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Figure 1: Learning to Associate Scenes with Spatial 
Terms 

A B S T R A C T  

A method is presented for acquiring perceptually- 
grounded semantics for spatial terms in a simple visual 
domain, as a part of the L0 miniature language acquisi- 
tion project. Two central problems in this learning task 
are (a) ensuring that the terms learned generalize well, 
so that they can be accurately applied to new scenes, 
and (b) learning in the absence of explicit negative ev- 
idence. Solutions to these two problems are presented, 
and the results discussed. 

1 I n t r o d u c t i o n  

The L0 language learning project at the International 
Computer Science Institute [Feldman et al., 1990; We- 
ber and Stolcke, 1990] seeks to provide an account of lan- 
guage acquisition in the semantic domain of spatial rela- 
tions between geometrical objects. Within this domain, 
the work reported here addresses the subtask of learn- 
ing to associate scenes, containing several simple objects, 
with terms to describe the spatial relations among the 
objects in the scenes. This is illustrated in Figure 1. 

For each scene, the learning system is supplied with an 
indication of which object is the reference object (we call 
this object the landmark, or LM), and which object is the 
one being located relative to the reference object (this is 
the trajector, or TR). The system is also supplied with 
a single spatial term that describes the spatial relation 
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portrayed in the scene. It is to learn to associate all 
applicable terms to novel scenes. 

The TR is restricted to be a single point for the time 
being; current work is directed at addressing the more 
general case of an arbitrarily shaped TR. 

Another aspect of the task is that learning must take 
place in the absence of explicit negative instances. This 
condition is imposed so that the conditions under which 
learning takes place will be similar in this respect to 
those under which children learn. 

Given this, there are two central problems in the sub- 
task as stated: 

• Ensuring that the learning will generalize to scenes 
which were not a part of the training set. This 
means that the region in which a TR will be consid- 
ered "above" a LM may have to change size, shape, 
and position when a novel LM is presented. 

• Learning without explicit negative evidence. 

This paper presents solutions to both of these prob- 
lems. It begins with a general discussion of each of the 
two problems and their solutions. Results of training 
are then presented. Then, implementation details are 
discussed. And finally, some conclusions are presented. 

2 G e n e r a l i z a t i o n  a n d  P a r a m e t e r i z e d  
R e g i o n s  

2.1 T h e  P r o b l e m  

The problem of learning whether a particular point lies in 
a given region of space is a foundational one, with sev- 
eral widely-known "classic" solutions [Minsky and Pa- 
pert, 1988; Rumelhart and McClelland, 1986]. The task 
at hand is very similar to this problem, since learning 
when "above" is an appropriate description of the spatial 
relation between a LM and a point TR really amounts 
to learning what the extent of the region "above" a LM 
is. 

However, there is an important difference from the 
classic problem. We are interested here in learning 
whether or not a given point (the TR) lies in a region 
(say "above", "in") which is itself located relative to a 
LM. Thus, the shape, size, and position of the region are 
dependent on the shape, size, and position of the current 
LM. For example, the area "above" a small triangle to- 
ward the top of the visual field will differ in shape, size, 
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and position from the area "above" a large circle in the 
middle of the visual field. 

2.2 Pa ramete r i zed  Regions 

Part of the solution to this problem lies in the use of pa- 
rameterized regions. Rather than learn a fixed region of 
space, the system learns a region which is parameterized 
by several features of the LM, and is thus dependent on 
them. 

The LM features used are the location of the center of 
mass, and the locations of the four corners of the smallest 
rectangle enclosing the LM (the LM's "bounding-box"). 
Learning takes place relative to these five "key points". 

Consider Figure 2. The figure in (a) shows a region 
in 2-space learned using the intersection of three half- 
planes, as might be done using an ordinary perceptron. 
In (b), we see the same region, but learned relative to 
the five key points of an LM. This means simply that the 
lines which define the half-planes have been constrained 
to pass through the key points of the LM. The method 
by which this is done is covered in Section 5. Further 
details can be found in [Re#eL 1990]. 

The critical point here is that now that this region has 
been learned relative to the LM key points, it will change 
position and size when the LM key points change. This 
is illustrated in (c). Thus, the region is parameterized 
by the LM key points. 

2.3 Combining  Representa t ions  

While the use of parameterized regions solves much of 
the problem of generalizability across LMs, it is not suf- 
ficient by itself. Two objects could have identical key 
points, and yet differ in actual shape. Since part of the 
definition of "above" is that the TR is not in the inte- 
rior of the LM, and since the shape of the interior of 
the LM cannot be derived from the key points alone, the 
key points are an underspecification of the LM for our 
purposes. 

The complete LM specification includes a bitmap of 
the interior of the LM, the "LM interior map". This is 
simply a bitmap representation of the LM, with those 
bits set which fall in the interior of the object. As we 
shall see in greater detail in Section 5, this representa- 
tion is used together with parameterized regions in learn- 
ing the perceptual grounding for spatial term semantics. 
This bitmap representation helps in the case mentioned 
above, since although the triangle and square will have 
identical key points, their LM interior maps will differ. 
In particular, since part of the learned "definition" of a 
point being above a LM should be that it may not be in 
the interior of the LM, that would account for the dif- 
ference in shape of the regions located above the square 
and above the triangle. 

Parameterized regions and the bitmap representation, 
when used together, provide the system with the ability 
to generalize across LMs. We shall see examples of this 
after a presentation of the second major problem to be 
tackled. 
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Figure 2: Parameterized Regions 
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Figure 3: Learning "Above" Without  Negative Instances 

3 Learning Without Explicit Negative 
Evidence 

3.1 T h e  P r o b l e m  

Researchers in child language acquisition have often ob- 
served that  the child learns language apparently with- 
out the benefit of negative evidence [Braine, 1971; 
Bowerman, 1983; Pinker, 1989]. While these researchers 
have focused on the "no negative evidence" problem as 
it relates to the acquisition of grammar ,  the problem is 
a general one, and appears in several different aspects 
of language acquisition. In particular, it surfaces in the 
context of the learning of the semantics of lexemes for 
spatial relations. The methods used to solve the prob- 
lem here are of  general applicability, however, and are 
not restricted to this particular domain. 

The problem is best illustrated by example. Consider 
Figure 3. Given the landmark (labeled "LM"), the task 
is to learn the concept "above". We have been given 
four positive instances, marked as small dotted circles in 
the figure, and no negative instances. The problem is 
that  we want to generalize so that  we can recognize new 
instances of "above" when they are presented, but since 
there are no negative instances, it is not clear where the 
boundaries of the region "above" the LM should be. One 
possible generalization is the white region containing the 
four instances. Another possibility is the union of that  
white region with the dark region surrounding the LM. 
Yet another is the union of the light and dark regions 
with the interior of the LM. And yet another is the cor- 
rect one, which is not closed at the top. In the absence of 
negative examples, we have no obvious reason to prefer 
one of these generalizations over the others. 

One possible approach would be to take the smallest 
region that  encompasses all the positive instances. It  
should be clear, however, that  this will always lead to 

closed regions, which are incorrect characterizations of 
such spatial concepts as "above" and "outside". Thus, 
this cannot be the answer. 

And yet, humans do learn these concepts, apparently 
in the absence of negative instances. The following sec- 
tions indicate how that  learning might take place. 

3.2 A P o s s i b l e  S o l u t i o n  a n d  i t s  D r a w b a c k s  

One solution to the "no negative evidence" problem 
which suggests itself is to take every positive instance 
for one concept to be an implicit negative instance for 
all other spatial concepts being learned. There are prob- 
lems with this approach, as we shall see, but they are 
surmountable. 

There are related ideas present in the child lan- 
guage literature, which support  the work presented here. 
[Markman, 1987] posits a "principle of mutual  exclusiv- 
ity" for object naming, whereby a child assumes that  
each object may only have one name. This is to be 
viewed more as a learning strategy than as a hard-and- 
fast rule: clearly, a given object may have many names 
(an office chair, a chair, a piece of furniture, etc.). The 
method being suggested really amounts to a principle of 
mutual  exclusivity for spatial relation terms: since each 
spatial relation can only have one name, we take a pos- 
itive instance of one to be an implicit negative instance 
for all others. 

In a related vein, [Johnston and Slobin, 1979] note 
that  in a study of children learning locative terms in En- 
glish, Italian, Serbo-Croatian, and qMrkish, terms were 
learned more quickly when there was little or no syn- 
onymy among terms. They point out that  children seem 
to prefer a one-to-one meaning-to-morpheme mapping; 
this is similar to, although not quite the same as, the 
mutual  exclusivity notion put  forth here. 1 

In linguistics, the notion that  the meaning of a given 
word is part ly defined by the meanings of other words in 
the language is a central idea of structuralism. This has 
been recently reiterated by [MacWhinney, 1989]: "the 
semantic range of words is determined by the particular 
contrasts in which they are involved". This is consonant 
with the view taken here, in that  contrasting words will 
serve as implicit negative instances to help define the 
boundaries of applicability of a given spatial term. 

There is a problem with mutual  exclusivity, however. 
Using it as a method for generating implicit negative in- 
stances can yield many false negatives in the training set, 
i.e. implicit negatives which really should be positives. 

Consider the following set of terms, which are the ones 
learned by the system described here: 

• above 

• below 

• O i l  

• off 

1 They are not quite the same since a difference in meaning 
need not correspond to a difference in actual reference. When 
we call a given object both a "chair" and a "throne", these are 
different meanings, and this would thus be consistent with a 
one-to-one meaning-to-morpheme mapping. It would not be 
consistent with the principle of mutual exclusivity, however. 
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• inside 

• outside 

• to the l e f t  of 

• to the right of 

If we apply mutual exclusivity here, the problem of false 
negatives arises. For example, not all positive instances 
of "outside" are accurate negative instances for "above", 
and indeed all positive instances of "above" should in 
fact be positive instances of "outside", and are instead 
taken as negatives, under mutual exclusivity. 

"Outside" is a term that is particularly badly affected 
by this problem of false implicit negatives: all of the 
spatial terms listed above except for "in" (and "outside" 
itself, of course) will supply false negatives to the training 
set for "outside". 

The severity of this problem is illustrated in Figure 4. 
In these figures, which represent training data for the 
spatial concept "outside", we have tall, rectangular land- 
marks, and training points 2 relative to the landmarks. 
Positive training points (instances) are marked with cir- 
cles, while negative instances are marked with X's. In 
(a), the negative instances were placed there by the 
teacher, showing exactly where the region not outside 
the landmark is. This gives us a "clean" training set, but 
the use of teacher-supplied explicit negative instances is 
precisely what we are trying to get away from. In (b), the 
negative instances shown were derived from positive in- 
stances for the other spatial terms listed above, through 
the principle of mutual exclusivity. Thus, this is the sort 
of training data we are going to have to use. Note that 
in (b) there are many false negative instances among the 
positives, to say nothing of the positions which have been 
marked as both positive and negative. 

This issue of false implicit negatives is the central 
problem with mutual exclusivity. 

3.3 Salvaging Mutual  Exclusivity 
The basic idea used here, in salvaging the idea of mu- 
tual exclusivity, is to treat positive instances and implicit 
negative instances differently during training: 

Implicit negatives are viewed as supplying only 
weak negative evidence. 

The intuition behind this is as follows: since the im- 
plicit negatives are arrived at through the application of 
a fallible heuristic rule (mutual exclusivity), they should 
count for less than the positive instances, which are all 
assumed to be correct. Clearly, the implicit negatives 
should not be seen as supplying excessively weak neg- 
ative evidence, or we revert to the original problem of 
learning in the (virtual) absence of negative instances. 
But equally clearly, the training set noise supplied by 
false negatives is quite severe, as seen in the figure above. 
So this approach is to be seen as a compromise, so that 
we can use implicit negative evidence without being over- 
whelmed by the noise it introduces in the training sets 
for the various spatial concepts. 

The details of this method, and its implementation un- 
der back-propagation, are covered in Section 5. However, 

2I.e. trajectors consisting of a single point each 
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Figure 4: Ideal and Realistic Training Sets for "Outside" 
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this is a very general solution to the "no negative evi- 
dence" problem, and can be understood independently of 
the actual implementation details. Any learning method 
which allows for weakening of evidence should be able to 
make use of it. In addition, it could serve as a means for 
addressing the "no negative evidence" problem in other 
domains. For example, a method analogous to the one 
suggested here could be used for object naming, the do- 
main for which Markman suggested mutual exclusivity. 
This would be necessary if the problem of false implicit 
negatives is as serious in that  domain as it is in this one. 

4 R e s u l t s  

This section presents the results of training. 
Figure 5 shows the results of learning the spatial term 

"outside", first without negative instances, then using 
implicit negatives obtained through mutual exclusivity, 
but without weakening the evidence given by these, and 
finally with the negative evidence weakened. 

The landmark in each of these figures is a triangle. 
The system was trained using only rectangular land- 
marks. 

The size of the black circles indicates the appropri- 
ateness, as judged by the trained system, of using the 
term "outside" to refer to a particular position, relative 
to the LM shown. Clearly, the concept is learned best 
when implicit negative evidence is weakened, as in (c). 
When no negatives at all are used, the system overgen- 
eralizes, and considers even the interior of the LM to be 
"outside" (as in (a)). When mutual exclusivity is used, 
but the evidence from implicit negatives is not weakened, 
the concept is learned very poorly, as the noise from the 
false implicit negatives hinders the learning of the con- 
cept (as in (b)). Having all implicit negatives supply 
only weak negative evidence greatly alleviates the prob- 
lem of false implicit negatives in the training set, while 
still enabling us to learn without using explicit, teacher- 
supplied negative instances. 

It should be noted that  in general, when using mutual 
exclusivity without weakening the evidence given by im- 
plicit negatives, the results are not always identical with 
those shown in Figure 5(b), but are always of approxi- 
mately the same quality. 

Regarding the issue of generalizability across LMs, two 
points of interest are that: 

• The system had not been trained on an LM in ex- 
actly this position. 

• The system had never been trained on a triangle of 
any sort. 

Thus, the system generalizes well to new LMs, and 
learns in the absence of explicit negative instances, as 
desired. All eight concepts were learned successfully, and 
exhibited similar generalization to new LMs. 

5 D e t a i l s  

The system described in this section learns perceptually- 
grounded semantics for spatial terms using the 
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Figure 5: "Outside" without Negatives, and with Strong 
and Weak Implicit Negatives 
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quiekprop 3 algorithm [Fahlman, 1988], a variant on 
back-propagation [Rumelhart and McClelland, 1986]. 

This presentation begins with an exposition of the rep- 
resentation used, and then moves on to the specific net- 
work architecture, and the basic ideas embodied in it. 
The weakening of evidence from implicit negative in- 
stances is then discussed. 

5.1 R e p r e s e n t a t i o n  o f  t h e  L M  a n d  T R  

As mentioned above, the representation scheme for the 
LM comprises the following: 

• A bitmap in which those pixels corresponding to the 
in ter ior  of the LM are the only ones set. 

• The z, y coordinates of several "key points" of the 
LM, where z and y each vary between 0.0 and 1.0, 
and indicate the location of the point in question 
as a fraction of the width or height of the image. 
The key points currently being used are the center 
of mass (CoM) of the LM, and the four corners of 
the LM's bounding box (UL: upper left, UR: upper 
right, LL: lower left, LR: lower right). 

The (punctate) TR is specified by the z, V coordinates 
of the point. 

The activation of an output node of the system, once 
trained for a particular spatial concept, represents the 
appropriateness of using the spatial term in describing 
the TR's  location, relative to the LM. 

5.2 A r c h i t e c t u r e  

Figure 6 presents the architecture of the system. The 
eight spatial terms mentioned above are learned simul- 
taneously, and they share hidden-layer representations. 

5.2.1 R e c e p t i v e  F ie lds  
Consider the right-hand part of the network, which 

receives input from the LM interior map. Each of the 
three nodes in the cluster labeled "I" (for interior) has a 
receptive field of five pixels. 

When a TR  location is specified, the values of the 
five neighboring locations shown in the LM interior map, 
centered on the current TR  location, are copied up to the 
five input nodes. The weights on the links between these 
five nodes and the three nodes labeled "I" in the layer 
above define the receptive fields learned. When the TR  
position changes, five new LM interior map pixels will be 
"viewed" by the receptive fields formed. This allows the 
system to detect the LM interior (or a border between 
interior and exterior) at a given point and to bring that 
to bear if that is a relevant semantic feature for the set 
of spatial terms being learned. 

5.2.2 P a r a m e t e r i z e d  Reg ions  
The remainder of the network is dedicated to com- 

puting parameterized regions. Recall that a parameter- 
ized region is much the same as any other region which 
might be learned by a perceptron, except that the lines 

3Quickprop gets its name from its ability to quickly con- 
verge on a solution. In most cases, it exhibits faster conver- 
gence than that obtained using conjugate gradient methods 
[Fahlman, 1990]. 

which define the relevant half-planes are constrained to 
go through specific points. In this case, these are the key 
points of the LM. 

A simple two-input perceptron unit defines a line in 
the z, tt plane, and selects a half-plane on one side of it. 
Let wffi and w v refer to the weights on the links from 
the z and y inputs to the pereeptron unit. In general, 
if the unit 's function is a simple threshold, the equation 
for such a line will be 

zw~ + w y  = O, (1) 

i.e. the net input to the perceptron unit will be 

herin = actor. + yltO~. (2) 

Note that  this line always passes through the origin: 
(0,0). 

If we want to force the line to pass through a particular 
point (z t ,yt)  in the plane, we simply shift the entire 
coordinate system so that  the origin is now at (zt, yt). 
This is trivially done by adjusting the input values such 
that the net input to the unit is now 

, ,et, , ,  = ( x  - x , ) w ,  + (V - V , )w , .  (3)  

Given this, we can easily force lines to pass through 
the key points of an LM, as discussed above, by setting 
(zt, V~) appropriately for each key point. Once the sys- 
tem has learned, the regions will be parameterized by 
the coordinates of the key points, so that  the spatial 
concepts will be independent of the size and position of 
any particular LM. 

Now consider the left-hand part of the network. This 
accepts as input the z, y coordinates of the TR location 
and the LM key points, and the layer above the input 
layer performs the appropriate subtractions, in line with 
equation 3. Now each of the nodes in the layer above 
that is viewing the TR  in a different coordinate system, 
shifted by the amount specified by the LM key points. 
Note that in the BB cluster there is one node for each 
corner of the LM's bounding-box, while the CoM clus- 
ter has three nodes dedicated to the LM's center of mass 
(and thus three lines passing through the center of mass). 
This results in the computation, and through weight up- 
dates, the learning, of a parameterized region. 

Of course, the hidden nodes (labeled 'T ')  that receive 
input from the LM interior map are also in this hidden 
layer. Thus, receptive fields and parameterized regions 
are learned together, and both may contribute to the 
learned semantics of each spatial term. Further details 
can be found in [Regier, 1990]. 

5.3 I m p l e m e n t i n g  " W e a k e n e d "  M u t u a l  
E x c l u s i v i t y  

Now that the basic architecture and representations have 
been covered, we present the means by which the evi- 
dence from implicit negative instances is weakened. It 
is assumed that training sets have been constructed us- 
ing mutual exclusivity as a guiding principle, such that 
each negative instance in the training set for a given spa- 
tial term results from a positive instance for some other 
term. 
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• Evidence from implicit negative instances is weak- 
ened simply by attenuating the error caused by 
these implicit negatives. 

• Thus, an implicit negative instance which yields an 
error of a given magnitude will contribute less to the 
weight changes in the network than will a positive 
instance of the same error magnitude. 

This is done as follows: 
Referring back to Figure 6, note that output nodes 

have been allocated for each of the spatial terms to be 
learned. For a network such as this, the usual error term 
in back-propagation is 

1 
E = ~ ~_,(t~,p - oj,p) 2 (4) 

J,P 

where j indexes over output nodes, and p indexes over 
input patterns. 

We modify this by dividing the error at each output 
node by some number/~j,p, dependent on both the node 
and the current input pattern. 

1 V . ( t i , p  - oj,p 
E = ~ ~ ~ ;  )2 (5) 

$,P 

The general idea is that for positive instances of some 
spatial term, f~j,p will be 1.0, so that the error is not at- 
tenuated. For an implicit negative instance of a term, 
however, flj,p will be some value Atten, which corre- 
sponds to the amount by which the error signals from 
implicit negatives are to be attenuated. 

Assume that we are currently viewing input pattern 
p, a positive instance of "above". 'then the target value 
for the "above" node will be 1.0, while the target values 
for all others will be 0.0, as they are implicit negatives. 
Here,  flabove,p = 1.0, and fll,p = Atten, Vi ~ above. 

The value Atten = 32.0 was used successfully in the 
experiments reported here. 

6 Conclusion 

The system presented here learns perceptually-grounded 
semantics for the core senses of eight English preposi- 
tions, successfully generalizing to scenes involving land- 
marks to which the system had not been previously ex- 
posed. Moreover, the principle of mutual exclusivity is 
successfully used to allow learning without explicit nega- 
tive instances, despite the false negatives in the resulting 
training sets. 

Current research is directed at extending this work to 
the case of arbitrarily shaped trajectors, and to handling 
polysemy. Work is also being directed toward the learn- 
ing of non-English spatial systems. 
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