
E F F I C I E N T  I N C R E M E N T A L  P R O C E S S I N G  W I T H  C A T E G O R I A L  G R A M M A R  

A b s t r a c t  

Some problems are discussed that arise for incremental  pro- 

cessing using cer ta in  flezible categorial  grammars ,  which in- 

volve ei ther  undesirable  parsing propert ies or failure to  allow 

combinations useful to incrementality. We suggest a new cal- 

culus which, though  'designed'  in re la t ion to categorial  inter- 

pre ta t ious  of some not ions of dependency grammar,  seems to 

provide a degree of flexibility t ha t  is highly appropr ia te  for in- 

cremental  interpretat ion.  We demonst ra te  how this  g rammar  

may be  used for efficient incremental  parsing, by employing 

normal isa t ion techniques. 

I n t r o d u c t i o n  

A range of categorial grammars (CGs) have been 
proposed which allow considerable flexibility in the 
assignment of syntactic structure, a characteristic 
which provides for categorial treatments of extrac- 
tion (Ades & Steedman, 1982) and non-constituent 
coordination (Steedman, 1985; Dowty, 1988), and 
that is claimed to allow for incremental processing 
of natural language (Steedman, 1989). It is this lat- 
ter possibility that is the focus of this paper. 

Such 'flexible' CGs (FCGs) typically allow that 
grammatical sentences may be given (amongst oth- 
ers) analyses which are either fully or primarily left- 
branching. These analyses have the property of des- 
ignating many of the initial substrings of sentences 
as interpretable constituents, providing for a style of 
processing in which the interpretation of a sentence 
is generated 'on-line' as the sentence is presented. 
It has been argued that incremental interpretation 
may provide for efficient language processing - -  by 
both humans and machines - -  in allowing early fil- 
tering of thematically or referentially implausible 
readings. The view that human sentence processing 
is 'incremental' is supported by both introspective 
and experimental evidence. 

In this paper, we discuss FCG approaches and 
some problems that arise for using them as a ba- 
sis for incremental processing. Then, we propose a 
grammar that avoids these problems, and demon- 
strate how it may be used for efficient incremental 
processing. 
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F l e x i b l e  C a t e g o r i a l  G r a m m a r s  

CGs consist of two components: (i) a categorial lex- 
icon, which assigns to each word at least one syn- 
tactic type (plus associated meaning), (ii) a calculus 
which determines the set of admitted type combina- 
tions and transitions. The set of types (T) is defined 
recursively in terms of a set of basic types (To) and 
a set of operators ( \  and / ,  for standard bidirectional 
CG), as the smallest set such that (i) To C T, (ii) 
if x,y E T, then x\y, x /y  E T. 1 Intuitively, lexi- 
cal types specify subcategorisation requirements of 
words, and requirements on constituent order. The 
most basic (non-flexible) CGs provide only rules of 
application for combining types, shown in (1). We 
adopt a scheme for specifying the semantics of com- 
bination rules where the rule name identifies a func- 
tion that applies to the meanings of the input types 
in their left-to-right order to give the meaning of 
the result expression. 

(1) f: X/Y + Y =~ X (where f =  AaAb.(ab)) 
b: Y + X\Y =~ X (where b = AaAb.(ba)) 

The  L a m b e k  calculus  

We begin by briefly considering the (product-free) 
Lambek calculus (LC - Lambek, 1958). Various for- 
mulations of the LC are possible (although we shall 
not present one here due to space limitations). 2 

The LC is complete with respect to an intuitively 
sensible interpretation of the slash connectives whereby 
the type x /y  (resp. x\y)  may be assigned to any 
string z which when left-concatenated (resp. right- 
concatenated) with any string y of type y yields 
a string x.y (resp. y.x) of type x. The LC can 
be seen to provide the limit for what are possible 

1 We use a categorial  no ta t ion  in which x / y  and  x \y  are 
b o t h  functions from y into x, and  adopt  a convention of 
left association, so tha t ,  e.g. ( ( s \ n p ) / p p ) / n p  may be  writ- 
ten  s \ n p / p p / n p .  

2See Lambek (1958) and  Moor tga t  (1989) for a sequent 
formulat ion of the  LC. See Morrill, Leslie, Hepple & Barry 
(1990), and  Barry, Hepple, Leslie & Morrill (1991) for a natu-  
ral  deduct ion formulation.  Zielonka (1981) provides a LC for- 
mulat ion in terms of (recursively defined) reduction schema. 
Various extensions of the  LC are current ly under  investiga- 
tion, a l though we shall  not  have space to discuss them here. 
See Hepple (1990), Morrill (1990) and  Moor tga t  (1990b). 
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type combinations - -  the other calculi which we 
consider admit  only a subset of the Lambek type 
combinations, s 

The  flexibility of the LC is such that ,  for any com- 
bination x l , . . ,x ,  ==~ x0, a fully left-branching deriva- 
tion is always possible (i.e. combining xl  and x2, 
then combining the result with x3, and so on). How- 
ever, the properties of the LC make it useless for 
practical incremental processing. Under the LC, 
there is always an infinite number of result types 
for any combination, and we can only in practice ad- 
dress the possibility of combining some types to give 
a known result type. Even if we were to allow only 
S as the overall result of a parse, this would not tell 
us the intermediate target  types for binary combi- 
nations made in incrementally accepting a sentence, 
so that  such an analysis cannot in practice be made. 

C o m b l n a t o r y  C a t e g o r | a l  G r R m m a r  

Combinatory Categorial Grammars (CCGs - Steed- 
man, 1987; Szabolcsi, 1987) are formulated by adding 
a number of type combination and transition schemes 
to the basic rules of application. We can formulate a 
simple version of CCG with the rules of type raising 
and composition shown in (2). This CCG allows 
the combinations (3a,b), as shown by the proofs 
(4a,b). 

(2) T: x ::~ y / ( y \ x )  (where T - AxAf. ( fz) )  
B: x /y  + y/z =:~ x/z  

(where B = 

(3) a. np:z,  s \ n p / n p : f  =~ s/np:Ay.fyz 

b. vp / s : f ,  np:z  =~ vp/(s\np):Ag.f(gz) 

(4) (a) np s\np/np (b) vp/s  np 
T T 

s / ( s \np)  ]3 s / ( s \nP)B 

s/np vp/(s\np) 

The  derived rule (3a) allows a subject NP to com- 
bine with a transitive verb before the verb has com- 
bined with its object. In (3b), a sentence em- 
bedding verb is composed with a raised subject NP. 
Note that  it is not clear for this latter case that  the 
combination would usefully contribute to incremen- 
tal processing, i.e. in the resulting semantic expres- 
sion, the meanings of the types combined are not di- 
rectly related to each other, but  rather a hypothet-  
ical function mediates between the two. Hence, any 

3In some frameworks, the use of non-Lambek-valid rules 
such as disharmonic composition (e.g. x /y  + y\z  ::~ x\z) 
has been suggested. We shall not consider such rules in this 
paper. 

requirements that  the verb may have on the seman- 
tic properties of its argument (i.e. the clause) could 
not be exploited at this stage to rule out the re- 
sulting expression as semantically implausible. We 
define as contentful only those combinations which 
directly relate the meanings of the expressions com- 
bined, without depending on the mediation of hy- 
pothetical functions. 

Note that  this calculus (like other versions of CCG) 
fails to admit  some combinations, which are allowed 
by the LC, tha t  are contentful in this sense - -  for 
example, (5). Note that  although the seman- 
tics for the result expression in (5) is complex, 
the meanings of the two types combined are still di- 
rectly related - -  the lambda abstractions effectively 
just  fulfil the role of swapping the argument order 
of the subordinate functor. 

(5) x / ( y \ z ) : f ,  y /w\z :g  ~ x/w:Av.f(Aw.gwv) 

Other problems arise for using CCG as a basis 
for incremental processing. Firstly, the free use of 
type-raising rules presents problems, i.e. since the 
rule can always apply to its own output .  In practice, 
however, CCG grammars typically use type specific 
raising rules (e.g. np =~ s / ( s \np) ) ,  thereby avoiding 
this problem. Note that  this restriction on type- 
raising also excludes various possibilities for flexible 
combination (e.g. so that  not all combinations of the 
form y, x \ y / z  =~ x /z  are allowed, as would be the 
case with unrestricted type-raising). 

Some problems for efficient processing of CCGs 
arise from what has been termed 'spurious ambigu- 
i ty '  or 'derivational equivalence', i.e. the existence 
of multiple distinct proofs which assign the same 
reading for some combination of types. For exam- 
ple, the proofs (6a,b) assign the same reading for 
the combination. Since search for proofs must be 
exhaustive to ensure that  all distinct readings for a 
combination are found, effort will be wasted con- 
structing proofs which a . . . . ~  ~he same meaning, 
considerably reducing the elficiency of processing. 
Hepple & Morrill (1989) suggest a solution to this 
problem that  involves specifying a notion of nor- 
mal form (NF) for CCG proofs, and ensuring that  
the parser returns only NF proofs. 4 However, their 
method has a number of limitations. (i) They con- 
sidered a ' toy grammar '  involving only the CCG 
rules stated above. For a grammar involving fur- 
ther combination rules, normalisation would need 
to be completely reworked, and it remains to be 
shown that  this task can be successfully done. (ii) 

4Normalisation has also been suggested to deal with the 
problem of spurious ambiguity as it arises for the LC. See 
K6nig (1989), Hepple (1990) and Moortgat (1990). 
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The NF proofs of this system are right-branching 
- -  again, it remains to be shown that a NF can be 
defined which favours left-branching (or even pri- 
marily left-branching) proofs. 

(6) (a) x/y y/z - (b) x/y y/z 
f B 

y x / z  
f f 

x x 

Meta -Ca tego r i a l  G r a m m a r  

In Meta-Categorial Grammar (MCG - Morrill, 1988) 
combination rules are recursively defined from the 
application rules (f and b) using the metarnles (7) 
and (8). The metarules state that given a rule 
of the form shown to the left of ==~ with name ~, 
a further rule is allowed of the form shown to the 
right, with name given by applying t t  or L to ¢ as 
indicated. For example, applying I t  to backward 
application gives the rule (9), which allows com- 
bination of subject and transitive verb, as T and 
B do for CCG. Note, however, that this calculus 
does not allow any 'non-contentful' combinations 
- -  all rules are recursively defined on the applica- 
tion rules which require a proper functional relation 
between the types combined. However, this calcu- 
lus also fails to allow some contentful combinations, 
such as the case x/(y\z),  y /w\z  =:~ x/w mentioned 
above in (5). Like CCG, MCG suffers from spurious 
ambiguity, although this problem can be dealt with 
via normalisation (Morrill, 1988; Hepple & Morrill, 
1989). 

(7) ¢ : x + y : ~ z  =:~ R ¢ : x + y / w = C , z / w  

(where R = ~g,~a~b,~c.ga(bc)) 

(8) ¢ : x + y = ~ z  ==~ L ¢ : x \ w + y : C , z \ w  

(where L = ag a bae g(ac)b) 

(9) Rb: y + x \y /z  =~ x/z 

T h e  D e p e n d e n c y  C a l c u l u s  

In this section, we will suggest a new calculus which, 
we will argue, is well suited to the task of incremen- 
tal processing. We begin, however, with some dis- 
cussion of the notions of head and dependent, and 
their relevance to CG. 

The dependency grammar (DG) tradition takes 
as fundamental the notions of head, dependent and 
the head-dependent relationship; where a head is, 
loosely, an element on which other elements depend. 
An analogy is often drawn between CG and DG 
based on equating categorial functors with heads, 
whereby a functor x/yl../yn (ignoring directional- 
ity, for the moment) is taken to correspond to a head 

requiring dependents Yl..Yn, although there are sev- 
eral obvious differences between the two approaches. 
Firstly, a categorial functor specifies an ordering 
over its 'dependents' (function-argument order, that 
is, rather than constituent order) where no such or- 
dering is identified b y  a DG head. Secondly, the 
arguments of a categorial functor are necessarily 
phrasal, whereas by the standard view in DG, the 
dependents of a head are taken to be words (which 
may themselves be heads of other head/dependent 
complexes). Thirdly, categorial functors may spec- 
ify arguments which have complex types, which, by 
the analogy, might b e  d e s c r i b e d  as a head being able 
to make stipulations about the dependency require- 
ments of its dependent and also to 'absorb' those 
dependency requirements. 5 For example, a type 
x/(y\z)  seeks an argument which is a "y needing a 
dependent z" under the head/functor analogy. On 
combining with such a type, the requirement "need 
a dependent z" is gone. Contrast this with the use 
of, say, composition (i.e. x/y, y/z  =~ x/z), where a 
type x /y  simply needs a dependent y, and where 
composition allows the functor to combine with its 
dependent y while the latter still requires a depen- 
dent z, and where that requirement is inherited onto 
the result of the combination and can be satisfied 
later on. 

Barry & Pickering (B&P, 1990) explore the view 
of dependency that arises in CG when the functor- 
argument relationship is taken as analogous to the 
traditional head-dependent relationship. A problem 
arises in employing this analogy with FCGs, since 
FCGs permit certain type transformations that un- 
dermine the head-dependent relations that are im- 
plicit in lexical type assignments. An obvious exam- 
ple is the type-raising transformation x =~ y/(y\x) ,  
which directly reverses the direction of the head- 
dependent relationship between a functor and its 
argument. B&P identify a subset of LC combina- 
tions as dependency preserving (DP), i.e. those com- 
binations which preserve the head-dependent rela- 
tions implicit in the types combined, and call con- 
stituents which have DP analyses dependency con- 
stituents. B&P argue for the significance of this 
notion of constituency in relation to the treatment 
of coordination and the comparative difficulty ob- 
served for (human) processing of nested and non- 

5Clearly,  a CG where  a r g u m e n t  t y p e s  were r equ i r ed  to be  
bas ic  would  be  a closer  a n a l o g u e  o f  DG in  n o t  a l lowing a 
' h e a d '  to m a k e  s u c h  s t i p u l a t i o n s  a b o u t  i t s  d e p e n d e n t s .  Such  
a s y s t e m  cou ld  be  enforced  by  a d o p t i n g  a m o r e  res t r i c t ed  
def in i t ion  of t h e  se t  of  t y p e s  (T)  as  t h e  sma l l e s t  se t  s u c h  t h a t  
(i) To C T,  (ii) i f  x E T a n d  y E To,  then x \ y ,  x / y  E T (c.f. 
t h e  def in i t ion  g iven  ear l ier) .  
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nested constructionsfi B&P suggest a means for 
identifying the DP subset of LC transformations 
and combinations in terms of the lambda expres- 
sions that  assign their semantics. Specifically, a 
combination is DP iff the lambda expression speci- 
fying its semantics does not involve abstraction over 
a variable tha t  fulfils the role of functor within the 
expression (c.f. the semantics of type raising in (2))ff 

We will adopt  a different approach to B&P for 
addressing dependency constituency, which involves 
specifying a calculus that  allows all and only the DP 
combinations (as opposed to a criterion identifying 
a subset of LC combinations as DP). Consider again 
the combination x / (y \ z ) ,  y / w \ z  =~ x/w,  not admit- 
ted by either the CCG or MCG stated above. This 
combination would be admit ted by the MCG (and 
also the CCG) if we added the following (Lambek- 
valid) associativity axioms, as illustrated in (11). 

(10) a: x \ y / z = ~ x / z \ y  
a: x / y \ z = ~ x \ z / y  

(where a = ~f~a]b.fba) 

(II)  x/(y\z) y/w\z 
~ a  

y\ , /w  
R f  

x/w 

We take it as self-evident tha t  the unary trans- 
formations specified by these two axioms are DP, 
since function-argument order is a notion extrane- 
ous to dependency; the functors x \ y / z  and x / z \ y  
have the same dependency requirements, i.e. depen- 
dents y and z. s For the same reason, such reordering 
of arguments should also be possible for functions 
that  occur as subtypes within larger types, as in 
(12a,b). The operation of the associativity rules 
can be 'generalised' in this fashion by including the 
unary metarules (13), 9 which recursively define 

eSee Baxry (forthcoming) for extensive discussion of de- 
pendency and CG, and Pickering (1991) for the relevance of 
dependency to human sentence processing. 

7B&P suggest a second criterion in terms of the form of 
proofs which, for the natural  deduction formulation of the 
LC tha t  B&P use, is equivalent to the criterion in terms 
of laznbda expressions (given tha t  a variant of the Curry- 
Howard correspondence between implicational deductions 
and lambda expressions obtains).  

s Clearly, the reversal of two co-directional arguments (i.e. 
x / y / z  =~ x / z /y )  would also be DP for this reason, but  is not 
LC-valld (since it would not  preserve linear order require- 
ments).  For a unidirectional CG system (i.e. a system with a 
single connec t ive / ,  that  did not specify linear order require- 
ments),  free reversal of axguments would be appropriate.  We 
suggest tha t  a unidirectional variant of the calculus to be 
proposed might be the best  system for pure reasoning about  
'categorial dependency' ,  aside from linearity considerations. 

9These unary metarules have been used elsewhere as part  
of the LC formulation of Zielonka (1981). 

new unary rules from tile associat, ivit.) axioms. 

(12) a. a \ b / c / d  ~ a / ckb /d  

b. x / ( a \ b / c )  ~ x/Ca/c\b)  

(13) a. ¢: x = ~ y  ==~ V¢:  x /z  : :~y /z  
¢: x = ~ y  ==~ V¢:  x \z  =~y \ z  

(where V =  f a b.f(ab)) 

b. ¢ : x = ~ y  ==~ Z¢: z / y = ~ z / x  
¢: x==~y ~ Z¢: z \ y = ~  z \x  

(where Z = 

(14) x / ( a \ b / c ) : f ~  x/(a/c\b):~v./O~a~b.vba) 

Clearly, the rules {V,Z,a} allow only DP unary 
transformations. However, we make the stronger 
claim that  these rules specify the limit of DP unary 
transformations. The  rules allow that  the given 
functional structure of a type be 'shuffled' upto the 
limit of preserving linear order requirements. But 
the only alternative to such 'shuffling' would seem 
to be that  some of the given type structure be re- 
moved or further type structure be added, which, by 
the assumption that  functional structure expresses 
dependency relations, cannot be DP. 

We propose the system {L,R,V,Z ,a , f ,b}  as a cal- 
culus allowing all and only the DP combinations and 
transformations of types, with a 'division of labour'  
as follows: (i) the rules f and b,  allowing the estab- 
lishment of direct head-dependent relations, (ii) the 
subsystem {V,Z,a},  allowing DP transformation of 
types upto the limit of preserving linear order, and 
(iii) the rules t t  and L, which provide for the inher- 
itance of 'dependency requirements'  onto the result 
of a combination. We call this calculus the depen- 
dency calculus (DC) (of which we identify two sub- 
systems: (i) the binary calculus B : {L,R,f ,b},  (ii) 
the unary calculus U : {V,Z,a}) .  Note that  B&P's 
criterion and the DC do not agree on what are DP 
combinations in all cases. For example, the seman- 
tics for the type transformation in (14) involves ab- 
straction over a variable that  occurs as a functor. 
Hence this t ransformation is not DP under B&P's 
criterion, although it is admit ted by the DC. We 
believe that  the DC is correct in admitt ing this and 
the other additional combinations that  it allows. 

There is clearly a close relation between DP type 
combination and the notion of contentful combi- 
nation discussed earlier. The  'dependency require- 
ments '  stated by any lexical type will constitute the 
sum of the ' thematically contentful '  relationships 
into which it may enter. In allowing all DP com- 
binations (subject to the limit of preserving linear 
order requirements), the DC ensures that  lexieally 
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originating dependency structure is both preserved 
and also exploited in full. Consequently, the DC is 
well suited to incremental processing. Note, how- 
ever, that  there is some extent of divergence be- 
tween the DC and the (admittedly vague) criterion 
of 'contentful '  combination defined earlier. Con- 
sider the LC-valid combination in (15), which is 
not admit ted by the DC. This combination would 
appear to be 'contentful '  since no hypothetical  se- 
mantic functor intervenes between l a n d  g (although 
g has undergone a change in its relationship to its 
own argument which depends on such a hypothet-  
ical functor).  However, we do not expect that  the 
exclusion of such combinations will substraet signif- 
icantly from genuinely useful incrementality in pars- 
ing actual grammars.  

(15) x/(y/z):/, x:l(X .g(Xh.hv)) 

Parsing and the Dependency  Calculus 

Binary combinations allowed by the DC are all of 
the form (16) (where the vertical dots abbrevi- 
ate unary transformations, and ¢ is some binary 
rule). The obvious naive approach to finding possi- 
ble combinations of two types x and y under the DC 
involves searching through the possible unary trans- 
forms of x and y, then trying each possible pairing 
of them with the binary rules of B, and then deriv- 
ing the set of unary transforms for the result of any 
successful combination. 

At first sight, the efficiency of processing using 
this calculus seems to be in doubt. Firstly, the 
search space to be addressed in checking for possible 
combinations of two types is considerably greater 
than for CCG or MCG. Also, the DC will suffer spu- 
rious ambiguity in a fashion directly comparable to 
CCG and MCG (obviously, for the latter case, since 
the above MCG is a subsystem of the DC). For ex- 
ample, the combination x/y,  y /z ,  z ::~ x has both 
left and right branching derivations. 

However, a further equivalence problem arises due 
to the interderivability of types under the unary 
subsystem U. For any unary transformation x :=~ y, 
the converse y :~ x is always possible, and the se- 
mantics of these transformations are always inverses. 
(This obviously holds for a, and can be shown to 
hold for more complex transformations by a simple 
induction.) Consequently, if parsing assigns distinct 
types x and y to some substring that  are merely 
variants under the unary calculus, this will engen- 
der redundancy, since anything that  can be proven 
with x can equivalently be proven with y. 

(16) x y 

X 0 

Z 

Normalisat ion and the  D e p e n d e n c y  Ca lcu lus  

These efficiency problems for parsing with the DC 
can be seen to result from equivalence amongst terms 
occurring at a number of levels within the system. 
Our solution to this problem involves specifying nor- 
mal forms (NFs) for terms - -  to act as privileged 
members of their equivalence class - -  at three differ- 
ent levels of the system: (i) types, (ii) binary com- 
binations, (iii) proofs. The  resulting system allows 
for efficient categorial parsing which is incremental 
up to the limit allowed by the DC. 

A standard way of specifying NFs is based on 
the method of reduction, and involves defining a 
contraction relation (I>1) between terms, which is 
stated as a number of contraction rules of the form 
X !>1 Y (where X is termed a redez and Y its con- 
tractum). Each contraction rule allows that  a term 
containing a redex may be transformed into a term 
where that  occurrence is replaced by its contractum. 
A term is said to be in NF if and only if it contains 
no redexes. The contraction relation generates a re- 
duction relation (1>) such that  X reduces to Y (X I> 
Y) iff Y is obtained from X by a finite series (pos- 
sibly zero) of contractions. A term Y is a NF of X 
iff Y is a NF and X 1> Y. The contraction relation 
also generates an equivalence relation which is such 
that  X = Y iff Y can be obtained from X by a se- 
quence of zero or more steps, each of which is either 
a contraction or reverse contraction. 

Interderivability of types under U can be seen as 
giving a notion of equivalence for types. The con- 
traction rule (17) defines a NF for types. Since 
contraction rules apply to any redex subformula oc- 
curring within some overall term, this rule's do- 
main of application is as broad as that  of the as- 
sociativity axioms in the unary calculus given the 
generalising effects of the unary metarules. Hence, 
the notion of equivalence generated by rule (16) is 
the same as that  defined by interderivability un- 
der U. It is straightforward to show that  the reduc- 
tion relation defined by (16) exhibits two impor- 
tant  properties: (i) strong normalisation 1°, with the 

1°To prove  s t r o n g  n o r m a l i s a t i o n  it  is suff icient  to give a 
me t r i c  which  a s s igns  each  t e r m  a f in i te  n o n - n e g a t i v e  in teger  
score,  a n d  u n d e r  wh ich  eve ry  c o n t r a c t i o n  r educes  t h e  score 
for a t e r m  by  a pos i t ive  i n t ege r  a m o u n t .  T h e  fol lowing me t r i c  
suffices: (a) X ~ = 1 if X is a t omic ,  (b)  ( X / Y )  t = X ~ + Y~, 
(c) ( X \ Y ) '  = 2 (X '  + Y ' ) .  

83 



consequence that  every type has a NF, and (ii) the 
Church-Rosser property, from which it follows that  
NFs are unique. In (18), a constructive notion 
of NF is specified. It is easily shown that  this con- 
structive definition identifies the same types to be 
NFs as the reduetive definition. 11 

(17) x/y\ , .  ~1 x \ z /y  

(18) x\yl.-Yi/Yi+l..Yn 

where n _~ 0, x is a basic type and each yj 
(1 < j < n) is in turn of this general form. 

(19) ¢: x / u t , . u ,  + y =~ z ==~ 
L(n)¢:  x \ w / u l . . U ,  + y =~ z \w 

(where L(n) ---- A#AaAbAc.#(Ava..vn.avl..vnc)b) 

We next  consider normalisation for binary com- 
binations. For this purpose, we require a modified 
version of the binary calculus, called W, having the 
rules {L(n) ,R, f ,b}) ,  where L(n) is a 'generalised' 
variant of the metarule L, shown in (19) (where the 
notat ion X/Ul..Un is schematic for a function seek- 
ing n forward directional arguments, e.g. so that  for 
n = 3 we have x/ux. .un = X/Ul/U~/Us). Note that  
the case L(0) is equivalent to L. 

We will show tha t  for every binary combination 
X + Y =~ Z under the DC, there is a correspond- 
ing combination X' + Y~ =* Z' under W, where X ~, 
Y' and Z' are the NFs of X, Y and Z. To demon- 
strate this, it is sufficient to show that  for every 
combination under B, there is a corresponding W 
combination of the NFs of the types (i.e. since for 
binary combinations under the DC, of the form in 
(16), the types occurring at the top and bo t tom of 
any sequence of unary transformations will have the 
same NF). 

The following contraction rules define a NF for 
combinations under B ~ (which includes the combi- 
nations of B as a subset -- provided that each use 
of L is relabelled as L(0)): 

(20) IF w l>t w' THEN 

a. f: w /y  + y :=~ w 1>1 f: w' /y  + y =~ w' 
b. f: y / w  + w ::~ y I>t f: y /w '  + w' =~ y 
c. b: y + w \ y = ~ w  E>lb: y + w ~ \ y = ~ w '  
d. b: w + y \ w  :=~ y !>1 b: w' + ykw' :=~ y 
e. L(i)¢: x \w/u l . .U i  + y =~ z\w I>1 

L(i)¢:  xkw' /u l . .u /  + y =~ zkw t 
f. R e :  x + y / w  =~ z /w t>l 

R e :  x + y /w '  ::~ z /w'  

laThis NF is based on an arbitrary bias in the restruc- 
turing of types, i.e. ordering backward directional arguments 
after forward directional arguments. The opposite bias (i.e. 
forward arguments after backward arguments) could as well 
have been chosen. 

(21) L( i )R¢:  x \w/u l . . u i  + y / v  =~ z / v \ w  t>l 
RL( i )¢ :  x \w /u l . . u i  + y /v  ::~ zkw/v 

(22) L(o)f: x / w \ v  + w ~ x \ v  [:>1 
f: x \v /w  + w =~ x\v  

(23) L(i)f: xkw/ul. .Ui + ui =*" x / u l . . u i - t \ w  t>l 
f: x \w/ul . .ul  + ui ~ x\w/ul..u;_~ 

for i > O. 

(24) b: ~. + x/y\~, ~ x / y  ~1 
Rb :  z + x \ z / y  =~ x / y  

(25) L(i)¢:  X/V\W/Ul..U i + y ~ Z\W E> 1 
L ( i + I ) ¢ :  x \ w / v / u l . . u i  + y ==~ z\w 

(26) IF ¢: x + y = = ~ z  1>1 ¢': x ' + y ' : = ~ z '  
THEN R ¢ : x + y / w : = ~ z / w  I>l 

Re': x' + y'/w =~ z'/w 

(27) IF  ¢: X/Ul..Ui + y :=~ z I>t 
¢~: x ' /u l ' . . u l  ~ + y'  =~ z' 

THEN L(i)~b: x \w /u l . . u i  + y =~ z I>1 
L(i)¢ ' :  x ' \ w / u l ' . . u i '  + y'  ~ z' 

These rules also transform the types involved into 
their NFs. In the cases in (20), a contraction is 
made without affecting the identity of the particular 
rule used to combine the types. In (21-25), the 
transformations made on types requires that  some 
change be made to the rule used to combine them. 
The rules (26) and (27) recursively define new 
contractions in terms of the basic ones. 

This reduction system can be shown to exhibit 
strong normalisation, and it is straightforward to ar- 
gue that  each combination must have a unique NF. 
This definition of NF accords with the constructive 
definition (28). (Note that  the notat ion R n rep- 
resents a sequence of n Rs, which are to be brack- 
eted right-associatively with the following rule, e.g. 
so that  R~f  = (R(Rf ) ) ,  and that  i takes the same 
value for each L(i) in the sequence L(i)"L) 

(28) ¢ : x + y ~ z  

where x, y, z are NF types, and ¢ is (Rnf)  
or (RnL( i )mb) ,  for n, m > 0. 

Each proof  of some combination xl , . . ,xn =~ x0 
under the DC can be seen to consist of a number of 
binary 'subtrees',  each of the form (16). If we sub- 
st i tute each binary subtree with its NF combination 
in W, this gives a proof  of Xlt,..,x~ ' =~ x0 t (where 
each xl ~ is the NF ofxi ) .  Hence, for every DC proof, 
there is a corresponding proof of the combination of 
the NFs of the same types under B'. 

Even if we consider only proofs involving NF com- 
binations in W, we observe spurious ambiguity of 
the kind familiar from CCG and MCG. Again, we 
can deal with this problem by defining NFs for such 
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proofs. Since we are interested in incremental pro- 
cessing, our method for identifying NF proofs is 
based on favouring left-branching structures. 

Let us consider the patterns of functional depen- 
dency that  are possible amongst sequences of three 
types. These are shown in (29). 12 Of these cases, 
some (i.e. (a) and (f)) can only be derived with 
a left-branching proof under B' (or the DC), and 
others (i.e. (b) and (e)) can only be derived with 
a right-branching proof. Combinations of the pat- 
terns (c),(d) and (g) commonly allow both right and 
left-branching derivations (though not in all cases). 

(29) (a) ~ (h) ( 

x y z x y z 

(c) (d) 

x y z x y z 

(e) , (f) • 

x y z x y z 

(g) 

x y z 

(30)  (R"f ) :  x / y  + y / u l . . u n  ~ x / u l . . u .  

(31) (R"L( / )mb) :  
x\wl..wm/ul..u, + y\(xlul..n,)lvl..v. 

=~ y\wl. .wm/vl. .v,~ 

NF binary combinations of the pattern in (28) take 
the two more specific forms in (30) and (31). 
Knowing this, we can easily sketch out the schematic 
form of the three element combinations correspond- 
ing to (29c,d,g) which have equivalent left and 
right branching proofs, as shown in Figure 1. 

We can define a NF for proofs under B I ( that use 
only NF combinations) by stating three contraction 
rules, one for each of the three cases in Figure 1, 
where each rule rewrites the right branching three- 
leaf subproof as the equivalent left branching sub- 
proof. This will identify the optimally left branch- 
ing member of each equivalence class of proofs as its 
NF exemplar. Again, it is easily shown that  reduc- 
tion under these rules exhibits strong normalisation 
and the Church-Rosser property, so that  every proof 
must have a unique normal form. However, it is not 
so easy to prove the stronger claim that  there is only 
a single NF proof that  assigns each distinct read- 
ing for any combination. 13 We shall not a t tempt  

12Note t h a t  various o the r  conceivable p a t t e r n s  of depen-  
dency do not  need to be considered here since they  do not  
correspond t o  any Lambek-va l id  combina t ion .  

~3 Thls  holds  i f  the con t rac t ion  r e l a t ion  genera tes  an equiv- 

to demonstrate this property, although we believe 
that  it holds. We can identify the redexes of these 
three contraction rules purely in terms of the rules 
used to combine types, i.e. without needing to ex- 
amine the schematic form of the types, since the 
rules themselves identify the relevant structure of 
the types. In fact, the right-branching subproofs for 
cases (29c,g) collapse to the single schematic redex 
(32), and that  for (29d) simplifies to the schematic 
redex (33). (Note that  the notation ¢~ is used to 
represent any (NF) rule which is recursively defined 
on a second rule ~r, e.g. so that  ~rb is any NF rule 
defined on b.)  

(32) x y zltm f 
w where n ~_ m 

v 

(33) x y z 

'~b(L(i}b) w where n ~ 1 
Ir b 

V 

Let us consider the use of this system for pars- 
ing. In seeking combinations of some sequence of 
types, we first begin by transforming the types into 
their NFs. 14 Then, we can search for proofs using 
only the NF binary combinations. Any proof that 
is found to contain a proof redexes is discontinued, 
so that  only NF proofs are returned, avoiding the 
problems of spurious ambiguity. Any result types 
assigned by such proofs stand as NF exemplars for 
the set of non-NF types that  could be derived from 
the original input types under the DC. We may want 
to know if some input types can combine to give a 
specific result type x. This will be the case if the 
parser returns the NF of x. 

Regarding incremental processing, we have seen 
that  the DC is well-suited to this task in terms of al- 
lowing combinations that  may usefully contribute to 
a knowledge of the semantic relations amongst the 
phrases combined, and that  the NF proofs we have 
defined (and which the parser will construct) are 
optimally left-branching to the limit set by the cal- 
culus. Hence, in left-to-right analysis of sentences, 
the parser will be able to combine the presented 
material to the maximal  extent that  doing so use- 
fully contributes to incremental interpretation and 
the filtering of semantically implausible analyses. 

alence re la t ion  t h a t  equa tes  any  two proofs iff these assign 
ex tens lona l ly  equivalent  readings .  

14The complex i ty  of th is  t r ans fo rma t ion  is cons tan t  in  the 
complex i ty  of the  type .  
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C~. (2s~): 

(a) x/y y/wa..w. W,/Vl..Vm 
gnf  

x/wa ..w, 
.R'nf 

x/wa ..wn-I/vl..vm 

C~ (2Sd): 
(~) w,\q~..qk/u,..us 

(b) x/y y/wl . .wn  Wn/Vl..vm 
.I%mf 

y/wl ..Wn--1/Vl .-vmRm+n_l f 
x/wl..w,-a/va..v,, 

(b) w,\~..qk/ua..uj 

y\wl..Wn--l \(wn/ul . .Uj)/vl . .vi  x\(y/vl . .Vi)/ t l . . tm 
RmL(1)nb 

y\wl ..wn-a\q,..qk/v, ..vl 

x\wa ..wn-i \q l . .~ l t l  ..tin 
Case (28g): 

(a) y\wl . .wj/ul ..ui x \ (y /u l  ..ui)/Vl ..Vm vm/ql--qn 
R'nL(i)~b 

X\Wl..Wj/Va..Vm Rnf 
x\wl..w~//vl..Vm-i/ql..qn 

(b) y\wl ..wj/ul ..ui x\(y/ul. .ui)/vl ..vm vm/ql ..qn]Ln f 

x\(ylul..Ui)/vz..vm-l/ql..qnam+n_ 1 L(i)Jb 

X\Wl..Wn-l\(wn/ul..uj)/tl..tm 
Rmg( j )kb  

x\wl ..w,-a \qu ..qk/ta..t,, 

y\wl . .w, - I  \ (wn/ul  . .uj)/vl  ..ViRiL.j.kb_() x\ (y /v l  . .vi)/t l  ..tin 

x\wa..w~l,,l..v,,,-, lo~..qn 

RmL(1) k4n-I  b 

Figure 1: Equivalent left and right-branching three-leaf subproofs 
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