
PARALLEL MULTIPLE CONTEXT-FREE GRAMMARS, FINITE-STATE
TRANSLATION SYSTEMS, AND POLYNOMIAL-TIME RECOGNIZABLE

SUBCLASSES OF LEXICAL-FUNCTIONAL GRAMMARS

Hiroyuki Seki t t Ryuichi Nakanishi t Yuichi Kaji t
Sachiko Ando t Tadao Kasami $t

t Department of Information and Computer Sciences, Faculty of Engineering Science, Osaka University
1-1 Machikaneyama, Toyonaka, Osaka 560, Japan

:~ Graduate School of Information Science, Advanced Institute of Science and Technology, Nara
8916-5 Takayama, Ikoma, Nara 630-01, Japan

Internet: seki@ics.es.osaka-u.ac.jp

A b s t r a c t

A number of grammatical formalisms were intro-
duced to define the syntax of natural languages.
Among them are parallel multiple context-free
grammars (pmcfg's) and lexical-functional gram-
mars (lfg's). Pmcfg's and their subclass called
multiple context-free grammars (mcfg's) are nat-
ural extensions of cfg's, and pmcfg's are known
to be recognizable in polynomial time. Some sub-
classes of lfg's have been proposed, but they were
shown to generate an AlP-complete language. Fi-
nite state translation systems (fts') were intro-
duced as a computational model of transforma-
tional grammars. In this paper, three subclasses
of lfg's called nc-lfg's, dc-lfg's and fc-lfg's are
introduced and the generative capacities of the
above mentioned grammatical formalisms are in-
vestigated. First, we show that the generative
capacity of fts' is equal to tha t of nc-lfg's. As
relations among subclasses of those formalisms,
it is shown that the generative capacities of de-
terministic fts', dc-lfg's, and pmcfg's are equal to
each other, and the generative capacity of fc-lfg's
is equal to that of mcfg's. It is also shown that
at least one Af79-complete language is generated
by fts'. Consequently, deterministic fts', dc-lfg's
and fc-lfg's can be recognized in polynomial time.
However, fts' (and nc-lfg's) cannot, if P ¢ AfT 9.

1 I n t r o d u c t i o n
A number of grammatical formalisms such as
lexical-functional grammars (Kaplan 1982), head
grammars (Pollard 1984) and tree adjoining
grammars (Joshi 1975)(Vijay-Shanker 1987) were
introduced to define the syntax of natural lan-
guages. On the other hand, there has been
much effort to propose well-defined computa-
tional models of transformational grammars. One
of these is the one to extend devices which oper-
ate on strings, such as generalized sequential ma-
chines (gsm's) to devices which operate on trees.
It is fundamentally significant to clarify the gen-
erative capacities of such grammars and devices.

Parallel multiple context-free grammars (pm-
cfg's) and multiple context-free grammars (mcfg's)
were introduced in (Kasami 1988a)(Seki 1991) as
natural extensions of cfg's. The subsystem of lin-
ear context-free rewriting systems (Icfrs') (Vijay-
Shanker 1987) which deals with only strings is
the same formalism as mcfg's. The class of cfl's
is properly included in the class of languages gen-
erated by pmcfg's, which in turn is properly in-
cluded in the one generated by mcfg's. The class
of languages generated by pmcfg's is properly
included in that of context-sensitive languages
(Kasami 1988a). Pmcfg's have been shown
to be recognized in polynomial time (Kasami
1988b)(Seki 1991).

A tree transducer (Rounds 1969) takes a tree
as an input, starts from the initial state with its
head scanning the root node of an input. Ac-
cording to the current state and the label of the
scanned node, it transforms an input tree into
an output tree in a top-down way. A finite state
translation system (fts) is a tree transducer with
its input domain being the set of derivation trees
of a cfg (Rounds 1969)(Thatcher 1967). A num-
ber of equivalence relations between the classes
of yield languages generated by fts' and other
computational models have been established (En-
gelfriet 1991)(Engelfriet 1980)(Weir 1992). Espe-
cially, it has been shown that the class of yield
languages generated by finite-copying fts' equals
to the class of languages generated by lcfrs' (Weir
1992), hence by mcfg's.

In lexical-functional grammars (Ifg's) (Ka-
plan 1982), associated with each node v of a
derivation tree is a finite set F of pairs of at-
tr ibute names and their values. F is called the f-
structure of v. An lfg G consists of a cfg Go called
the underlying cfg of G and a finite set Pfs of
equations called functional schemata which spec-
ify constraints between the f-structures of nodes
in a derivation tree. Functional schemata are at-
tached to symbols in productions of Go. It has
been shown in (Nakanishi 1992) that the class of
languages generated by lfg's is equal to that of re-

130

cursively enumerable languages even though the
underlying cfg's are restricted to regular gram-
mars. In (Gazdar 1985)(Kaplan 1982)(Nishino
1991), subclasses of lfg's were proposed in order
to guarantee the recursiveness (and/or the effi-
cient recognition) of languages generated by lfg's.
However, these classes were shown to generate an
A/P-complete language (Nakanishi 1992).

In this paper, three subclasses of lfg's called
nc-lfg's, dc-lfg's and fc-lfg's are proposed, two
of which can be recognized in polynomial time.
Moreover, this paper clarifies the relations among
the generative capacities of pmcfg's, fts' and these
subclasses of lfg's.

In nc-lfg's, a functional schema either speci-
fies the vMue of a specific at tr ibute, say atr, im-
mediately (Tart = val) or specifies tha t the value
of a specific a t t r ibute of a node v is equal to the
whole f-structure of a child node of v (Tatr =l) .

An nc-lfg is called a dc-lfg if each pair of rules
P] : A --~ aa and P2 : A --~ a2 whose left-hand
sides are the same is inconsistent in the sense
that there exists no f-structure tha t locally sat-
isfies both of the functional schemata of Pl and
those of p2. Intuitively, in a dc-lfg G, for each pair
(tl, t2) of derivation trees in G, if the f-structure
and nonterminal of the root of tl are the same as
those of t2, then t] and t2 derive the same termi-
nal string.

Let G be an nc-lfg. A multiset M of nonter-
minals of G is called an SPN multiset in G if the
following condition holds:

Let M = { { A 1 , A 2 , ' . . , A n } } be a mul-
tiset of nonterminals where different Ai's
are not always distinct. There exist a
derivation tree t and a subset of nodes
V = {v],v2, . . . ,v ,~} of t such tha t the
label o f v i is Ai (1 < i < n) and the f-
structures of vi's are the same with each
other by functional schemata of G.

If the number of SPN multisets in G is finite, then
G is called an fc-lfg.

Our main result is that the generative capac-
ity of nc-lfg's is equal to that of fts'. As relations
among proper subclasses of the above mentioned
formalisms, it is shown that the generative capac-
ities of dc-lfg's, deterministic fts' and pmcfg's are
equal to each other, and the generative capacity
of fc-lfg's is equal to that of mcfg's. It is also
shown that a (nondeterministic) fts generates an
Af:P-complete language.

2 Parallel Mult ip le Context-Free
Grammars

A parallel multiple context-free grammar (pmcfg)
is defined to be a 5-tuple G = (N, T, F, P, S)
which satisfies the following conditions (G1)
through (Gh) (Kasami 1988a)(Seki 1991).

(G 1) N is a finite set of nonterminal symbols. A
positive integer d(A) is given for each nonter-
minal symbol A • N.

(G 2) T is a finite set of terminal symbols which
is disjoint with N.

(G 3) F is a finite set of functions satisfying the
following conditions. For a positive integer d,
let (T*) a denote the set of all the d-tuples of
strings over T. For each f • F with arity
a(f) , positive integers r (f) and di(f) (1 _<
i < a(f)) are given, and f is a total function
from (T*) dl(:) x (T*) d2(f) ×. . . x (T*)da(f) (1) to

I T*) ' (:) which satisfies the following condition
fl). Let

• i = (z i l , z i 2 , . . . , zid,(S))

denote the i th argument of f for 1 < i < a(f).

(f l) For 1 < h < r (f) , the hth component of
f , denoted by f[h], is defined as;

f[h] [Xl, f~2,-" -, Xa(f)] = OCh,OX#(h,O)rl(h,o)Oth,1
• .'ah,nh_lXu(h,nh_l)n(h,nh_Dah,n~ (2.1)

where ah,k • T* for 0 < k <_ nh, 1 <
#(h , j) <_ a(f) and 1 <_ ~(h,j) <_ dt~(h,j)(f)
for O ~ j ~_ nh --1.

(G 4) P is a finite set of productions of
the form A ---* f[A1,A2, . . . ,Aa(y)] where
A, Aa ,A2 , . . . ,Aa (/) • N, f • F, r (f) = d(A)
and di(f) = d(Ai) (1 < i < a(f)). I f a (f) = 0,
i.e., f • (T*) r(f), the production is called a
terminating production, otherwise it is called
a nonterminating production.

(G h) S • N is the initial symbol, and d(S) = 1.

If all the functions of a pmcfg G satisfy the
following Right Linearity condition, then G is
called a multiple context-free grammar (mcfg).

[Righ t L i n e a r i t y] For each xlj, the total num-
ber of occurrences of xij in the right-hand
sides of (2.1) from h = 1 through r (f) is at
most one.

The language generated by a pmcfg G =
(N, T, F, P, S) is defined as follows. For A • N,
let us define LG(A) as the smallest set satisfying
the following two conditions:

(L1) If a terminat ing production A --* & is in P ,
then ~ • LG(A).

(L2) If A --~ f[A1,A2, . . . ,Aa(y)] • P and
(~i • LG(Ai) ~1 < i < a(f)) , then
f[~1,~2,''', O~a(f)] • LG(A) .-

131

Define L(G) a=La(S). L(G) is called the par-
allel multiple context-free language (pmcfl) gen-
erated by G. If G is an mcfg, L(G) is called the
multiple context-free language (mcfl) generated by
G.

E x a m p l e 2 .1(Kasami 1988a): Let G E X 1 ~--- (N,
T , F , P , S) , N = {S}, T = { a } , F = { f ~ , f } , P =
{r] : S --~ fa, ro : S --* f[S]}, where f~ =
a , f [(x)] = xx. GEx l is a pmcfg but is not an
mcfg since the function f does not satisfy Right
Linearity. The language generated by GEx~ is
{a 2" In > 0}, which cannot be generated by any
mcfg (see Lemma 6 of (Kasami 1988a)).

The empty string is denoted by ¢.

E x a m p l e 2.2: Let GEx2 = (N, T, F, P, S) be
a pmcfg, where N = {S,A) , T = {a,b}, F =
{g[(Xl,X2)] ---- XlX2, fa[(Xl,X2)] -~ (xla , x2a),

= y, = and, P =
- --* {Po : S g[A], Pl : A ---* f~[A], Pz : A --*
fb[A], P3 : A ---* f~}. Note tha t GEx2 is an mcfg.
L (GEx2) = {ww I w E {a, b)*}.

L a m i n a 2 .1(Kasami 1988b)(Seki 1991): Let C
be a pmcfg. For a given string w, it is decidable
whether w E L (G) or not in t ime polynomial of
I~1, where I~1 denotes the length of w.

3 F in i t e S ta te T r a n s l a t i o n S y s t e m s
A set ~ of symbols is a ranked alphabet if, for
each cr E ~, a unique non-negative number p(c~)
is associated, p(cr) is the rank of ~. For a set X ,
we define free algebra T~.(X) as the smallest set
such that;

* T~: (X) includes X.

• If p(~) = 0 for cr E ~, then ~ E T~(X).

• If p(o') = n (> 1) for a E, ~ and t l , . . . , E
7-~.(X), then t-= or(t1,.., tn) E T~(X) . t~ is
called the root symbol, or shortly, the root of
t.

Hereafter, a te rm in 7"~ (X) is also called a tree,
and we use terminology of trees such as subtree,
node and so on.

Let G - (N, T, P, S) be a context-free gram-
mar (cfg) where N, T, P and S are a set of non-
terminal symbols, a set of terminal symbols, a
set of productions and the initial symbol, respec-
tively. A derivation tree in cfg G is a term defined
as follows.

(T 1) Every a E T is a derivation tree in G.

(T 2) Assume tha t there are a production p :
A ---* X 1 . . . X , ~ (A E N, X I , . . . , X n E N U T)
in P and n derivation trees t l , . . . t ,~ whose
roots are labeled with P l , . . . , pn, respectively,
and

• i fXi E N, then pl is a production Xi --~ " ",
whose left-hand side is Xi, and

• i f X i E T , t h e n p i = t i = X i .

Then p (t l , . . . , t,~) is a derivation tree in G.

(T 3) There are no other derivation trees.

Let T~(G) be the set of derivation trees in G, and
7¢s(G) C 7¢(G) be the set of derivation trees
whose root is labeled with a production of which
left-hand side is the initial symbol S. Clearly,
T~s(G) C_ T~(¢) holds. Remark tha t 7¢s(G) is a
multi-sorted algebra, where the nonterminals are
sorts, and the terminals and the labels of produc-
tions are operators.

A tree transducer (Rounds 1969) defines a
mapping from trees to trees. Since we are mainly
interested in the string language generated by
a tree transducer, a "tree-to-string" version of
transducer defined in (Engelfriet 1980) is used in
this paper. For sets Q and X, let

Q[X]~{q[x] l q e Q,x e X).

A tree-to-string transducer (yT-transducer
or simply transducer) is defined to be a 5-tuple
M = (Q, ~., A, q0, R) where (1) Q is a finite set of
states, (2) ~ is an input ranked alphabet, (3) A is
an output alphabet, (4) q0 E Q is the initial state,
and (5) R is a finite set of rules of the form

q[c~(xl,.. . , xn)] --* v

where q e Q, e = and v e (Z uQ[{xl,
. . . , xn}])*. If any different rules in R have differ-
ent left-hand sides, then M is called deterministic
(Engelfriet 1980).

A configuration of a yT- t ransducer is an ele-
ment in (A U Q[T~.(¢)])*. Derivation of M is de-
fined as follows. Let t ----- a lq[a(t l , . . . , tn)]a2 be
a configuration where a l , a2 E (A U Q[T~.(¢)])*,
q E Q, ~ E ~, p(a) = n and Q , . . . , t n E T~.(¢).
Assume that there is a rule q[cr (x l , . . . , Xn)] --* V
in R. Let t ~ be obtained from v by subst i tut ing
t] , . . . , tn for x l , . . . , xn, respectively, then we de-
fine t ~ M ultra2 • Let : : ~ be the reflexive and
transit ive closure of :=~. If t =¢.~ t ~, then we say
t ~ is derived from t. If there is no w E A* such
tha t t ~ w, then we say no output is derived
from t.

A tree-to-string finite state translation sys-
tem (yT-fts or fts) is defined by a yT- t ransducer
M and a cfg G, written as (M , G) (Rounds
1969)(Thatcher 1967).

We define y L (M , G) , called the yield lan-
guage generated by yT-fts (M, G), as

yL(M,a)~{w e A* 13t e ~s(a),qo[t] ~*M w}

where A is an output a lphabet and q0 is the initial
s tate of M. An fts is called deterministic (Engel-
friet 1980) if the transducer M is deterministic.

132

Engelfriet in t roduced a subclass of fts ' called
finite-copying fts ' as follows (Engelfriet 1980):
Let (M , G) be an fts with ou tpu t a lphabet A
and initial state q0, t be a derivation tree in G
and t ~ be a subtree of t. Assume tha t there is
a derivation a : q0[t] = ~ w. Now, delete from
this derivation a all the derivation steps which
operates on t t. This leads to the following new
derivation which keeps t ~ untouched;

! *
: q0[t]

w h e r e w i • A* f o r l < i < n + l .
The state sequence of t ! in derivation a is

defined to be (q i~ , . . . , q i .) . Derivat ion a has
copying-bound k if, for every subtree of t, the
length of its state sequence is at most k. An fts
(M, G) is a finite-copying, if there is a constant
k and for each w • yL (M, G), there is a deriva-
t ion tree t in G and a derivation q0[t] ~ w with
copying-bound k. I t is known tha t the determin-
ism does not weaken the generat ive capaci ty of
finite-copying fts ' (Engelfriet 1980).

We note tha t an fts (M, G) can be considered
to be a model of a t ransformat ional g rammar : A
deep-s t ructure of a sentence is represented by a
derivation tree of G, and M can be considered to
t ransform the deep-s t ructure into a sentence (or
its surface structure) .

4 S u b c l a s s e s o f L e x i c a l - f u n c t i o n a l
g r a m m a r s

A simple subclass of lfg's, called r-lfg's, is in-
t roduced in (Nishino 1992), which is shown to
generate all the recursively enumerable languages
(Nakanishi 1992). Here, we define a nondeter-
ministic copying Ifg (nc-lfg) as a proper subclass
of r-lfg's. An nc-lfg is defined to be a 6-tuple
G = (N, T, P, S, N~t~, A~tr~) where: (1) N is a fi-
nite set of nonterminal symbols, (2) T is a finite
set of terminal symbols, and (3) P is a finite set of
annotated productions. Sometimes, a nonterminal
symbol, a terminal symbol and an anno ta ted pro-
duct ion are abbrevia ted as a nonterminal, a ter-
minal and a production, respectively, i 4) S • N
is the initial symbol, (5) Nat~ is a finite set of at-
tributes, and (6) A~tm is a finite set of atoms.

An equat ion of the form T atr =~ (atr •
Nat,) is called an S (structure synthesizing)
schema, and an equat ion of the form T atr .-=
val (atr • Natr, val • A~tm) is called a V (im-
mediate value) schema. A functional schema is
either an S schema or a V schema.

Each product ion p • P has the following
form:

p : A -~ B1 B2 . . . Bq, (4.2)
E v ESl Es2 "" Esq

where A • N, B 1 , B 2 , . " , B q • N U T . E v is a
finite set of V schemata and Esj (1 _< j <_ q) is
a singleton of an S schema. A --~ B1B2". . Bq in

(4.2) is called the underlying production of p. Let
P0 be the set of all the underlying produc t ions of
P . Cfg Go = (N, T, P0, S) is called the underlying
c/g o/ C.

An f-structure of G is recursively defined as a
set F -=- {(atrl, call), (atr2, val2>,..., latrk, valk)}
where atr], atr2,. . . , and atrk are dist inct at-
tr ibutes, and each of vail, val2,." ", and valk is an
a t o m or an f-structure. We say tha t vali (1 < i <
k) is the value of atri in F and write F.atri -= vali.

For a cfg G' = (N ~, T' , P~, S~), derivation re-
lations in G ~, denoted by A ::~a' a and A =~* G ~

(A • N ' , a • (N ' u T ')*) are defined in the
usual way.

Suppose Go = i N, T, P0, S) is the underlying
cfg of an nc-lfg G = (N, T, P, S, Nat,, Aa,m). Let
t be a derivation tree in Go. (In 4.,7. and 8., the
label of a leaf of a derivation tree is allowed to be
a nonterminal .) Every internal node v in t has
an f-structure, which is called the f -s t ructure of
v and wri t ten as Fv. If an underlying product ion
P0 : A ~ B I " . B q • P0 is applied at v, then v is
labeled with either P0 itself, or p (• P) of which
P0 is the underlying product ion, if necessary. Let
vi be the i th child o f v (1 < i < q). We define
the values of bo th sides of a functional schema
a t tached to the symbol in p (on v) as follows:

* the value of T atr(atr • Nat,) is Fv.atr,

• the value of + in an S schema is Fv~ if the
S schema is a t t ached to the i(1 _< i _< q)th
symbol in the r igh t -hand side of p, and

• the value of a tom atm in a V schema is arm
itself.

We say tha t v satisfies functional schemata if for
each functional schema lls = rib of p, the val-
ues of lls and r/s on v are defined and equals
with each other. In this case, it is also said tha t
Fv locally satisfies the functional schemata of p.
N O T E : Because the meaning of a V schema is in-
dependent of the posit ion where it is annota ted ,
V schemata are a t t ached to the left-hand side in
this paper.

For a nonterminal A E N and a sentential
form a E i N t_J T)*, let t be a derivation tree of
a derivation A =** Go a. I f all internal nodes in
t satisfy functional schemata , then a is said to
be derived from A and wri t ten as A =~* . a a In
this case, the tree t is called a derivation tree of
A:=~* G a. We also call t a derivation tree (of a)
in G simply.

The language generated by an nc-lfg G, de-
noted by LIG), is defined as L(G) = {w e
T * [S ~ * w I. G
N O T E : In the definition of nc-lfg, even if

"Esj (1 < j < q) is a ' s ing le ton of an S
schema"

is replaced with

133

Fcount :[COunt :[COunt : e]]~ S

a b c

~otmt :[count : eli

%°

Figure 1: A derivation tree of aabbccdd

" E s j (1 < j < q) is either a singleton of
an S schema or an empty set",

the generative capacity of nc-lfg is not changed.

E x a m p l e 4.1: Let G~xs = (N, T, P, S, Nat, ,
A~tm) be an nc-lfg where N = {S ,A,B} , T =
{a, b,c, d}, Nat~ = {count}, Aatrn = {e}, and pro-
ductions in P are;

pl l : s {T coA, t=l _ {T c o u B t = l } '

P12 : A ~ a { T couAt = ~ } b,

p ~ : B - ~ ~ iT couBtM} d,
P14 : {T c o A t e} ~ ~

P " : {T e o u ~ t = e} -~ ~

The language generated by GExs is L(GExs) =
{a'~bncnd n In > 0}. Figure 1 shows a derivation
tree of S ~ * aabbccdd in GEXS. GEX3

E x a m p l e 4.2: Let Gsx4 = (N, T, P, S, N, t , ,
A~tm) be an nc-lfg where g = {S}, T = Ca},
N , t , = {log}, A,tm = {e}, and productions in P
are;

: s iT _ {T J = l } ,

p22 : { T loS= e } ~ a.

The language generated by GEX4 is L(GEx4) =
{a2"]n > 0}.

E x a m p l e 4.3: Let GEX5 = (N, T, P, S, Na~,,
Aatm) be an nc-lfg where N = { S , S ' , A , B } ,
T = {the, woman, men, and, drinks, smoke, respec-
tively}, N . t , = {hum, list}, A . tm = {sg,pl , n i l} ,

and productions in P are;

P3o : S --* S t respectively
{T list = l }

P31 :

P32 :

p33 :

p34 :

P 3 5 :

S~---* the woman and A drinks and B
{Tnum=sg} {Tl is t=l} {Tlist=l}'

S~--* the men and A smoke and 13
{Tnum=pl} {Tlist=~} {Tlist=~}'

A ~ the woman and A
{ T n u m = sg} { r list =. [} '

A ~ the men and A
{ T num = pl } {T list = ~ } '

A ~ the woman
T n u m = sg
T list = ni l)

p3~ : A ---. the men
T num = pl
T list = ni l)

pz7 : B --* drinks and B
{T n~,m = ~g} {T l ist =~}'

P38 : B --~ smoke and B
{ T hum = pl } iT list = l } '

p39 : B ---. drinks
{ T num = sg

T list = ni l)
p310 : B ---+ smoke

T hum = pl
T list = ni l)

G~xs generates "respectively" sentences such as
"the woman and the men drinks and smoke re-
spectively".

For a set X of functional schemata, X is con-
sistent iff neither the following (1) nor (2) holds.

(1) {T atr = Call, T atr = val2 } c X

for some atr E Na, , and some vall,val2 E
Aatm such that call # val2.

(2) iT atr = val, T atr =~} _C X

for some atr E Nat~ and some val E Aatm.

Productions p l , ' ' ' , P n are consistent iff
Ul<i<_n E (0 is consistent where E (/) is the set of
functional schemata of Pl. If productions are not
consistent then they are called inconsistent.

An nc-lfg G is called a deterministically copy-
ing Ifg (dc-lfg), if any two productions A --+ a l
and A --+ a2 whoes left-hand sides are the same
are inconsistent.

Suppose G = (N , T , P, S, Nat,, Aatm) is an
nc-lfg. Let { { e l , e 2 , - ' . , e n } } denote the multi-
set which consists of elements el, e2," • •, en that
are not necessarily distinct. An S P N (SubPhrase
Nonterminal) multiset in G is recursively defined
as the following 1 through 3:

1. {{S}} is an SPN multiset.

2. Suppose that {{A1, A 2 , ' " , A h } } (A1, A2 , ' " ",
Ah E N) is an SPN multiset. Let A1 --~ a l ,

1 3 4

• .', Ah ~ O:h be consistent productions. For
each atr E Nat,, let MS~,~ be the multi-
set consisting of all the nonterminals which
appear in a l , ' ' ' , a h and have an S schema
T atr --l. If MSat~ is not empty, then MS~t~
is also an SPN multiset.

3. There is no other SPN multiset.

An nc-lfg such that the number of SPN multisets
in G is finite is called a finite-copying lfg (fc-lfg).

E x a m p l e 4.4: Consider GEX s in Example 4.1.
Productions /912 and P14 are inconsistent with
each other and so are P13 and Ply. SPN multisets
in GEX3 a r e {{S}} and {{A,B)) . Hence GEXS
is a dc-lfg and is an fc-lfg. GEX5 is also a dc-lfg
and is an fc-lfg by the similar reason. Similarly,
GEX4 in Example 4.2 is a dc-lfg. SPN multisets
in C~x~ are {{S}}, {{S, S}), {{S, S, S, S)},
Hence GEx4 is not an fc-lfg.

NOTE : L (GExs) is generated by a tree adjoining
grammar. Suppose that a sentence has three or
more phrases which have co-occurrence relation
like the one between the subject phrase and the
verb phrase in the "respectively" sentence. Tree
adjoining grammars can not generate such syntax
while fc-lfg's or dc-lfg's can, although the authors
do not know a natural language which has such
syntax so far.

By Lemma 2.1 and Theorem 8.1, fc-lfg's are
polynomial-time recognizable. Hence, it is desir-
able that whether a given lfg G is an fc-lfg or not
is decidable. Fortunately, it is decidable by the
following lemma.

L e m m a 4.1: For a given nc-lfg G, it is decid-
able whether the number of SPN multisets in G
is finite or infinite.
Proof. The problem can be reduced to the
boundedness problem of Petri nets, which is
known to be decidable (Peterson 1981).

5 O v e r v i e w o f t h e Resul t s
Let ~'nc-lfg, ~'dc-lfg and ~-'fc-lfg denote the classes
of languages generated by nc-lfg's, dc-lfg's and
fc-lfg's, respectively, and let y~#, , Y~.d-fts and
YElc-#s denote the classes of yield languages gen-
erated by fts', deterministic fts' and finite-copying
fts', respectively. Let l:vmcla and £:mcfg be the
classes of languages generated by pmcfg's and
mcfg's, respectively. Also let £:ta9 be the class of
language generated by tree adjoining grammars.

Inclusion relations among these classes of
languages are summarized in Figure 2. An equiv-
alence relation *1 is shown in (Weir 1992). Re-
lations *2 are new results which we prove in this
paper. We also note that all the inclusion rela-

tions are proper; indeed,

0 l {a la2a3a41n >_ E D - E
a a 2 n n _ a2m_la2m [n > E C - D for m > 3,

(by (Vijay-Shanker 1987).)
{a 2" In > 0} e S - C,
(by (Kasami 1988a)(Seki 1991).)

A relation B ~ A is shown in (Engelfriet 1980). By
Lemma 2.1, all languages in the region enclosed
with the bold line are recognizable in polynomial
time. On the other hand, it is shown in this
paper that Unary-3SAT, which is known to be
A/P-complete (Nakanishi 1992), is in A. Hence,
if ~ ~ A/~, then Unary-3SAT E A - B and the
languages generated by fts' (or equivalently, nc-
lfg's) are not recognizable in polynomial time in
general.

6 G e n e r a t i v e C a p a c i t y o f f ts '
6.1 D e t e r m i n i s t i c f t s '
Here, the proof of an inclusion relation yEd-#s C_
/:vmc/g is sketched.

Let (M, G) be a deterministic yT-fts where
M = (Q , ~ , A , q l , R) and G = (N , T , P , S) . , We
assume that Q = {ql , - - - ,q l} , T = { a l , . . . an}
and P = {P l , . . . ,Pm} . Since the input for M is
the set of derivation trees of G, we assume that

= {Pl , . - . ,Pro, a l , . . . , an} without loss of gen-
erality.

We will construct a pmcfg G I -=- (N ~, T ~, F',
P' , S') such that y L (M , G) ---- L(G') N A*. Since
/:pmc/g is closed under the intersection with a
regular set (Kasami 1988a)(Seki 1991), it follows
that y L (U , G) E £'pmclg. Let T ' = A td {b} where
b is a newly introduced symbol and let

N ' = { S ' , R I , . . . , R m , A I , . . . , A n }

where d(Ri) = d(Aj) = t for 1 < i <_ m and
1 < j <_ n. Productions and functions of G ~ will
be constructed to have the following property.

- - A y~/t, *=2 ~,~c-lfg

- -B ~ £?~:~ .__2 y£~_:,, .__2 £~_,:~

- - c o L - £.~:~ *j y£:~-:. *=2 :-.:o-,:,

_ _ D (2)

- - E - - £cr~

l : ,a~ - -

Figure 2: Inclusion relations between classes of
languages. (1) : The class of language generated
by lcfrs' is equal to C. (2) : The class of language
generated by head grammars is equal to D.

135

P r o p e r t y 6.1: There is (a ~ , . . . ,a~) e LG, (Rh)
(resp. LG,(Ah)) such that

each of a , , , . . . , a s ~ does not contain b, and
every remaining a t , , . . . , a,~ contains b

if and only if there is a derivation tree t of G such
that the root is Ph (resp. ah) and

{ qs, [t] ==>~ c~s~ (1 < j < u)
no output is derived from q,~[t] (1 _< j < v).

D
The basic idea is to simulate the move of tree
transducer M which is scanning a symbol Ph
(resp. ah) with state ql by the ith component of
the nonterminal Rh (resp. Ah) of pmcfg G I. Dur-
ing the move of M, it may happen that no rule
is defined for a current configuration and hence
no output will be derived• The symbol b is intro-
duced to represent such an undefined move ex-
plicitly.

We define RS(X) (X E N tO T) as follows.

{Rh [the left-hand side of Ph is X}
RS(X) = if X E N

{ Ah } if X = ah E T.

Productions and functions are defined as follows.

S t e p 1: For each production Ph : Iio --'*
Y~ " " Yk (Yo ~ N , Y= E N t o T for 1 < u < k)
of cfg G, construct nonterminating produc-
tions

Rh -+ [& , . . . , zk]

for every Z~ E RS(Y~) (1 < u < k), where fph
is defined as follows: For 1 < i < g,

• if the transducer M has no rule whose left-
hand side is qi~ah(Xl , . . . , xk)], then

(6.a)
h • ' '

• if M has a rule
-+

• " ai,n,-lq~(i,,~,_D[x~4~,,,_D] a~,n,, then

f p [i] [• x .. , 5:k] __a ei,ox~,(i,o),7(i,o)ei,] (6.4) h ~ •

• " " Ot-,ni--lglz",ni--l'rl'i,ni--l'Ogi,ni~, (1,) [)

where = (1 < , < k).

(Since M is deterministic, there exists at most
one rule whose left-hand side is qi~h(' " ")] and
hence the above construction is well defined•)

S t e p 2: For each ah E T, construct a terminat-
ing production Ah -"+ fah where f~h is defined
as follows: For 1 < i < i,

• if M has no rule whose left-hand side is
qi[ah], then ~a~[i] ~--b.

• i f M has a rule qi[ah] --+ hi, then f [~&a i .

S t e p 3: For each Rh E RS(S), construct S' --+

/fi~st[Rh] where /fi,st[(x], . . . , x l)] ~ x] . Intu-
itively, the right-hand side of this production
corresponds to the initial configuration, that
is, M is in the initial state ql and scanning
the root symbol Ph of a derivation tree, where
the left-hand side of Ph is the initial symbol
S.

The pmcfg G I constructed above satisfies
Proper ty 6.1. Its proof is found in (Kaji 1992)
and omitted in this paper. By Proper ty 6.1, we
obtain the following lemma.

L e m m a 6 . 1 : y l : d _ f , s C f f . p m c f g . 0
The reverse inclusion relation l:p,~c/g C_

Y~.d-B, can be shown in a similar way, and the
following theorem holds•

T h e o r e m 6.2: yf-.d./,s : E-pmcfg• 0
6.2 N o n d e t e r m i n i s t i c f ts '
In this section, the generative capacity of nonde-
terministic yT-fts ' is investigated, from the view-
point of computational complexity• We have al-
ready shown that Y~.d-~s : ~.pmcfg, and hence
every language in this class can be recognized in
time polynomial of the length of an input string•
Our result here is: there is a nondeterministic fts
that generates an A/'~-complete language• In the
following, a language called Unary -3SAT , which
is ArT'-complete (Nakanishi 1992), is considered,
and then it is shown to belong to yL:/,a.

A Unary -3CNF is a (nonempty) 3CNF in
which the subscripts of variables are represented
in unary. A positive literal xi in a 3CNF is rep-
resented by 1i$ in a Unary-3CNF. Similarly , a
negative literal --xl is represented by 12#. For
example, a 3CNF

(x i v x2 v ~xa) A (xa V ~x] v ~x~)

is represented by a Unary-3CNF

15115111# A I 1 1 5 1 # I i # .

U n a r y - 3 S A T is the set of all satisfiable Unary-
3CNF's.

Next, we construct a nondeterministic yT-fts
(M, G) that generates Unary-3SAT. Define a cfg
G = (N , T , P , S) where N = { S , T , F } , T = {e}
and the productions in P are as follows:

r s s : S - - + S
r sT : S--+ T
r s F : S - + F
"rTT : T--+ T
rTF : T--+ F.

? 'Te : T--+ e
r F T : F - + T
? ' F F : F - - + F

r F e : F - + e

1 3 6

Let M = (Q, E, A, qo, R) where

q = {qo,q~,qt, qa},
~ { r S S , . . . , rFe} ,

z~ = { L ^ , $, # } .

Since there are many rules in R, we will use an ab-
breviated notation. For example, following four
rules

qaIrTelXll-~ 15, q~[rTe(X)] ~ 1#
qdrF~tX)] + 15, qo[rF~(X)] -~ 1 #

are abbreviated as "q~[rT~(X)] = q~[rF~(X)] --*
15 or 1 # ' . By using this notation, the rules in R
are defined as follows.

q0[r~(~)] -~ qo[~] A q0[x]
qo[r~s(~)] -~ q &]

q0[~sr(~)] = q0[~sv(~)] = q~[r~r(~)]
= q~[rSF(X)] --~ qdx]q~[x]q~[x] or

q~[x]qt[x]qa[x] or qa[x]qa[x]qt[x]
q,[r**(x)] = q & . ~ (~)] -* lq,[~] or 1~

q,[rr ,(~)] ~ 1,
q ,[r~,(~)] = q , [r ~ (~)] -* lq,[x] or 1#

q,[rF~(x)]---+ 1#
qo[rr~(~)] = qo[rr~(~)] = qoirF~(~)]

= qa[rFF(X)] lqa[X] or 15 or 1#
qo[r~c(x)] = q . [r~ (~)] ++ 1, or 1#.

The readers can easily verify that this yT-fts
generates Unary-3SAT.

7 E q u i v a l e n c e o f f-'nc-lfg a n d Y £ f t s
First, we show £,~c-lfg C_ Y£qt~. For a given nc-
lfg G = (N, T, P, S, Nat,, A~m), an equivalent fts
(M, G I) is constructed in the following way.

Let t be a derivation tree in lfg G and
the f-structure of the root node of t be F =
{(a tr l ,F1) , . . . , (atr,~,Fn)}. F is represented by
a derivation tree r = p ,p (Tl , ' - . , rn) in G', where
ri (1 < i < n) is a derivation tree in G' which rep-
resents Fi recursively. And sp is a set of produc-
tions such that F locally satisfies the functional
schemata of all productions in sp. M transforms
r into the yield of t, i.e., the terminal string ob-
talned by concatenating the labels of leaves, in a
top-down way.
[T R A N S 7.11 Let N = { A 1 , ' " , A m } , S = A1
and Nat, = { a t r l , - . . , atr,~}. Define SP as the set
of all consistent subsets of P.

S t e p 1: G' = (N ' , { d } , P ' , S ') , where N ' =
{S,plsp e S P } U {S'} and

P ' = {p',p : S,p ---* S ' - . . S ' t

u { p ; = ~ . . . : s ' --+ Ss, l,p e s P }

u{p~,m :~s' -+ deC:_/}.

For a derivation tree r in G' and a node v
' is applied, the snbtree rooted by the where p,p

i th child of v represents the value of at t r ibute
atr i.

S t e p 2: M = (Q , E , T , q l ,R) is defined as fol-
lows.

Define Q = {q l , . . . , qm}. A state qj (1 < j _< m)
corresponds to nonterminal A t in N. Define E --

{ d } w h e r e p (p ' . ,) = p (p ~) = ' =

and p(d) = O. And define R by the following (i)
through (iii).

(i) q j ~ ,(x)] -~ qj[x] (1 _< j < m) belongs
to R for each sp • SP.

(ii) Let r be a derivation tree in G '. When plsp
is the production applied at the root of r and
a state of M is q,o, M chooses a production
p whose left-hand side is Auo , if exists, in sp.
NOTE : Since productions in sp are consis-
tent, there is an f-structure, which locally sat-
isfies the functional schemata of all produc-
tions in sp.

For each production p E sp in S P

p : A~o --* a0 A m a l . . . O t L - 1 At, L aL
E v {~ atrv~ =~} . . . {~ atrvL =~}

where A~z E N and al E T*(0 < l < L), the
following rule belongs to R:

q#o~tsp(Xl, , *' ,xn)]
-~ "0q, , [X~,]"I . . -"L-- lq ,~[X,~]~ . (7.5)

(iii) No other rule belongs to R.

Next, Y£~s C_ £~c-zf9 is shown. For a given
fts (M, G), the following algorithm constructs an
nc-lfg G' such that L(G') --- yL(M, G).
[T R A N S 7.2] Suppose that a given fts (M, G) is
G -- (N, T, P, S) and M -- (Q, E, A, ql, R) where
Q = {q l ,q2 , ' " ,qm} . Let n be the maximum
length of the right-hand side of a production in P.
Define an nc-lfg G I = (N', A, P', S I, N~r, Aatm)
as follows.

S t e p 1: N ' = { C [J] I C • N , l g j < m }
u{aI~l la • T, 1 < j <_ m},

S' = S [11,
Nat~ = {atri I1 < i < n} U {rule}, and

Aatm = {PIP is the label of
a production in P}.

A derivation tree t = p (t l , ' " ,th) in G is rep-
resented by an f-structure {(rule, p),(atrl, El),
• ".,(atrh, Fh)} of G' where Fi (1 < i < h) is
an f-structure which represents the subtree ti
recursively.

Each pair of a symbol (either nonterminal or
terminal) X of G and a state qj of M is rep-
resented by a single nonterminal X[J] in G'.

137

S t e p 2: A move when M at state qj reads a
symbol p which is the label of a production
p : C --+ . . . , can be simulated by a production
in G ~ whose left-hand side is C[J]

{T ute = p}"

Formally, the set P~ of productions of G I is con-
structed as follows.

(i) Let p : C --* X1 "" Xh be a production in P
where C E N, Xi E N U T (1 < i < h), and
let:

qj[p(x] , . . . , Xh)]
--~ ajoq,7,, [z~,,,]a j , . . .q ,7 ,z j [X~,,L ']O~jL,

be a rule in R where ~ k E A* (0 < k < Lj) ,
q'Tj~ E Q, and xvj~ e t X l , ' " , X h } (1 < l <
L j).
Then, the following production belongs to P~:

y [r / j l] V[nJLj]
C[J] 7. . .40tjo-~vjl Otjl " '" AI~jLj OtjLj"

{Trute = p) {Tatr , {Tatr j

(ii) Let qj[a] ---* flj be a rule in R where a 6 T
and flj 6 A*. Then the production a[J] --~ flj
belongs to P ' .

(iii) No other production belongs to P ' .

By T R A N S 7.1 and T R A N S 7 . 2 , the fol-
lowing theorem is obtained. A formal proof is
found in (Nakanishi 1993).

T h e o r e m 7.1: f~nc-lfg = Y~'fts.

C o r o l l a r y 7.2: ~'dc-lfg ---- Y~.d-fts.

Proof. In T R A N S 7.1, if G is a dc-lfg, then
no sp E S P contains distinct productions whose
left-hand sides are the same and hence the con-
structed transducer M becomes deterministic by
the construction. Conversely, in T R A N S 7.2, if
M is deterministic, then there exist no consistent
productions p~ and p~ in P~ whose left-hand sides
are the same and hence the constructed nc-lfg is
a dc-lfg.

8 E q u i v a l e n c e o f ~fc - l f g a n d £~mcfg
To prove f~fc-lfg C Lmcfg, we give an al-
gorithm which translates a given fc-lfg G =
(N, T, P, S, Nat,, Aatm) into an mcfg G I such that
L (G') = L (G).

[T R A N S 8] We explain the algorithm by us-
ing the fc-lfg GEX3 in Example 4.1. An mcfg
G' = (N' , T, F, P ' , S) is constructed as follows.

S t e p 1: N ' = (the set of nonterminals which
has a one-to-one correspond-
ence with the set of SPN multi-
sets in G)

= {(S), (A,B)}
(for GEx3 in Example 4.1)

P ' = ¢, and
F = ¢ .

S t e p 2: For each SPN multiset M0 = {{A1,A2,
• " . ,Ak}} of G, consider every tuple (pl,P2,
" " , P k) of productions in P whose left-
hand sides are A1, A2,'", Ak respectively and
which are consistent. (Suppose that, if we
write an SPN multiset as {{A1, A2,. " , Ak}},
then Aj's are arranged according to a pre-
defined total order < on N, that is, A1 <
A2 <_ "'" <_ Ak hold.) For an SPN multiset
{{A, B}} in GEX3, the following two pairs of
productions have to be considered:

b
p12 : A ---* a {TcouAt,~

PI3 : B ~ c B d ,
{Tcount --~}

p14: {Tcoun A = e}

pls : {Tc°u B = e }

For (Pl ,P2 , ' " ,Pk) , a production p' and a
function f of G' are constructed and added
to P ' and F , respectively as follows.

The multiset M of the nonterminals appearing
in the right-hand side of some pj (1 < j < k)
are partit ioned into multisets M1, M2," - . , Mh
with respect to the S schemata attached
to the nonterminals in pj's. Tha t is,
(11//1, M 2 , - " , Mh) are the coarsest partit ion of
M such that for each M,, (1 < u < h), the fol-
lowing condition holds.

Each nonterminal in M~, has the same S
schema.

By the definition, each M= (1 < u < h) is an
SPN multiset in G. _Construct a product ion o f
mcfg p ' : hit0 --* f[M1, f f I2 , ' " , Mh] where M=
is the nonterminal of G' which corresponds to
M=(1 < u < h). A d d p ' to P ' and f to F
where f is defined as follows. Suppose

pj : Aj ~ a joBj la j l "'' BjL~ajL~ (1 < j < k)

where Aj E N, Bfl E N (1 < l < Lj) and
ajz E T* (0 < l < Lj) , and l e t - -

= (1 < < h)

where Cu, E N (1 < v < su). Then, for 1 <
j < k, the j t h component f[J] of f is:

_ A f[J] (X-l, x 2 , " " ' , Xh)=o t joY j l Otjl Yj2 "" • Y jL j OtjLj

where x-u = (x u l , x u 2 , ' " , x u s .) (1 < u < h).
For j (1 <_ j < k) and l (1 _< l _< n j) , if

z~
Bjl = C~,, then yfl-=x~,v. Note that , since
Mu's are a partit ion of M, f satisfies Right
Linearity (see 2.) and hence G' is an mcfg.
For example, consider the above (P12,P13)-
The nonterminals appearing in the right-hand

138

sides are A and B, and their S schemata are
the same. Thus, we construct the following
mcfg production:

(A, B) --* f l [(A, B)]

where f l [(Xl, x2)] = (aXlb, cx2d).

Consider the following pair of productions as
another example:

{ ~ : ~ } bD{Tatr2 p~ : A --* a {TatrB

---* c D P'2 : B {TatrA=£} {TatrC=j,} {1"air2 --,L}

The multiset of nonterminals in the right-
hand sides are part i t ioned into M1 =

I{ A, B}} (for arT1) and M~ = {{C, D, D}}
for atr2). For (p~,p~), the following mcfg

production is constructed:

(A, B) --+ g [(A, B), (C, D, D)]

where g [(x11, x12), (=21, X22, x23)]~--(ax12bx22,
xilx .lc 3). V]

E x a m p l e 8.1: T R A N S 8 translates fc-lfg
GEx3 in Example 4.1 into an equivalent mcfg
G~x 3 = (N',T, F, P', S I) where N ' , S ' are those
illustrated in T R A N S 8, F = {fo[(xl,x2)] =
XlX2, f l [(X l , X 2)] = (aXlb, cx2d), f2 ----- (~' ,~')} ,
and, P ' = { (S) --+ fo[(A,B)], (A,B) --*
f l [(A, B)], (A, B) --~ f2}. 0

T h e o r e m 8.1: ~rncfg = Efc - l fg .

Proof: £yc-tfg C £mcf9 can be proved by
T R A N S 8. Conversely, for a given mcfg G, an
fc-lfg G' such that L (G') = L (G) can be con-
structed in a similar way to T R A N S 8. Details
are found in (Ando 1992). [1

9 C o n c l u s i o n
In this paper, we introduce three subclasses of
lfg's, two of which can be recognized in polyno-
mial time. Also this paper clarifies the relations
between the generative capacities of those sub-
classes, pmcfg's and fts'.

R e f e r e n c e s

Ando, S. et al. 1992. "Subclasses of Lexical-
Functional Grammars Which Are Recognizable
in Polynomial Time", IEICE Technical Report,
COMP92-44.

Engelfriet, J. and Heyker, L. 1991. "The String Gen-
erating Power of Context-Free Hypergraph Gram-
mars", J. Comput. & Syst. Sci., 43:328-360.

Engelfriet, J., Rosenberg, G. and Slutzki, G. 1980.
"Tree Transducers, L Systems, and Two-Way Ma-
chines", J. Comput. & Syst. Sei., 20:150-202.

Joshi, A.K., Levy, L. and Takahashi, M. 1975 "Tree
Adjunct Grammars", J. of Comput. & Syst. Sci.,
10:136-163.
Gazdar, G. and Pullum, G.K. 1985. "Computa-
tionally Relevant Properties of Natural Languages
and Their Grammars", New Generation Computing,
3:273-306.
Kaji, Y. et al. 1992. "Parallel Multiple Context-
Free Grammars and Finite State Translation Systems
", IEICE Technical Report, COMP92-34 .
Kaplan, R. and Bresnan, J. 1982. "Lexical-
Functional Grammar", The Mental Representation
of Grammatical Relations, J.Bresnan (ed.), MIT
press:173-281.
Kasami, T. et al. 1988a. "Generalized Context-Free
Grammars and Multiple Context-Free Grammars",
Trans. IEICE, J71-D-I , 5:758-765.

Kasami, T. et al. 1988b. "On the Membership Prob-
lem for Head Language and Multiple Context-Free
Languages, Trans. IEICE, J71-D-I , 6:935-941.
Nakanishi, R. et al. 1993. "On the Generative
Capacity of Tree Translation Systems and Lexi-
cal Functional-Grammars", Technical Paper of FAI,
Japanese Society for Artificial Intelligence, SIG-
FAI-9202.
Nakanishi, R. et al. 1992. "On the Generative Capac-
ity of Lexical-Functional Grammars", IEICE Trans.
Inf. and Syst., 75-D, 7:509-516.
Nishino, T. 1991. "Mathematical Analysis of Lexical-
Functional Grammars --Complexity, Parsability, and
Learnability--", Language Research Institute, Seoul
National University.
Nishino, T. 1992. "Relating Attribute Grammars
and Lexical-Functional Grammars", Information Sci-
ences, 66:1-22.
Peterson, J.L. 1981. "Petri Net Theory and the Mod-
eling of Systems", Prentice-Hall.
Pollard, C.J. 1984. "Generalized Phrase Structure
Grammars, Head Grammars and Natural Language",
Ph.D. dissertation, Stanford University.
Rounds, W.C. 1969. "Context-Free Grammars on
Trees", Proc. of ACM STOC:143-148.
Seki, H. et al. 1991. "On Multiple Context-
Free Grammars", Theoretical Computer Science, 88,
2:191-229.
Thatcher, J.W. 1967. "Characterizing Derivation
Trees of Context-Free Grammars through a Gener-
alarization of Finite Automata Theory". J. Comput.
& Syst. Sci., 1:317-322.
Vijay-Shanker, K. 1987. "A Study of Tree Adjoining
Grammars", Ph.D. thesis, University of Pennsylva-
nia.

Vijay-Shanker, K., Weir, D.J. and Joshi, A.K. 1987.
"Characterizing structural descriptions produced by
various grammatical formalisms", Proc. of 25th
meeting of Assoc. Comput. Ling. :104-111.
Weir, D.J. 1988. "Characterizing Mildly Context-
Sensitive Grammar Formalisms", Ph.D. thesis, Uni-
versity of Pennsylvania.
Weir, D.J. 1992. "Linear Context-Free Rewriting
Systems and Deterministic Tree-Walking Transduc-
ers", Proc. of 30th meeting of Assoc. Comput. Ling.

1 3 9

