times side-stepped by assuming that compre- 
hension concludes with the instantiation of one 
or more 'primitive' or 'top-level' patterns. An- 
other approach is to apply lower-level patterns 
which account for smaller subsets of the input, 
but the aim is still to connect a story's first even- 
tuality to its last (van den Broek et al., 1995). 

This paper describes a model which treats 
inferences as coherence generators, where an 
inference's occurrence depends on its coher- 
ence contribution. Unusual inference-making, 
establishment of local and global coherence, 
and variable-precision comprehension can be 
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described within this framework. 

2 C o h e r e n c e  a n d  S a t i s f i c i n g  

A schema is any function which maps inputs 
onto mental representations. It contains slots 
which can be instantiated using explicit in- 
put  statements, or implicit statements derived 
via proof or assumption. Instantiated schemas 
form the building blocks of the comprehender 's  
representation. A comprehender has available 
both  'weak' schemas, which locally link small 
amounts  of input  (e.g. causal schemas); and 
'strong' schemas, which globally link larger sec- 
tions of input  (e.g. scripts). 

All schemas generate 'connections of intelligi- 
bility' which affect the coherence of a represen- 
tat ion (Harman, 1986). Coherence is a common 
'currency' with which to measure the benefit of 
applying a schema. Instead of requiring that  a 
top-level structure be instantiated, the system 
instead applies schemas to produce a represen- 
tat ion of sufficient 'value'. This process can be 
naturally described as abduction, or 'inference 
to the best explanation'  (Ng and Mooney, 1990). 

Previous natural-language abduct ion systems 
can form more-or-less coherent representations: 
for example, by halting comprehension when 
assumptions start  to reduce coherence (ibid.). 
However, these systems still have a fixed 'cut- 
off' point: there is no way to change the criteria 
for a good representation, for example, by re- 
quiring high coherence, even if this means mak- 
ing poorly-supported assumptions. By treating 
coherence as the currency of comprehension, the 
emphasis shifts from creating a 'complete'  rep- 
resentation, to creating a satisficing one. (A 
satisficing representation is not necessarily op- 
timal, but  one which satisfies some minimal con- 
straint: in this case, a coherence threshold.) 

3 C o h e r e n c e - D r i v e n  C o m p r e h e n s i o n  

In this section, I outline some general princi- 
ples which may at tenuate the performance of a 
comprehension system. I begin with the general 
definition of a schema: 

C l ,  . . . ,  C.n --) '  I.  
where cl, ..., c~ are the elements connected by 

I.  The left-hand side of a schema is its condition 
set, and the right-hand side represents the inter- 
pretation of those conditions in terms of other 
concepts (e.g. a temporal  relation, or a corn- 

pound event sequence). During each processing 
cycle, condition sets are matched against the set 
of observations. 

At present, I am developing a metric which 
measures coherence contribution with respect to 
a schema and a set of observations: 

C = (Y x U) - (P  × S) 

where C = coherence contribution; V = Cov- 
erage; U- -  Utility; P -- Completion; and S = 
Skepticism. This metric is based on work in 
categorisation and diagnosis, and measures the 
similarity between the observations and a con- 
dition set (Tversky, 1977). 

3.1 C o v e r a g e  a n d  C o m p l e t i o n  

Coverage captures the principle of conflict res- 
olution in product ion systems. The more ele- 
ments matched by a schema, the more coherence 
that  schema imparts  on the representation, and 
the higher the Coverage. By contrast, Com- 
pletion represents the percentage of the schema 
that  is matched by the input  (i.e. the complete- 
ness of the match). Coverage and Completion 
thus measure different aspects of the applica- 
bility of a schema. A schema with high Cov- 
erage may match all of the observations; how- 
ever, there may be schema conditions that  are 
unmatched.  In this case, a schema with lower 
Coverage but  higher Completion may generate 
more coherence. 

3.2 Utility 

The more observations a schema can explain, 
the greater its coherence contribution. Utility 
measures this inherent usefulness: schemas with 
many conditions are considered to contribute 
more coherence than schemas with few. Util- 
ity is independent  of the number  of observa- 
tions matched, and reflects the structure of the 
knowledge base (KB). In previous comprehen- 
sion models, the importance of schema size is 
often ignored: for example, an explanation re- 
quiring a long chain of small steps may be less 
costly than a proof requiring a single large step. 
To alleviate this problem, I have made a com- 
mitment  to schema 'size', in line with the no- 
tion of 'chunking' (Laird et al., 1987). Chunked 
schemas are more efficient as they require fewer 
processing cycles to arrive at explanations. 
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3.3 Skepticism 
This parameter represents the unwillingness of 
the comprehender to 'jump to conclusions'. For 
example, a credulous comprehender (with low 
Skepticism) may make a thematic inference that 
a trip to a restaurant is being described, when 
the observations lend only scant support to this 
inference. By raising the Skepticism parameter, 
the system may be forced to prove that such 
an inference is valid, as missing evidence now 
decreases coherence more drasticallyJ 

4 E x a m p l e  

Skepticism can have a significant impact on the 
coherence contribution of a schema. Let the set 
of observations consist of two statements: 

enter(john, restaurant), order(john, burger) 
Let the KB consist of the schema (with Utility 

of 1, as it is the longest schema in the KB): 
enter (Per, Rest), order(Per, Meal), 
leave(Per, Rest) --~ 
restaurantvisit( Per, Meal, Rest). 

In this case, C = (V x U) - (P  x S), where: 
Coverage(V) = O b s e r v a t i o n s C o v e r e d  ~- 2 

N urnberO f O b s e r v a t i o n s  

Utility(U) = 1 
Completion(P) = C o n d i t i o n s U n r n a t c h e d  ~_. 1 

N urnberO / C and i t i ons  
1 Skepticism(S) = 

Therefore, C = ~, with leave(john, restau- 
rant) being the assumption. If S is raised to 
1, C now equals 2 5, with the same assumption. 
Raising S makes the system more skeptical, and 
may prevent hasty thematic inferences. 

5 F u t u r e  W o r k  

Previous models of comprehension have relied 
on an 'all-or-nothing' approach which denies 
partial representations. I believe that chang- 
ing the goal of comprehension from top-level- 
pattern instantiation to coherence-need satis- 
faction may produce models capable of produc- 
ing partial representations. 

One issue to be addressed is how coherence 
is incrementally derived. The current metric, 
and many previous ones, derive coherence from 
a static set of observations. This seems im- 
plausible, as interpretations are available at any 
point during comprehension. A second issue is 

1Skepticism is a global parameter which 'weights' all 
schema applications. Local weights could also be at- 
tached to individual conditions (see section 5). 

the cost of assuming various conditions. Some 
models use weighted conditions, which differ- 
entially impact on the quality of the represen- 
tation (Hobbs et al., 1993). A problem with 
these schemes is the sometimes ad hoc charac- 
ter of weight assignment: as an antidote to this, 
I am currently constructing a method for de- 
riving weights from condition distributions over 
the KB. This moves the onus from subjective 
decisions to structural criteria. 
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1 Simple recurrent networks for natural 
language phonotacfics analysis. 

In searching for a cormectionist paradigm capable of 
natural language processing, many researchers have 
explored the Simple Recurrent Network (SRN) such 
as Elman(1990), Cleermance(1993), Reilly(1995) 
and Lawrence(1996). SRNs have a context layer 
that keeps track of the past hidden neuron 
activations and enables them to deal with sequential 
data. The events in Natural Language span time so 
SRNs are needed to deal with them. 

Among the various levels of language proce- 
ssing, a phonological level can be distinguished. The 
Phonology deals with phonemes or graphemes - the 
latter in the case when one works with orthographic 
word representations. The principles governing the 
combinations of these symbols is called phonotactics 
(Laver'1994). It is a good starting point for 
connectionist language analysis because there are 
not too many basic entities. The number of the 
symbols varies between 26 (for the Latin 
graphemes) and 50 *(for the phonemes). 

Recently, some experiments considering 
phonotactics modelling with SRNs have been carded 
out by Stoianov(1997), Rodd(1997). The neural 
network in Stoianov(1997) was trained to study the 
phonotactics of a large Dutch word corpus. This 
problem was implemented as an SRN learning task - 
to predict the symbol following the left context given 
to the input layer so far. Words were applied to the 
network, symbol by symbol, which in turn were 
encoded orthogonally, that is, one node standing for 
one symbol (Fig.l). An extra symbol ( '#') was used 
as a delimiter. After the training, the network 
responded to the input with different neuron 
activations at the output layer. The more active a 
given output neuron is, the higher the probability is 
that it is a successor. The authors used a so-called 
optimal threshold method for establishing the 
threshold which determines the possible successors. 
This method was based on examining the network 

"for Dutch, and up to at most 100 in other languages. 

response to a test corpus of words belonging to the 
trained language and a random corpus, built up from 
random strings. Two error functions dependent on a 
threshold were computed, for the test and the 
random corpora, respectively. The threshold at 
which both errors had minimal value was selected as 
an optimal threshold. Using this approach, an SRN, 
trained to the phonotactics of a Dutch monosyllabic 
corpus containing 4500 words, was reported to 
distinguish words from non-words with 7% error. 
Since the phonotactics of a given language is 
represented by the constraints allowing a given 
sequence to be a word or not, and the SRN managed 
to distinguish words from random strings with 
tolerable error, the authors claim that SRNs are able 
to learn the phonotactics of Dutch language. 

SRt 

Fig.1. SRN and mechanism of sequence 
processing. A character is provided to the input 
and the next one is used for training. In turn, it 
has to be predicted during the test phase. 

In the present report, alternative evaluation 
procedures are proposed. The network evaluation 
methods introduced are based on examining the 
network response to each left context, available in 
the training corpus. An effective way to represent 
and use the complete set of context strings is a tree- 
based data structure. Therefore, these methods are 
termed tree-based analysis. Two possible 
approaches are proposed for measuring the SRN 
response accuracy to each left context. The fh-st uses 
the idea mentioned above of searching a threshold 
that distinguishes permitted successors from 
impossible ones. An error as a function of the 
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threshold is computed. Its minimum value 
corresponds to the SRN learning error rate. The 
second approach computes the local proximity 
between the network response and a vector 
containing the empirical symbol probabilities that a 
given symbol would follow the current left context. 
Two measures are used: 1,2 norm and normalised 
vector multiplication. The mean of these local 
proximities measures how close the network 
responses are to the desired responses. 

2 Tree-based corpus representation. 

There are diverse methods to represent a given set of 
words (corpus). Lists is the simplest, but they are 
not optimal with regard to the memory complexity 
and the time complexity of the operations working 
with the data. A more effective method is the tree- 
based representation. Each node in this tree has a 
maximum of 26 possible children (successors), if we 
work with orthographic word representations. The 
root is empty, it does not represent a symbol. It is 
the beginning of a word. The leaves do not have 
successors and they always represent the end of a 
word. A word can end somewhere between the root 
and the leaves as well. This manner of corpus 
representation, termed trie, is one of the most 
compact representations and is very effective for 
different operations with words from the corpus. 

In addition to the symbol at each node, we can 
keep additional information, for example the 
frequency of a word, if this node is the end of a 
word. Another useful piece of information is the 
frequency of each node C, that is, the frequency of 
each left context. It is computed recursively as a 
sum of the frequencies of all successors and the 
frequency of the word ending at this node, provided 
that such a word exists. These frequencies give us an 
instant evaluation of the empirical distribution for 
each successor. In order to compute the successors' 
empirical distribution vector 're(.), we have to 
normalise the successors' frequencies with respect to 
their sum. 

3 T r e e - b a s e d  e v a l u a t i o n  o f  S R N  learning. 

During the training of a word, only one output 
neuron is forced to be active in response to the 
context presented so far. But usually, in the entire 
corpus there are several successors following a given 
context. Therefore, the training should result in 

output neurons, reproducing the successors' 
probability distribution. Following this reasoning, 
we can derive a test procedure that verifies whether 
the SRN output activations correspond to these local 
distributions. Another approach related to the 
practical implementation of a trained SRN is to 
search for a cue, giving an answer to the question 
whether given symbol can follow the context 
provided to the input layer so far. As in the optimal 
threshold method we can search for a threshold that 
distinguishes these neurons. 

The tree-based learning examination methods 
are recursive procedures that process each tree node, 
performing an in-order (or depth-first) tree 
traversal. This kind of traversal algorithms start 
from the root and process each sub-tree completely. 
At each node, a comparison between the SRNs 
reaction to the input, and the empirical characters 
distribution is made. Apart from this evaluation, the 
SRN state, that is, the context layer, has to be kept 
before moving to one of the sub-trees, in order for it 
to be reused after traversing this sub-tree. 

On the basis of above ideas, two methods for 
network evaluation are performed at each tree node 
C. The first one computes an error function P(t) 
dependent on a threshold t. This function gives the 
error rate for each threshold t, that is, the ratio of 
erroneous predictions given t. The values of P(t) are 
high for close to zero and close to one thresholds, 
since almost all neurons would permit the 
correspondent symbols to be successors in the first 
case, and would not allow any successor in the 
second case. The minimum will occur somewhere in 
the middle, where only a few neurons would have an 
activation higher than this threshold. The training 
adjusts the weights of the network so that only 
neurons corresponding to actual successors are 
active. The SRN evaluation i s  based on the mean 

F(t) of these local error functions (Fig.2a). 
The second evaluation method computes the 

proximity D c = ]NO(.) ,TO(.) [between the network 
response N¢(.) and the local empirical distributions 
vector To(.) at each tree node. The final evaluation 
of the SRN training is the n'r.an D of D c for all tree 
nodes. Two measures are used to compute D c. The 
first one is 1,2 norm (1): 

(1) l N c(.) ,To(.) I ~ = [M" r~.,.M (NC(x)-TC(x))" ],a 
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The second is a vector multiplication, normali- 
sed with respect to the vector's length (cosine) (2): 
(2) [ NC(.) ,TC(.) I v =(INC(.)l ITC(.)l) "z ,V-~=I_M (NC(x)TC(x)) 

where M is the vector size, that is, the number of 
possible successors (e.g. 27) (see Fig. 2b). 

4 R e s u l t s .  

Well-trained SRNs were examined with both the 
optimal threshold method and the tree-based 
approaches. A network with 30 hidden neurons 
predicted about 11% of the characters erroneously. 

The same network had mean 1,2 distance 0.056 and 
mean vector-multiplication proximity 0.851. At the 
same time, the optimal threshold method rated the 
learning at 7% error. Not surprisingly, the tree- 
based evaluations methods gave higher error rate - 
they do not examine the SRN response to non- 
existent left contexts, which in turn are used in the 
optimal threshold method. 

D i s c u s s i o n  a n d  c o n c l u s i o n s .  

Alternative evaluation methods for SRN learning are 
proposed. They examine the network response only 
to the training input data, which in turn is 
represented in a tree-based structure. In contrast, 
previous methods examined trained SRNs with test 
and random corpora. Both methods give a good idea 
about the learning attained. Methods used previously 
estimate the SRN recognition capabilities, while the 
methods presented here evaluate how close the 
network response is to the desired response - but for 
familiar input sequences. The desired response is 
considered to be the successors' empirical 
probability distribution. Hence, one of the methods 
proposed compares the local empirical probabilities 
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. . . .  : . . . . .  : . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . .  
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to the network response. The other approach 
searches for a threshold that minimises the 
prediction error function. The proposed methods 
have been employed in the evaluation of 
phonotactics learning, but they can be used in 
various other tasks as well, wherever the data can be 
organised hierarchically. I hope, that the proposed 
analysis will contribute to our understanding of 
learning carded out in SRNs. 
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Fig.2. SRN evaluation by: (a.) minimising the error function F(t). (b.) measuring the SRN matching to the 
empirical successor distributions. The distributions of 1,2 distance and cosine are given (see the text). 
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