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Abstract 
In this paper, we show that one benefit of FUG, the 

ability to state global conslralnts on choice separately from 
syntactic rules, is difficult in generation systems based on 
augmented context free grammars (e.g., Def'mite Clause 
Cn'anmm~). They require that such constraints be expressed 
locally as part of syntactic rules and therefore, duplicated in 
the grammar. Finally, we discuss a reimplementation of 
lUg that achieves the similar levels of efficiency as 
Rubinoff's adaptation of MUMBLE, a detcrministc 
language generator. 

1 I n t r o d u c t i o n  
Inefficiency of functional unification grammar (FUG, 

[5]) has prompted some effort to show that the same benefits 
offered by FUG can be achieved in other formalisms more 
efficiently [3; 14; 15; 16]. In this paper, we show that one 
benefit of FUG, the ability to conciselyl state global 
constraints on choice in generation, is difficult in other 
formalhms in which we have written generation systems. In 
particular, we show that a global constraint can be stated 
separately from syntactic rules in FUG, while in generation 
systems based on augmented context free ~g~nunars (e.g., 
Definite Clause Cn'amma~ (DCG, [13])) such consWaints 
must be expressed locally as part of syntactic rules and 
the~=for¢, duplicated in the grammar. Finally, we discuss a 
reimplementation of lUG in TAILOR [11; 12] that achieves 
the si.m/l~r leveLs of efficiency as Rubinoff's adaptation 
[16] of MUMBLE [7], a deterministc language generator. 

1.1 Sta tement  o f  Const ra in ts  
Language generation can be viewed primarily as a 

problem of choice, requiring decisions about which syntactic 
structures best express intent. As a result, much research in 
language generanon has focused on identi~ing conswaints 
on choice, and it is important to be able to represent these 
constraints clearly and efficiently. In this paper, we compare 
the representation of constraints in FUG with their 
repn:sentation in a DCG generation system [3]. We are 
interested in representing functional constraints on syntactic 
sWacture where syntax does not fully restrict expression; that 
is, conswaints other than those coming from syntax. We 
look at the representation of two specific constraints on 
syntactic choice: focus of attention on the choice of sentence 
voice and focus of attention on the choice of simple versus 
complex sentences. 

We claim that, in a lUG,  these constraints can be 
stated separately from rules dictating syntactic structure, thus 
leading to simplicity of the granunar since the constraints 
only need to be stated once. This is possible in FUG because 
of unification and the ability to build constituent structure in 

the grammar. In contrast, in a DCG, constraints must be 
stated as part of the individual grammar rules, resulting in 
duplication of a constraint for each syntactic rule to which it 
applies. 

1.2 Passive/Active Cons t ra in t  
Focus of attention can determine whether the passive 

or active voice should be used in a sentence [8]. The 
constraint dictates that focused information should appear as 
surface subject in the sentence. In FUG, this can be 
represented by one pattern indicating that focus should occur 
f'u'st in the sentence as shown in Figu~ 1. This panern would 
occur in the sentence category of the grammar, since focus is 
a sentence constituent. This constraint is represented as part 
of an alternative so that other syntactic constraints can 
override it (e.g., if the goal were in focus but the verb could 
not be pmsivized, ~ constraint would not apply and an 
active sentence would be generated). The structure of active 
or passive would be indicated in the verb group as shown in 
Figure 2.1 The correct choice of active or passive is made 
through unification of the patterns: active voice is selected if 
the focus is on the protagonist (focus unifies with pro:) and 
passive if focus is on the goal or beneficiary Orocus unifies 
with goal or beheld. This representation has two desirable 
properties: the constraint can be stated simply and the 
construction of the resulting choice b expr=ssed separately 
from the constraint. 

( a l t  ( ( p a t t e r n  ( f o c u s  . . . )  ) ) ) 

Figure 1: Constraint on Passive/Active in FUG 

In the DCG, the unification of argument variables 
means a single rule can state that focus should occur first in 
the sentence. However, the rules specifying construction of 
the passive and active verb phrases must now depend on 
which role (protagonist, goal, or beneficiary) is in focus. 
This requires three separate rules, one of which will be 
chosen depending on which of the three other case roles is 
the same as the value for focus. The DCG v..presentation thus 
mixes information from the conswaint, focus of attention, 
with the passive/active construction, duplicating it over three 

tThis figure shows only the m'dm, of comtitmmu foe active and passive 
voice m~l does no¢ include odwr details of the co~au'ucdon. 
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(alt 
((voice active) 
(pattern (prot verb goal))) 

((voice passive} 
(alt 
((pattern (goal verb1 verb2 by-pp))) 
((pattern 

(benef verbl verb2 by-pp)}})}) 

Figure 2: Passive/Active Construction in FUG 

rules. 

The sentence rule is shown in Figure 3 and the three 
other rules are presented in Figure 4. The constituents of the 
proposition are represented as variables of a clause. In 
Figure 4, the arguments, in order, are verb (V), protagonist 
(PR), goal (G), beneficiary (B), and focus. The arguments 
with the same variable name must be equal. Hence, in the 
Figure, focus of the clause must be equal to the protagonist 
(PR). 

sentence (clause 
(Verb, Prot, Goal, Benef, Focus} ) 

~> 

nplist (Focus}, 
verb_phrase (Verb, Prot, Goal, Benef, Focus) . 

Figure 3: Passive/Active Constraint in DCG 

1.3 Focus Shift Constraint  
This constraint, identified and formalized by Derr and 

McKeown [3], constrains simple and complex sentence 
generation. Any generation system that generates texts and 
not just sentences must determine when to generate a 
sequence of simple sentences and when to combine simple 
sentences to form a more complex sentence. Derr and 
McKcown noted that when a speaker wants to focus on a 
single concept over a sequence of sentences, additional 
information may need to be presented about some other 
concept. In such a case, the speaker will make a temporary 
digression to the other concept, but will immediately 
continue to focus on the first. To signal that focus does not 
shift, the speaker can use subordinate sentence structure 
when presenting additional information. 

The focus constraint can be stated formally as follows: 
assume input of three propositions, PI, P2, and P3 with 

/* V = Verb; PR = Prot; G ~ Goal; 
B = Beneficiary; last argument - focus */ 

• verb_phrase (pred (V, NEG, T, AUX}, PR, G, B, PR) 

-->verb (V, NEG, T, AUX, N, active), 
nplist (G), 
pp (to, B). 

verb_phrase (pred (V, NEG, T, AUX), PR, G, B, G) 

-->verb (V, NEG, T, AUX, N, passive), 
pp (to, B), 
p p  (by, PR). 

verbphrase (pred (V, NEG, T, AUX), PR, G, B, B) 

-->verb (V, NEG, T, AUX, N, passive), 
nplist (G), 
pp (by, PR). 

Figure 4: Passive/Active Construction in DCG 

arguments indicating focus F1, F2, and F3. 2 The constraint 
states that if F1 = F3, Fl does not equal F2 and F2 is a 
constituent of PI, the generator should produce a complex 
sentence consisting of PI, as main sentence with P2 
subordinated to it through P2's focus, followed by a second 
sentence consisting of P3. In FUG, this constraint can be 
stated in three parts, separately from other syntactic rules 
that will apply: 

I. Test that focus remains the same from PI to 
P3. 

2. Test that focus changes from PI to P2 and that 
the focus of I'2 is some constituent of PI. 

3. If focus does shift, form a new constituent, a 
complex sentence formed from PI and P2, and 
order it to occur before P3 in the output (order 
is specified by patterns in FUG). 

Figure 5 presents the constraint, while Figure 6 shows the 
construction of the complex sentence from P1 and P2. 
Unification and paths simplify the representation of the 
constraint. Paths, indicated by angle brackets (<>), allow the 
grammar to point to the value of other constituents. Paths 
and unification are used in conjunction in Part 1 of Figure 5 
to state that the value of focus of P1 should unify with the 

2In the systems we are describing, input is specified in a case frame 
formalism, with each pmpositioa indicating protagonist (prot), goal, 
beneficiary (benef), verb, and focus. In these systems, iexical choice is 
made before entering the grammar, thus each of these arguments includes 
the word to be used in the sentence. 
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(alt 
% Is focus the same in P1 and P3? 

1.((PI ((focus <^ P3 focus>))) 

% Does not apply if focus 
% stays the same 

2. (alt (((PI ((focus <^ P2 focus>)))) 

( % Focus shifts; Check that P2 
% focus is a constituent of 
% PI. 
(alt 
(((PI ((prot <^ P2 focus>)))) 
((PI ((goal <a P2 focus>)))) 
((P1 ((benef 

<^ P2 focus>)))))) 
% Form new constituent from P1 
% and P2 and order before P3. 

3. (pattern (PIP2subord P3) ) 
(P3 (cat s) ) 
% New constituent is of category 
% subordinate. 
(PIPRsubord 
% Place P2 focus into 
% subordinate as it will 
% be head of relative clause. 
(same <^ P2 focus>) 
(cat subordinate) ) ) ) ) ) 

Figure 5: Focus Shift Constraifit in FUG 

value of focus of  P3 (i.e., these two values should be equal). 3 
Unification also allows for structure to be built in the 
grammar  and added to the input. In Part  3, a new const i tuent  
P1P2subord is built. The full structure will result  f rom 
unifying P1P2aubord with the category subordinate, in 
which the syntactic structure is represented. The grammar  
for this category is shown in Figure 6. It constructs a relative 
clause 4 from P2 and attaches it to the consti tuent  in P1 to 
which focus shifts in 1:'2. Figure 7 shows the form of  input 
requixed for this constraint  and the output that would be 
produced. 

3A path is used to expect the focus of P3. An atuibute value pair such 
as (focus <P3 focus>) determines the value for focus by searching for an 
amibute P3 in the list of am'ibutes (or Functional Description if'D)) in 
whichfocus occurs. The value of P3'sfocua is then copied in as the value 
of focus. In order to refer to attributes at any level in the m~e formed by 
the nestsd set of FDs, the formalism includes an up-arrow (^). For 
example, given the attribum value pair (attrl <^ am'2 attt3>), the up- 
arrow indica,,'s that the system should look for attr2 in the FD containing 
the FD ofattrl. Since P3 occurs in the FD containing PI, an up-arrow is 
used to specify that the system should look for the attribute P3 in the FD 
containing PI (i.e., one level up). More up-arrows can be used if the fast 
attribute in the path occurs in an even higher level FD. 

4The entire grammar for relative clauses is not shown. In particular, it 
would have to add a relative pronoun to the input. 

( (cat subordinate) 
% Will consist of one compound sentence 
(pattern (s)) 
(s ((cat s))) 
% Place contents of P1 in s. 
(s <^^ PI>) 
% Add the subordinate as a 
% relative clause modifying SAME. 

( s ̂ me 
% Place the new subordinate made from 
% P2 after head. 

((pattern (... head newsubord ...)) 
% Form new subordinate clause 

(newsubord 
% It's a relative clause. 

(cat s-bar) 
(head <^ head>) 

% All other constituents in 
% newsubord come from P2. 
(same ( (newsubord <^ ^ P2>) 

% Unify same with appropriate 
% constituent of P1 to attach 
% relative clause 

(s 
((alt (((prot <^ same>)) 

( (goal <^ same>)) 
( ( b a n e f  <^ same>)  ) ) ) ) ) ) 

Figure 6: Forming the Subordinate Clause in FUG 

In the DCG formalism, the constraint is divided 
between a rule and a test on the rule. The rule dictates focus 
remain the same from P1 to P3 and that P2's focus be a 
constituent of P1, while the test states that P2's focus must 
not equal P l ' s .  Second, because the DCG is essentially a 
context free formalism, a duplication of rules for three 
different cases of the construction is required, depending on 
whether focus in P2 shifts to protagonist, goal or beneficiary 
of PI. Figure g shows the three rules needed. Each rule 
takes as input three clauses (the first three clauses listed) and 
produces as output a clause (the last listed) that combines P1 
and P2. The test for the equality of loci in Pl and P3 is done 
through PROLOG unification of variables. As in the 
previous DCG example, arguments with the same variable 
name must be equal. Hence, in the first rule, focus of the 
third clause (FI) must be equal to focus of the first clause 
(also FI). The shift in focus from P1 to P2 is specified as a 
condition (in curly brackets {}). The condition in the first 
rule of Figure 8 states that the focus of the second clause 
(PR l) must not be the same as the focus of the fast clause 
if:l). 

Note that the rules shown in Figure 8 represent  
primarily the constraint (i.e., the equivalent of Figure 5). 
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INPUT: 
( (Pl  ( (prot ((head girl))) 

(goal ((head cat))) 
(verb-group ((verb . . . . .  pet))) 
(focus <prot>)))) 

(P2 (prot ((head =ms cat)) 
(goal ((head ~ mouse)) 
(verb-group ((verb .ms caught))) 
(focus <prot>)))) 

(P3 ((prot ((head ~- girl))) 
(goal ((head ~m happy))) 
(verb-group ((verb ~ be))) 
(focus <prot>))))) 

OUTPUT - The girl pet the cat that caught 
the mouse. The girl was happy. 

Figure 7: Input and Output for FUG 

The building of structure, dictating how to construct the 
relative clause from P2 is not shown, although these rules do 
show where to attach the relative clause. Second, note that 
the conswaint must be duplicated for each case where focus 
can shift (i.e., whether it shifts to pint, goal or beneficiary). 

1.4 C o m p a r i s o n s  W i t h  O t h e r  G e n e r a t i o n  Sys tem 
G r a m m a r s  

The DCG's duplication of rules and constraints in the 
examples given above results because of the mechanisms 
provided in DCG for representing conswaints. Constraints 
on consdtuent ordering and structure are usually expressed in 
the context free portion of the granmmr;, that is, in the left 
and fight hand sides of rules. Constraints on when the 
context free rules should apply are usually expressed as tests 
on the rules. For generation, such constraints include 
pragmatic constraints on free syntactic choice as well as any 
context sensitive constraints. When pragmatic constraints 
apply to more than one ordering constraint on constituents, 
this necessarily means that the constraints must be duplicated 
over the rules to which they apply. Since DCG allows for 
some constraints to be represented through the unification of 
variables, this can reduce the amount of duplication 
somewhat. 

FUG allows pragmatic constraints to be represented as 
meta-rules which are applied to syntactic rules expressing 
ordering constraints through the process of unification. This 
is similar to Chomsky's [2] use of movement and focus rules 
to transform the output of context free rules in order to avoid 
rule duplication. It may be possible to factor out constraints 
and represent them as recta-rules in a DCG, but this would 
involve a non-standard implementation of the  DCG (for 
example, compilation of the DCG to another grammar 
formalism which is capable of representing constraints as 
meta-rules). 

/* Focus of P2 is protagonist of PI (PR1) 
Example: the cat was petted by the girl 

that brought it. the cat purred */ 

foc_shift (clause (VI, PR1, GI, B1, FI), 
clause (V2, PR2, G2, B2, PRI) , 
clause (V3, PR3, G3, B3, F1), 
clause (Vl, 

[np (PRI, clause (V2, PR2, G2, B2, PRI) ) ], 
GI, BI, FI) ) 

/* Test: focus shifts from P1 to P2 */ 
(~I \-~ FI} 

/* Focus of P2 is goal of P1 (GI) 
Example: the girl pet the cat that 
caught the mouse, the girl was happy */ 

foc shift (clause (Vl, PRI, GI, BI, FI), 
I 

clause (V2, PR2, G2, B2, GI), 
clause (V3, PR3, G3, B3, FI) , 
clause (Vl, PRI, 

[np (GI, clause (V2, PR2, G2, B2, GI) ) ], 
~i,Fl) ) 

/* Test: focus shifts from P1 to P2 */ 
{GI \~m FI} 

/* Focus of P2 is Beneficiary of P1 (BI) 
Example: the mouse was given to the cat 
that was hungry, the mouse was not 
happy */ 

foc shift (clause (Vl, PRI, G1, B1, FI), 
~ause (V2, PR2, G2, B2, BI) , 
clause (V3, PR3, G3, B3, FI), 
clause (VI, PRI, GI, 

[np (B1, clause (V2, PR2, G2, B2, BI) ) ], 
r l )  ) 

/* Test: focus shifts from P1 to P2 */ 
(~I V-= r l }  

Figure 8: Focus Shift Constraint in DCG 

Other grammar formalisms that express constraints 
through tests on rules also have the same problem with rule 
duplication, sometimes even more severely. The use of a 
simple augmented context free grammar for generation, as 
implemented for example in a bottom-up parser or an 
augmented transition network, will require even more 
duplication of constraints because it is lacking the unification 
of variables that the DCG includes. For example, in a 
bottom-up generator implemented for word algebra problem 
generation by Ment [10], constraints on wording of the 
problem are expressed as tests on context free rules and 
natural language output is generated through actions on the 
rules. Since Ment controls the linguistic difficulty of the 
generated word algebra problem as well as the algebraic 
difficulty, his constraints determine when to generate 

100 



particular syntactic constructions that increase wording 
difficulty. In the bottom-up generator, one such instructional 
consuaint must be duplicated over six different syntactic 
rules, while in FUG it could be expressed as a single 
constraint. Ment's work points to interesting ways 
instructional constraints interact as well, further complicating 
the problem of clearly representing constraints. 

In systemic grammars, such as NIGEL [6], each choice 
point in the grmm'nar is represented as a system. The choice 
made by a single system often determines how choice is 
made by other systems, and this causes an interdependence 
among the systems. The grammar of English thus forms a 
hierarchy of systems where each branch point is a choice. 
For example, in the part of the grammar devoted to clauses, 
one of the Rrst branch points in the grammar would 
determine the voice of the sentence to be generated. 
Depending on the choice for sentcmce voice, other choices 
for ovcrali sentence structure would be made. Constraints on 
choice arc expressed as LISP functions called choosers at 
each branch point in the grammar. Typically a different 
chooser is written for each system of the grammar. Choosers 
invoke functions called inquiry operators to make tests 
determining choice. Inquiry operators are the primitive 
functions representing constraints and are not duplicated in 
the grammar. Calls to inquiry operators from different 
choosers, however, may be duplicated. Since choosers are 
associated with individual syntactic choices, duplications of 
calls is in some ways similar to duplication in augmented 
context free grammars. On the other hand, since choice is 
given an explicit representation and is captured in a single 
type of rule called a system, representation of constraints is 
made clearer. This is in contrast to a DCG where constraints 
can be distributed over the grammar, sometimes represented 
in tests on rules and sometimes represented in the rule itself. 
The systcmic's grammar use of features and functional 
categories as opposed to purely syntactic categories is 
another way in which it, like FUG, avoids duplication of 
rules. 

It is unclear from published reports how constraints are 
represented in MUMBLE [7]. Rubinoff[16] states that 
constraints are local in MUMBLE, and thus we suspect that 
they would have to be duplicated, but this can only be 
verified by inspection of the actual grammar. 

2 I m p r o v e d  Ef f i c i ency  
Our implementation of FUG is a reworked version of 

the tactical component for TEXT [9] and is implemented in 
PSL on an IBM 4381 as the tactical component for the 
TAILOR system [11; 12]. TAILOR's FOG took 2 minutes 
and 10 seconds of real time to process the 57 sentences from 
the appendix of TEXT examples in [9] (or 117 seconds of 
CPU time). This is an average of 2.3 seconds real time per 
sentence, while TEXT's FUG took, in some cases, 5 minutes 
per sentence. 5 This compares quite favorably with 
Rubinoff's adaptation [16] of MUMBLE[7] for TEXT's 
strategic component. Rubinoff's MUMBLE could process 
all 57 sentences in the appendix of TEXT examples in 5 
minutes, yielding an average of 5 seconds per sentence. 

SWe use real times for our comparisons in ordea to make an analogy 
with Rubinoff [16], who also used real times. 

Thus our new implementation results in yet a better speed-up 
(130 times faster) than Rubinoff's claimed 60 fold speed-up 
of the TEXT tactical component. 

Note, however, that Rubinoff's comparison is not at all 
a fair one. First, Rubinoff's comparisons were done in real 
times which are dependent on machine loads for time- 
sharing machines such as the VAX-780, while Symbolics 
real time is essentially the same as CPU time since it is a 
single user workstation. Average CPU time per sentence in 
TEXT is 125 seconds. 6 This makes Rubinoff's system only 
25 times faster than TEXT. Second, his system runs on a 
Symbolics 3600 in Zctalisp, while the original TEXT tactical 
component ran in Franzlisp on a VAX 780. Using Gabriel's 
benchmarks [4] for Boyer's theorem proving unification 
based program, which ran at 166.30 seconds in Franzlisp on 
a Vax 780 and at 14.92 seconds in Symbolics 3600 
Commonl.isp, we see that switching machines alone yields a 
11 fold speed-up. This means Rubinoff's system is actually 
only 2.3 times faslcr than TEXT. 

Of course, this means our computation of a 130 fold 
speed-up in the new implementation is also exaggerated 
since it was computed using real time on a faster machine 
too. Gabriel's benchmarks arc not available for PSL on the 
IBM 4381, 7 but we are able to make a fair comparison of the 
two implementations since we have both the old and new 
versions of FUG running in PSL on the IBM. Using CPU 
times, the new version proves to be 3.5 times faster than the 
old tactical component, e 

Regardless of the actual amount of spc~-up achieved, 
our new version of FUG is able to achieve similar speeds to 
MUMBLE on the same input, despite the fact that FUG uses 
a non-deterministic algorithm and MUMBLE uses a 
deterministic approach. Second, regardless of comparisons 
between systems, an average of 2.3 seconds real time per 
sentence is quite acceptable for a practical generation 
system. 

We were able to achieve the speed-up in our new 
version of FUG by making relatively simple changes in the 
unification algorithm. The fast change involved 
immediately selecting the correct category for unification 
from the grammar whenever possible. Since the grammar is 
represented as a llst of possible syntactic categories, the first 
stage in unification involves selecting the correct category to 
unify with the input. On fast invoking the unifier, this 
means selecting the sentence level category and on unifying 
each constituent of the input with the grammar, this means 
selecting the category of the constituem. In the old 
grammar, each category was unified successively until the 
correct one was found. In the current implementation, we 
retrieve the correct category immediately and begin 

¢'rhis was computed using TEXT's appendix where CPU time is given 
in units corresponding to 1/60 second. 

"/Gabriel's benchmarks are available only for much larger IBM, 
mainfranzs. 

SThe new version took 117 CPU seconds to process all sentences, or 2 
CPU seconds per sentence, while the old version took 410 CPU seconds 
to process all sentences, or 7 CPU seconds per sentence. 
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unification directly with the correct category. Although 
unification would fail immediately in the old version, 
directly retrieving the category saves a number of recursive 
calls. 

Unification with the lexicon uses the same technique in 
the new version. The correct lexicai item is directly retrieved 
from the grammar for unification, rather than unifying with 
each entry, in the lexicon successively. 

Another change involved the generation of only one 
sentence for a given input. Although the grammar is often 
capable of generating more than one possible sentence for its 
input 9, in practice, only one output sentence is desired. In the 
old version of the unifier, all possible output sentences were 
generated and one was selected. In the new version, only one 
successful sentence is actually generated. 

Finally, other minor changes were made to avoid 
recursive calls that would result in failure. Our point in 
enumerating these changes is to show that they arc extremely 
simple. Considerably more speed-up is likely possible if 
further implementation were done. In fact, we recently 
received from ISI a version of the FUG unifier which was 
completely rewritten from our original code by Jay Myers. It 
generates about 6 sentences per seconds on the average in 
Symbolics Commonlisp. Both of these implementations 
demonstrate that unification for FUG can be done efficiently. 

3 C o n c l u s i o n s  
We have shown how constraints on generation can be 

represented separately from representation of syntactic 
structure in FUG. Such an ability is attractive because it 
means that the constraint can be stated once in the grammar 
and can be applied to a number of different syntactic rules. 
In contrast, m augmented context free based generation 
systems, constraints must be stated locally as part of 
individual syntactic rules to which they apply. As a result' 
constraints must be duplicated. Since a main focus in 
language generation research has been to identify constraints 
on choice, the ability to represent constraints clearly and 
efficiently is an important one. 

Representing constraints separately is only useful for 
global constraints, of course. Some constraints in language 
generation are necessarily local and must be represented in 
FUG as they would in augmented context free based 
systems: as part of the syntactic structures to which they 
apply. Furthermore, information for some constraints may 
be more easily represented outside of the grammar. In such 
cases, using a function caLl to other components of the 
system, as is done in NIGEL, is more appropriate. In fact, 
this ability was implemented as part of a FUG in 
TELEGRAM [I]. But for global constraints for which 
information is available in the grammar, FUG has an 
advantage over other systems. 

Our reimplementation of  FUG has demonstrated that 
efficiency is not as problematic as was previously believed. 
Our version of FUG, running in PSL on an IBM 4381, runs 

9Often the surface sentences gen~ated are the same, but the syntactic 
structure built in producing the sentence differs. 

faster than Rubinoff's version of MUMBLE in Symbolics 
3600 Zetalisp for the same set of input sentences. 
Furthermore, we have shown that we were able to achieve a 
slightly better speed-up over TEXT's old tactical component 
than Rubinoff's MUMBLE using a comparison that takes 
into account different machines. Given that FUG can 
produce sentences in time comparable to a deterministic 
generator, efficiency should no longer be an issue when 
evaluating FUG as a generation system. 
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