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We study the computational complexity 
of the parsing problem of a variant of 
Lambek Categorial Grammar that we call 
semidirectional. In semidirectional Lambek 
calculus SD[ there is an additional non- 
directional abstraction rule allowing the 
formula abstracted over to appear any- 
where in the premise sequent's left-hand 
side, thus permitting non-peripheral ex- 
traction. SD[ grammars are able to gen- 
erate each context-free language and more 
than that. We show that  the parsing prob- 
lem for semidireetional Lambek Grammar 
is NP-complete by a reduction of the 3- 
Partition problem. 
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1 I n t r o d u c t i o n  

Categorial Grammar (CG) and in particular Lambek 
Categorial Grammar (LCG) have their well-known 
benefits for the formal treatment of natural language 
syntax and semantics. The most outstanding of these 
benefits is probably the fact that the specific way, 
how the complete grammar is encoded, namely in 
terms of 'combinatory potentials' of its words, gives 
us at the same time recipes for the construction of 
meanings, once the words have been combined with 
others to form larger linguistic entities. Although 
both frameworks are equivalent in weak generative 
capacity - -  both derive exactly the context-free lan- 
guages - - ,  LCG is superior to CG in that  it can cope 
in a natural way with extraction and unbounded de- 
pendency phenomena. For instance, no special cate- 
gory assignments need to be stipulated to handle a 
relative clause containing a trace, because it is an- 
alyzed, via hypothetical reasoning, like a traceless 
clause with the trace being the hypothesis to be dis- 
charged when combined with the relative pronoun. 

Figure 1 illustrates this proof-logical behaviour. No- 
tice that  this natural-deduction-style proof in the 
type logic corresponds very closely to the phrase- 
structure tree one would like to adopt in an analysis 
with traces. We thus can derive Bill misses ~ as 

an s from the hypothesis that  there is a "phantom" 
np in the place of the trace. Discharging the hypoth- 
esis, indicated by index 1, results in B i l l  misses 
being analyzed as an s/np from zero hypotheses. Ob- 
serve, however, that  such a bottom-up synthesis of a 
new unsaturated type is only required, if that type 
is to be consumed (as the antecedent of an impli- 
cation) by another type. Otherwise there would be 
a simpler proof without this abstraction. In our ex- 
ample the relative pronoun has such a complex type 
triggering an extraction. 

A drawback of the pure Lambek Calculus !_ is that it 
only allows for so-called 'peripheral extraction', i.e., 
in our example the trace should better be initial or 
final in the relative clause. 

This inflexibility of Lambek Calculus is one of the 
reasons why many researchers study richer systems 
today. For instance, the recent work by Moortgat 
(Moortgat 94) gives a systematic in-depth study of 
mixed Lambek systems, which integrate the systems 
L, NL, NLP, and LP. These ingredient systems are 
obtained by varying the Lambek calculus along two 
dimensions: adding the permutation rule (P) and/or 
dropping the assumption that the type combinator 
(which forms the sequences the systems talk about) 
is associative (N for non-associative). 

Taken for themselves these variants of I_ are of lit- 
tle use in linguistic descriptions. But in Moortgat's 
mixed system all the different resource management 
modes of the different systems are left intact in the 
combination and can be exploited in different parts 
of the grammar. The relative pronoun which would, 
for instance, receive category (np\np)/(np --o s) 
with --o being implication in LP, 1 i.e., it requires 

1The Lambek calculus with permutation I_P is also 
called the "nondirectional Lambek calculus" (Ben- 
them 88). In it the leftward and rightward implication 
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(the book) which 
(np\np)/(s/np) 

misses e 

(n;\8)/n; 
Bill ~ ~  

np np\s 

8 

I 
s/npl 

np\np 

Figure 1: Extraction as resource-conscious hypothetical  reasoning 

as an argument "an s lacking an np somewhere" .2. 

The present paper  studies the computat ional  com- 
plexity of a variant of the Lambek Calculus that  lies 
between / and tP ,  the Semidirectional Lambek Cal- 
culus SDk. 3 Since t P  derivability is known to be NP- 
complete, it is interesting to study restrictions on the 
use of the I_P operator -o .  A restriction tha t  leaves 
its proposed linguistic applications intact is to admit  
a type B -o  A only as the argument  type in func- 
tional applications, but never as the functor. Stated 
prove-theoretically for Gentzen-style systems, this 
amounts to disallowing the left rule for -o .  Surpris- 
ingly, the resulting system SD[. can be stated with- 
out the need for structural rules, i.e., as a monolithic 
system with just  one structural  connective, because 
the ability of the abstracted-over formula to permute  
can be directly encoded in the right rule for --o. 4 

Note that  our purpose for studying SDI_ is not that  
it might be in any sense bet ter  suited for a theory of 
g rammar  (except perhaps, because of its simplicity), 
but rather, because it exhibits a core of logical be- 
haviour that  any richer system also needs to include, 
at least if it should allow for non-peripheral extrac- 
tion. The sources of complexity uncovered here are 
thus a forteriori present in all these richer systems 
as well. 

collapse. 
2Morrill (Morrill 94) achieves the same effect with a 

permutation modality /k apphed to the np gap: (s/Anp) 
SThis name was coined by Esther K6nig-Baumer, who 

employs a variant of this calculus in her LexGram system 
(KSnig 95) for practical grammar development. 

4It should be pointed out that the resource manage- 
ment in this calculus is very closely related to the han- 
dhng and interaction of local valency and unbounded 
dependencies in HPSG. The latter being handled with 
set-valued features SLASH, QUE and KEL essentially emu- 
lates the permutation potential of abstracted categories 
in semidirectional Lambek Grammar. A more detailed 
analysis of the relation between HPSG and SD[ is given 
in (KSnig 95). 

2 S e m i d i r e c t i o n a l  L a m b e k  G r a m m a r  

2.1 L a m b e k  c a l c u l u s  

The semidirectional Lambek calculus (henceforth 
SDL) is a variant of J. Lambek ' s  original (Lam- 
bek 58) calculus of syntactic types. We star t  by 
defining the Lambek calculus and extend it to ob- 
tain SDL. 

Formulae (also called "syntactic types")  are built 
f rom a set of proposit ional variables (or "primitive 
types") B = {bl, b2, . . .}  and the three binary con- 
nectives • , \ , / ,  called product, left implication, and 
right implication. We use generally capital letters A, 
B, C , . . .  to denote formulae and capitals towards the 
end of the alphabet  T, U, V, . . .  to denote sequences 
of formulae. The concatenation of sequences U and 
V is denoted by (U, V). 

The (usual) formal framework of these logics is a 
Gentzen-style sequent calculus. Sequents are pairs 
(U, A), written as U =~ A, where A is a type and U 
is a sequence of types. 5 The claim embodied by se- 
quent U =~ A can be read as "formula A is derivable 
from the structured database U". Figure 2 shows 
Lambek 's  original calculus t .  

First of all, since we don ' t  need products  to obtain 
our results and since they only complicate matters ,  
we eliminate products  from consideration in the se- 
quel. 

In Semidirectional Lambek Calculus we add as ad- 
ditional connective the [_P implication --% but equip 
it only with a right rule. 

U, B, V :=~ A ( -o  R) if T = (U, Y) nonempty. 
T :~ B --o A 

5In contrast to Linear Logic (Girard 87) the order 
of types in U is essential, since the structural rule of 
permutation is not assumed to hold. Moreover, the fact 
that only a single formula may appear on the right of ~ ,  
make the Lambek calculus an intuitionistic fragment of 
the multiplicative fragment of non-commutative propo- 
sitional Linear Logic. 
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(Ax) 

T ~ B  U , A , V = ~ C  
U, A /B ,  T, V =~ C ( /L)  

U,B ~ A  
U ::~ A / B  (/1~) if U nonempty 

T ::v B U,A, V =v C 
U, T, B \A ,  V =~ C (\L) 

B , U ~ A  
U =~ B \ A  ( \R)  if U nonempty 

U,A,B,  V =~ C ( .L)  
U, A o B ,  V =~ C 

U s A  V ~ B  ( .R)  
U,V =~ A . B  

T ~ A  U,A,V=¢,C (Cut) 
U, T, V =~ U 

Figure 2: Lambek calculus L 

Let us define the polarity of a subformula of a se- 
quent A1, • •., Am ::~ A as follows: A has positive po- 
larity, each of Ai have negative polarity and if B / C  
or C \ B  has polarity p, then B also has polarity p 
and C has the opposite polarity of p in the sequent. 

A consequence of only allowing the ( -o  R) rule, 
which is easily proved by induction, is that in any 
derivable sequent --o may only appear in positive 
polarity. Hence, -o  may not occur in the (cut) for- 
mula A of a (Cut) application and any subformula 
B -o A which occurs somewhere in the prove must 
also occur in the final sequent. When we assume the 
final sequent's RHS to be primitive (or --o-less), then 
the (-o R) rule will be used exactly once for each 
(positively) occuring -o-subformula. In other words, 
( -o  R) may only do what it is supposed to do: ex- 
traction, and we can directly read off the category 
assignment which extractions there will be. 

We can show Cut Elimination for this calculus by a 
straight-forward adaptation of the Cut elimination 
proof for L. We omit the proof for reasons of space. 

Proposition 1 (Cut Elimination) Each 
SDL-derivable sequent has a cut-free proof. 

The cut-free system enjoys, as usual for Lambek-like 
logics, the Subformula Property: in any proof only 
subformulae of the goal sequent may appear. 

In our considerations below we will make heavy use 
of the well-known count invariant for Lambek sys- 
tems (Benthem 88), which is an expression of the 
resource-consciousness of these logics. Define #b(A) 
(the b-count of A), a function counting positive and 
negative occurrences of primitive type b in an arbi- 
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t rary type A, to be 

if A =  b 
if A primitive and A ~ b 

# b ( A ) =  # b ( B ) - # b ( C ) i f A = B / C o r A = V \ B  
or A = C - o  B 

[ .#b(B)  + #b(C)  i f A  = B .  C 

The invariant now states that  for any primitive b, 
the b-count of the RHS and the LHS of any derivable 
sequent are the same. By noticing that this invariant 
is true for (Ax) and is preserved by the rules, we 
immediately can state: 

Proposition 2 (Count Invariant) I f  I-sb L U ==~ 
A, then #b(U) = #b(A) fo~ any b ~ t~. 

Let us in parallel to SDL consider the fragment of it 
in which ( /R)  and ( \R)  are disallowed. We call this 
fragment SDL-.  Remarkable about this fragment is 
that any positive occurrence of an implication must 
be --o and any negative one must be / or \ .  

2.2 L a m b e k  Grammar 

Definition 3 We define a Lambek grammar to be a 
quadruple (E, ~r, bs, l) consisting of the finite alpha- 
bet of terminals E, the set jr of all Lambek formulae 
generated from some set of propositional variables 
which includes the distinguished variable s, and the 
lezical map l : ~, --* 2 7 which maps each terminal to 
a finite subset o f f .  

We extend the lexical map l to nonempty strings 
of terminals by setting l (wlw2. . .w~)  := l(wl) × 
l(w~) x . . .  x l (w,)  for w l w 2 . . . w n  E ~+. 

The language generated by a Lambek grammar G = 
(~ ,~ ' ,bs , l )  is defined as the set of all strings 
wlw~. . .wn  E ~+ for which there exists a sequence 



x==~x 

x = = ~ x  
B~, B2, C~, C2, c n+l, b n+l => y (*) 

B~, B2, C~, C2, c n, b n ~ c --o (b --o y) 
A2, B[ ,  B2, C~, C2, c n, b n =* x 

n--1 A 1 , A2, B~, B2, C~, C2, c, b =v x 

A~ -1, A2, B~', B2, C~, C2 =~ c -0  (b -0  x) 

A?, A2, B~, B2, C{ ~, C2 ==> x 

Figure 3: Proof  of A~, A2, B~, B2, C~, C2 =~ z 

2x(-on) 

(]L) 

2x(--on) 

(/L) 

of types U E l (w lw2 . . .wn)  and k k U ~ bs. We 
denote this language by L(G). 

An SDL-grammar is defined exactly like a Lambek 
grammar, except that  kSD k replaces kl_. 

Given a grammar G and a string w = WlW2...  wn, 
the parsing (or recognition) problem asks the ques- 
tion, whether w is in L(G). 

It is not immediately obvious, how the generative 
capacity of SDL-grammars relate to Lambek gram- 
mars or nondirectional Lambek grammars (based 
on calculus LP). Whereas Lambek grammars gener- 
ate exactly the context-free languages (modulo the 
missing empty word) (Pentus 93), the latter gen- 
erate all permutat ion closures of context-free lan- 
guages (Benthem 88). This excludes many context- 
free or even regular languages, but  includes some 
context-sensitive ones, e.g., the permutat ion closure 
of a n b n c n . 

Concerning SD[, it is straightforward to show that  
all context-free languages can be generated by SDL- 
grammars• 

P r o p o s i t i o n  4 Every context-free language is gen- 
erated by some SDL-grammar. 

P r o o f .  We can use a the standard transformation 
of an arbitrary cfr. grammar G = (N, T, P, S) to a 
categorial grammar G'. Since -o  does not appear 
in G' each SDl_-proof of a lexical assignment must 
be also an I_-proof, i.e. exactly the same strings are 
judged grammatical by SDL as are judged by L. D 

Note that  since the {(Ax), ( /L),  ( \L)} subset of I_ 
already accounts for the cfr. languages, this obser- 
vation extends to SDL-. 

Moreover, some languages which are not context-free 
can also be generated. 

E x a m p l e .  Consider the following grammar G for 
the language anbnc n. We use primitive types B = 
{b, c, x, y, z} and define the lexical map for E = 

98 

{a, b, c} as follows: 

l(a) := { x/ (c  ---o (b -o  x)), x l (c  ---o (b -o y)) } 
= )41 = A 2  

----CI = C2 

The distinguished primitive type is x• To simplify 
the argumentation, we abbreviate types as indicated 
above• 

Now, observe that  a sequent U =~ x, where U is the 
image of some string over E, only then may have bal- 
anced primitive counts, if U contains exactly one oc- 
currence of each of A2, B2 and C2 (accounting for the 
one supernumerary x and balanced y and z counts) 
and for some number n >_ 0, n occurrences of each 
of A1, B1, and C1 (because, resource-oriented speak- 
ing, each Bi and Ci "consume" a b and c, resp., and 
each Ai "provides" a pair b, c). Hence, only strings 
containing the same number of a's, b's and c's may 
be produced. Furthermore, due to the Subformula 
Property we know that  in a cut-free proof of U ~ x, 
the mMn formula in abstractions (right rules) may 
only be either c -o  (b --o X) or b -o  X, where 
X E {x,y}, since all other implication types have 
primitive antecedents. Hence, the LHS of any se- 
quent in the proof must be a subsequence of U, with 
some additional b types and c types interspersed. 
But then it is easy to show that  U can only be of 
the form 

Anl, A2, B~, B2, C~, C2, 

since any / connective in U needs to be introduced 
via ( /L).  

It remains to be shown, that  there is actually a proof 
for such a sequent• It is given in Figure 3. 

The sequent marked with * is easily seen to be deriv- 
able without abstractions. 

A remarkable point about SDL's ability to cover this 
language is that  neither L nor LP can generate it. 
Hence, this example substantiates the claim made in 



(Moortgat 94) that  the inferential capacity of mixed 
Lambek systems may be greater than the sum of 
its component parts. Moreover, the attentive reader 
will have noticed that  our encoding also extends to 
languages having more groups of n symbols, i.e., to 
languages of the form n n n al a2 . . .  a k • 

Finally, we note in passing that  for this grammar the 
rules ( / R )  and ( \R)  are irrelevant, i.e. that  it is at 
the same time an SOL- grammar.  

3 NP-Completeness  of the Parsing 
Problem 

We show that the Parsing Problem for SDL- 
grammars is NP-complete by a reduction of the 
3-Partition Problem to it. 6 This well-known NP- 
complete problem is cited in (GareyJohnson 79) as 
follows. 

Instance: Set ,4 of 3m elements, a bound N E 
Z +, and a size s(a) E Z + for each 
a E `4 such that  ~ < s(a) < ~- and 
~ o ~  s ( a )  = mN. 

Question: Can `4 be partit ioned into m disjoint 
sets ` 4 1 , ` 4 2 , . . . , A m  such that,  for 
1 < i < m, ~ a e . a  s(a) = N (note 
that each `4i must 'therefore contain 
exactly 3 elements from `4)? 

Comment: NP-complete in the strong sense. 

Here is our reduction. Let F = (`4, m , N , s )  be 
a given 3-Partition instance. For notational conve- 
nience we abbreviate ( . . . ( ( A / B I ) / B ~ ) / . . . ) / B n  by 
A / B ~  • . . . •  B2 • B1 and similarly B ,  -o  ( . . .  (B1 --o 
A ) . . . )  by Bn • . . .  • B2 • B1 --o A,  but note that  this 
is just an abbreviation in the product-free fragment. 
Moreover the notation A k stands for 

A o A o  . . . o A  

k t~mes 

We then define the SDL-grammar G r  = (~, ~ ,  bs, l) 
as follows: 

p, : =  {v, wl , . . . ,  warn} 
5 t" := all formulae  over pr imi t ive  types 

m b B = { a , d } U U i = , {  i,c,:} 
bs :--= a 

• 

for l < i < 3 r n - l :  

l(wi) := UJ.<./<m d / d  • bj • c: (~') 

6A similar reduction has been used in (LincolnWin- 
kler 94) to show that derivability in the multiplicative 
fragment of propositional Linear Logic with only the con- 
nectives --o and @ (equivalently Lambek calculus with 
permutation LP) is NP-complete. 
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The word we are interested in is v wl  w 2 . . . w 3 m .  
We do not care about other words that  might be 
generated by Gr .  Our claim now is that  a given 
3-Partition problem F is solvable i f  a n d  o n l y  i f  
v wl  . . .  w3m is in L(Gr) .  We consider each direction 
in turn. 

L e m m a  5 ( S o u n d n e s s )  I f  a 3-Part i t ion problem 
F = ( A , m , N , s )  has a solution, then v w l . . . w 3 m  is 
i n / ( G r ) .  

P r o o f .  We have to show, when given a solution to F, 
how to choose a type sequence U ~ l ( v w l . . . w z m )  
and construct an SDL proof for U ==~ a. Suppose 
`4 = {a l , a2 , . . . , a3m} .  From a given solution (set 
of triples) A1,`4~, . . .  ,-Am we can compute in poly- 
nomial time a mapping k that  sends the index of 
an element to the index of its solution triple, i.e., 
k(i)  = j iff ai e `4j.  To obtain the required sequence 
U, we simply choose for the wi terminals the type 

• cS(a3"~) • c ~("~) (resp. d/bk(3m) k(3m) for W3m). d i d  • bk(i) k(i) 
Hence the complete sequent to solve is: 

N d) a / ( b  3 • b  3 • . . . • b 3 m  a c  N • c  N • . . . • c  m - o  

d i d  • bko) • %(1) 

c S ( a 3 , . - 1 )  (*) d i d  • bk(3m-1) • k(am-1) 

dlb • cS(a3") / k(3m) k(zm) 

Let a /Bo ,  B 1 , . . . B 3 m  ~ a be a shorthand for (*), 
and let X stand for the sequence of primitive types 

c~(,,~,.) c~(,~.,,-~) c~(,~,) bk(3m), k(3m),bk(3m-l), k ( 3 , ~ _ l ) , . . . b k o ) ,  k(1)" 

Using rule ( / L )  only, we can obviously prove 
B1, . . . B3m , X ::~ d. Now, applying (--o R)  3m + N m 
times we can obtain B1 , . . .B3m =~ B0, since there 
are in total, for each i, 3 bi and N ci in X. As final 
step we have 

BI , . . .B3m ~ B0 a ~ a 
a /Bo ,  B I , . . .  B3m ~ a ( / L )  

which completes the proof. [] 

L e m m a  6 ( C o m p l e t e n e s s )  Let F = ( .4 ,  m ,  N ,  s )  
be an arbitrary 3-Part i t ion problem and G r  the cor- 
responding S D L - g r a m m a r  as defined above. Then F 
has a solution, i f  v w l . . .  w3m is in L(Gr) .  

P r o o f .  Let v w l . . .  W3m 6 L(Gr )  and 

N d), B1, .  • • Bsm ~ a a/(b? . . . . . e m  -o  

be a witnessing derivable sequent, i.e., for 1 < i < 
3m, Bi E l(wi) .  Now, since the counts of this se- 
quent must be balanced, the sequence B 1 , . . . B 3 m  



must contain for each 1 _< j < m exactly 3 bj and 
exactly N cj as subformulae. Therefore we can read 
off the solution to F from this sequent by including 
in Aj (for 1 < j < m) those three ai for which Bi 
has an occurrence of bj, say these are aj(1), aj(2) and 
aj(3). We verify, again via balancedness of the prim- 
itive counts, that  s(aj(1)) ÷ s(aj(2)) + s(aj(3))  = N 
holds, because these are the numbers of positive and 
negative occurrences of cj in the sequent. This com- 
pletes the proof. [] 

The reduction above proves NP-hardness of the pars- 
ing problem. We need strong NP-completeness of 
3-Partition here, since our reduction uses a unary 
encoding. Moreover, the parsing problem also lies 
within NP, since for a given grammar G proofs are 
linearly bound by the length of the string and hence, 
we can simply guess a proof and check it in polyno- 
mial time. Therefore we can state the following: 

T h e o r e m  7 The parsing problem for SDI_ is NP- 
complete. 

Finally, we observe that  for this reduction the rules 
(/R) and ( \R)  are again irrelevant and that  we can 
extend this result to SDI_-. 

4 C o n c l u s i o n  

We have defined a variant of  Lambek's original cal- 
culus of types that  allows abstracted-over categories 
to freely permute. Grammars  based on SOl- can 
generate any context-free language and more than 
that.  The parsing problem for SD[, however, we 
have shown to be NP-complete. This result indi- 
cates that  efficient parsing for grammars that  al- 
low for large numbers of unbounded dependencies 
from within one node may be problematic, even in 
the categorial framework. Note that  the fact, that  
this problematic case doesn't show up in the correct 
analysis of normal NL sentences, doesn't mean that  
a parser wouldn't  have to try it, unless some arbi- 
trary bound to that  number is assumed. For practi- 
cal grammar engineering one can devise the mot to  
avoid accumulation of unbounded dependencies by 
whatever means. 

On the theoretical side we think that  this result for 
S01 is also of some importance, since SDI_ exhibits 
a core of logical behaviour that  any (Lambek-based) 
logic must have which accounts for non-peripheral 
extraction by some form of permutation.  And hence, 
this result increases our understanding of the nec- 
essary computational properties of such richer sys- 
tems. To our knowledge the question, whether the 
Lambek calculus itself or its associated parsing prob- 
lem are NP-hard, are still open. 
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