
A LOGICAL SEMANTICS FOR FEATURE STRUCTURES

Robert T. Kasper and William C. Rounds
Electrical Engineering and Computer Science Department

University of Michigan
Ann Arbor, Michigan 48109

A b s t r a c t

Unification-based grammar formalisms use struc-
tures containing sets of features to describe lin-
guistic objects. Although computational algo-
rithms for unification of feature structures have
been worked out in experimental research, these
algcwithms become quite complicated, and a more
precise description of feature structures is desir-
able. We have developed a model in which de-
scriptions of feature structures can be regarded
as logical formulas, and interpreted by sets of di-
rected graphs which satisfy them. These graphs
are, in fact, transition graphs for a special type
of deterministic finite automaton.

This semantics for feature structures extends
the ideas of Pereira and Shieber [11], by providing
an interpretation for values which are specified
by disjunctions and path values embedded within
disjunctions. Our interpretati6n differs from that
of Pereira and Shieber by using a logical model
in place of a denotational semantics. This logical
model yields a calculus of equivalences, which can
be used to simplify formulas.

Unification is attractive, because of its gener-
ality, but it is often computations/]), inefficient.
Our mode] allows a careful examination of the
computational complexity of unification. We
have shown that the consistency problem for for-
mulas with disjunctive values is NP-complete. To
deal with this complexity, we describe how dis-
junctive values can be specified in a way which
delays expansion to disjunctive normal form.

1 B a c k g r o u n d :
U n i f i c a t i o n in G r a m m a r

Several different approaches to natural lan-
guage grammar have developed the notion of
feature structures to describe linguistic objects.
These approaches include linguistic theories, such
as Generalized Phrase Structure Grammar (GPSG) [2],
Lexical Functional Grammar (LFG) [4], and Sys-

temic Grammar [3]. They also include grammar
formalisms which have been developed as com-
putational tools, such as Functional Unification
Grammar (FUG) [7], and PATR-II [14]. In these
computational formalisms, unificat/on is the pri-
mary operation for matching and combining fea-
ture structures.

Feature structures are called by several differ-
ent names, including f-structures in LFG, and
functional descriptiona in FUG. Although they
differ in details, each approach uses structures
containing sets of attributes. Each attribute is
composed of a label/value pair. A value may be
an atomic symbol, hut it may also be a nested
feature structure.

The intuitive interpretation of feature struc-
tures may be clear to linguists who use them,
even in the absence of a precise definition. Of-
ten, a precise definition of a useful notation be-
comes possible only after it has been applied to
the description of a variety of phenomena. Then,
greater precision may become necessary for clari-
fication when the notation is used by many differ-
ent investigators. Our model has been developed
in the context of providing a precise interpreta-
tion for the feature structures which are used in
FUG and PATR-II. Some elements of this logi-
cal interpretation have been partially described
in Kay's work [8]. Our contribution is to give
a more complete algebraic account of the logi-
cal properties of feature structures, which can be
used explicitly for computational manipulation
and mathematical analysis. Proofs of the math-
ematical soundness and completeness of this log-
ical treatment, along with its relation to similar
logics, can be found in [12].

2 D i s j u n c t i o n a n d
N o n - L o c a l V a l u e s

Karttunen [5] has shown that disjunction and
negation are desirable extensions to PATR-II
which are motivated by a wide range of linguistic

257

die :
,,¢reement : number : 8ia¢

aumber : pl]

Figure 1: A Feature Structure containing Value
Disjunction.

phenomena. He discusses specifying attributes by
disjunctive values, as shown in Figure 1. A ~alue
disjuactioa specifies alternative values of a single
attribute. These alternative values may be either
atomic or complex. Disjunction of a more gen-
eral kind is an essential element of FUG. Geaera/
disjunction is used to specify alternative groups
of multiple attributes, as shown in Figure 2.

Karttunen describes a method by which the ba-
sic unification procedure can be extended to han-
dle negative and disjunctive values, and explains
some of the complications that result from intro-
ducing value disjunction. When two values, A
and B, are to be unified, and A is a disjunction,
we cannot actually unify B with both alternatives
of A, because one of the alternatives may become
incompatible with B through later unifications.
Instead we need to remember .a constraint that
at least one of the alternatives of A must remain
compatible with B.

An additional complication arises when one of
the alternatives of a disjunction contains a value
which is specified by a non-local path, a situa-
tion which occurs frequently in Functional Unifi-
cation Grammar. In Figure 2 the obj attribute in
the description of the adjunct attribute is given
the value < actor >, which means that the obj
attribute is to be unified with the value found
at the end of the path labeled by < actor > in
the outermost enclosing structure. This unifica-
tion with a non-local value can be performed only
when the alternative which Contains it is the only
alternative remaining in the disjunction. Oth-
erwise, the case = objective attribute might be
added to the value of < actor > prematurely,
when the alternative containing adjunct is not
used. Thus, the constraints on alternatives of a
disjunction must also apply to any non-local val-
ues contained within those alternatives. These
complications, and the resulting proliferation of
constraints, provide a practical motivation for the
logical treatment given in this paper. We suggest
a solution to the problem of representing non-

local path values in Section 5.4.

3 L o g i c a l F o r m u l a s for
F e a t u r e S t r u c t u r e s

The feature structure of Figure 1 can also be
represented by a type of logical formula:

die = case : (hOrn V acc)

A a ~ ' e e m e n t : (

(gender : f e rn A number : sing)

V number : pl)

This type of formula differs from standard propo-
sitional logic in that a theoretically unlimited set
of atomic values is used in place of boolean val-
ues. The labels of attributes bear a superficial
resemblance to modal operators. Note that no
information is added or subtracted by rewriting
the feature matrix of Figure 1 as a logical formula.
These two forms may be regarded as notational
variants for expressing the same facts. While fea-
ture matrices seem to be a more appealing and
natural notation for displaying linguistic descrip-
tions, logical formulas provide a precise interpre-
tation which can be useful for computational and
mathematical purposes.

Given this intuitive introduction we proceed to
a more complete definition of this logic.

4 A L o g i c a l S e m a n t i c s

As Pereira and Shieber [11] have pointed out, a
grammatical formalism can be regarded in a way
similar to other representation languages. Often
it is useful to use a representation language which
is disctinct from the objects it represents. Thus,
it can be useful to make a distinction between the
domain of feature structures and the domain of
their descriptions. As we shall see, this distinc-
tion allows a variety of notational devices to be
used in descriptions, and interpreted in a consis-
tent way with a uniform kind of structure.

4.1 Domain of Feature
Structures

The PATR-II system uses directed acyclic
graphs (dags) as an underlying representation for
feature structures. In order to build complex
feature structures, two primitive domains are re-
quired:

258

c a t ~ S

subj = [case = nomina t i ve]

actor = < sub.7' >
voice = passive
goal = < subj >

cat = pp
adjunct = prep = by

obj = < actor > = [case = objective]

mood = declarative]
mood interrogat ive] f

Figure 2: Disjunctive specification containing non-local values, using the notation of FUG.

1. atoms (A)

2. labels (L)

The elements of both domains are symbols, usu-
ally denoted by character strings. Attribute I~
belt (e.g., acase~) are used to mark edges in a
dag, and atoms (e.g., "gen z) are used as prim-
itive values at vertices which have no outgoing
edges.

A dag may also be regarded as a transition
graph for a partially specified deterministic fi-
nite automaton (DFA). This automaton recog-
nises strings of labels, and has final states which
are atoms, as well as final states which encode no
information. An automaton is formally described
by a tuple

.~ = (Q,L , 5,qo, F)

where L is the set of labels above, 6 is a partial
function from Q × L to Q, and where certain el-
ements of F may be atoms from the set A. We
require that ~ be connected, acyclic, and have no
transitions from any final states.

DFAs have several desirable properties as a do-
main for feature structures:

1. the value of any defined path can be denoted
by a state of the automaton;

2. finding the value of a path is interpreted by
running the automaton on the path string;

3. the automaton captures the crucial proper-
ties of shared structure:

(a) two paths which axe unified have the
same state as a value,

(b) unification is equivalent to a state-
merge operation;

4. the techniques of automata theory become
available for use with feature structures.

A consequence of item 3 above is that the dis- ,"
tinction between type identity and token identity
it clearly revealed by an automaton; two objects
are necessarily the same token, if and only if they
are represented by the same state.

One construct of automata theory, the Nerode
relation, is useful to describe equivalent paths. If
#q is an automaton, we let P(A) be the set of all
paths of ~4, namely the set {z E L* : 5(q0, z)
is defined }. The Nerode relation N (A) is the
equivalence relation defined on paths of P(~) by
letting

4 . 2 D o m a i n o f D e s c r i p t i o n s :

L o g i c a l F o r m u l a s

We now define the domain FML of logical for-
mulas which describe feature structures. Figure 3
defines the syntax of well formed formulas. In the
following sections symbols from the Greek alpha-
bet axe used to stand for arbitrary formulas in
FML. The formulas N I L and T O P axe intended
to convey gno information z and ~inconsistent in-
formation s respectively. Thus, N I L corresponds
to a unification variable, and T O P corresponds
to unification failure. A formula l : ~b would indi-
cate that a value has attribute l, which is itself a
value satisfying the condition ~b.

259

N I L
T O P
a E A
~< 191 > , . . . , < 19, >] where each 19~ E L*
l : ~ b w h e r e l E L a n d ~ b E F M L

¢v¢

Figure 3: The domain, FML, of logical formulas.

Conjunction and disjunction will have their or-
dinary logical meaning as operators in formulas.
An interesting result is tha t conjunction can be
used to describe unification. Unifying two struc-
tures requires finding a structure which has all
features of both structures; the conjunction of
two formulas describes the structures which sat-
isfy all conditions of bo th formulas.

One difference between feature structures and
their descriptions should be noted. In a feature
structure it is required that a part icular at t r ibute
have a unique value, while in descriptions it is
pouible to specify, using conjunction, several val-
ues for the same attribute, as in the formula

s bj : (19e .so . : 3) ^ s bj: :

A feature s tructure satisfying such a description
will contain a unique value for the attribute,
which can be found by unifying all of the values
tha t are specified in the description.

Formulas may also contain sets of paths, de-
noting equivalence classes. Each element of the
set represents an existing path start ing from the
initial state of an automaton, and all paths in the
set are required to have a common endpoint. If
E = I< z >, < y >~, we will sometimes write E
as < z > = < y >. This is the notat ion of PATR-
II for pairs of equivalent paths. In subsequent
sections we use E (sometimes with subscripts) to
stand for a set of paths tha t belong to the same
equivalence class.

4 . 3 In t e rp re t a t i on of Formulas

We can now state inductively the exact con-
ditions under which an au tomaton Jl satisfies a
formula:

1. A ~ N I L always;

2. 11 ~ T O P never;

3. /l ~ a ¢=~ /I is the one-state automaton a
with no transitions;

4. A ~ E ¢=~ E is a subset of an equivalence
class of N(~);

5. A ~ l : cb ¢=~ A / l is def ined
and A/ I ~ ~;

where ~ / I is defined by a subgraph of the au-
tomaton A with start state 5(qo, l), tha t is
ira = (Q,L, 6, qo, F),
then .~/l = (Q' , L, 6, 6(qo, l), f ') ;
where Qi and F ' are formed from Q and F by
removing any states which are unreachable from
6(q0, 0.

Any formula can be regarded as a specification
for the set of au tomata which satisfy it. In the
case of conjunctive formulas (containing no oc-
curences of disjunction) the set of au tomata satis-
fying the formula has a unique minimal element,
with respect to subsumption.* For disjunctive
formulas there may be several minimal elements,
but always a finite number.

4 . 4 C a l c u l u s o f F o r m u l a s

It is possible to write many formulas which
have an identical interpretation. For example, the
formulas given in the equation below are satisfied
by the same set of au tomata .

case : (gen V ace V dat) A case : ace = case : ace

In this simple example it is clear tha t the right
side of the formula is equivalent to the left side,
and tha t it is simpler. In more complex examples
it is not always obvious when two formulas are
equivalent. Thus, we are led to state the laws of
equivalence shown in Figure 4. Note tha t equiv-
alence (26) is added only to make descriptions of
cyclic structures unsatisfiable.

1A subsumption order can be defined for the domain of
automata, just as it is defined for dags by Shieber [15].
A formal definition of subsurnption for this domain ap-
pears in [12].

260

Failure:

l : T O P = T O P

Conjunction (unification}:

¢ A TOP = TOP

C A N I L = ~b

a A b = T O P , Va, b 6 A a n d a # b

a A l : ¢ = T O P

/:¢AZ:,#, = t:(¢A¢)
Disjunction:

¢ v N I L = N I L

¢vTOP =

z : ¢ v ~ : ¢ = t : (¢ v ¢)
Commutative:

¢A¢ = ¢^¢
¢v¢ = ¢ v ¢

Associative:

(¢ ^ ¢) ^ x = ¢ ^ (¢ ^ x)
(¢ v ¢) v x = ¢ , v (¢ v x)

Idempotent:

¢A~ = ~b

4 v 4 = @
Distributive:

(~v¢)^x = (~^x) v(¢^x)
(~ ,A¢)Vx = (~ V X) ^ (¢ V X)

Absorption:

(¢A¢)V~ = ~,

(¢v¢)A¢ = 4,

Path Equivalence:

E1 AE2
E, ^ E2

E A z : c

E

l : E

{,)
E

----- E2 whenever E1 _C E2

= E1 ^ (E2 u { z y I ~ e El})
for any y such that 3 z : z ~ El and zy E E2

-- E A (A y : c) w h e r e x e E
glEE

= E A {z} if" z is a prefix of a string in E

= N I L

= T O P for any E such that there are strings

z, z y E E and y # e

(1)

(2)
(3)
(4)
(s}
(6}

(7)
is)
(9)

(1o)
(11)

(n)

(13)

(14)
(15)

(16)
(17)

(18)
(19)

(20)
(21)

(22)

(23)

(24)

(2s)
(26)

Figure 4: Laws of Equivalence for Formulas.

261

5 C o m p l e x i t y o f D i s j u n c t i v e
D e s c r i p t i o n s

To date, the primary benefit of using logical
formulas to describe feature structures has been
the clarification of several problems that arise
with disjunctive descriptions.

5 . 1 N P - c o m p l e t e n e s s o f c o n s i s t e n c y
problem f o r f o r m u l a s

One consequence of describing feature struc-
tures by logical formulas is that it is now rel-
atively easy to analyse the computational com-
plexity of various problems involving feature
structures. It turns out that the satisfiability
problem for CNF formulas of propositional logic
can be reduced to the consistency (or satisfia-
bility) problem for formulas in FML. Thus, the
consistency problem for formulas in FML is NP-
complete. It follows that any unification algo-
r i thm for FML formulas will have non-polynomial
worst-case complexity (provided P ~ NP!), since
a correct unification algorithm must check for
consistency.

Note that disjunction is the source of this com-
plexity. If disjunction is eliminated from the do-
main of formulas, then the consistency problem is
in P. Thus systems, such as the original PATR-II,
which do not use disjunction in their descriptions
of feature structures, do not have to contend with
this source of NP-completeness.

5 . 2 D i s j u n c t i v e N o r m a l F o r m

A formula is in disjt, neti,~s normal form (DNF)
if and only if it has the form ~1 V . . . v ~bn, where
each ~i is either

1. s E A

2. ~bx A . . . A ~bm, where each ~bl is either

(a) lx : . . . : lk : a, where a E A, and no
path occurs more than once

(b) [< pl > , . . . , < p~ >], where each p~ E
L*, and each set denotes an equivalence
class of paths, and all such sets disjoint.

The formal equivalences given in Figure 4 al-
low us to transform any satisfiable formula into
its disjunctive normal form, or to T O P if it is
not satisfiable. The algorithm for finding a nor-
mal form requires exponential time, where the

exponent depends on the number of disjunctions
in the formula (in the worst case).

5.3 Avoiding expansion to DNF
Most of the systems which are currently used

to implement unification-based grammars depend
on an expansion to disjunctive normal form in
order to compute with disjunctive descriptions. 2
Such systems are exemplified by Definite Clause
Grammar [10], which eliminates disjunctive terms
by multiplying rules which contain them into al-
ternative clauses. Kay's parsing procedure for
Functional Unification Grammar [8] also requires
expanding functional descriptions to DNF before
they are used by the parser. This expansion may
not create much of a problem for grammars con-
tainlng a small number of disjunctions, but if the
grammar contains 100 disjunctions, the expan-
sion is clearly not feasible, due to the exponential
sise of the DNF.

Ait-Kaci [1] has pointed out that the expan-
sion to DNF is not always necessary, in work with
type structures which are very similar to the fea-
ture structures that we have described here. Al-
though the NP-completeness result cited above
indicates that any unification algorithm for dis-
junctive formulas will have exponential complex-
ity in the worst case, it is possible to develop algo-
ri thms which have an average complexity that is
less prohibitive. Since the exponent of the com-
plexity function depends on the number of dis-
junctions in a formula, one obvious way to im-
prove the unification algorithm is to reduce the
number of disjunctions in the formula be/ors ez-
pan.sion to DNF. Fortunately the unification of
two descriptions frequently results in a reduction
of the number of alternatives that remain consis-
tent. Although the fully expanded formula may
be required as a final result, it is expedient to de-
lay the expansion whenever possible, until after
any desired unifications are performed.

The algebraic laws given in Figure 4 provide
a sound basis for simplifying formulas contain-
ing disjunctive values without expanding to DNF.
Our calculus differs from the calculus of Ait-
Kaci by providing a uniform set of equivalences
for formulas, including those that contain dis-
junction. These equivalences make it possible to ~

2One except ion is K a r t t u n e n ' s implementa t ion , which
was descr ibed in Section 2, b u t it handles only value
d is junct ions , and does no t hand le non-local p a t h values
embedded wi th in d is junct ions .

262

eliminate inconsistent terms before expanding to
DNF. Each term thus eliminated may reduce, by
as much as half, the sise of the expanded formula.

5 . 4 Represent ing Non-local Pa ths

The logic contains no direct representation for
non-local paths of the type described in Sec-
tion 2. The reason is that these cannot be in-
terpreted without reference to the global con-
text of the formula in which they occur. Recall
that in Functional Unification Grammar a non-
local path denotes the value found by extracting
each of the attributes labeled by the path in suc-
cessively embedded feature structures, beginning
with the entire structure currently under consid-
eration. Stated formally, the desired interprets-
tion of I :< p > is

A ~ l : < p > in the context o f ~

3B ~ and 3 w E L * :

E / t o = A a n d 5 (qo , , l) = 5(qo, ,p) .

This interpretation does not allow a direct com-
parison of the non-local path value with other
values in the formula. It remains an unknown
quantity unless the environment is known.

Instead of representing non-local paths directly
in the logic, we propose that they can be used
within a formula as a shorthand, but that all
paths in the formula must be expanded before
any other processing of the formula. This path

expans ion is carried out according to the equiva~
lences 9 and 6.

After path expansion all strings of labels in a
formula denote transitions from a common origin,
so the expressions containing non-local paths can
be converted to the equivalence class notation,
using the schema

11 : . . . : I n : < p > = [<11 ,In > , < p >].

Consider the passive voice alternative of the de-
scription of Figure 2, shown here in Figure 5.
This description is also represented by the first
formula of Figure 6. The formulas to the right in
Figure 6 are formed by

1. applying path expansion,

2. converting the attributes containing non-
local path values to formulas representing
equivalence classes of paths.

By following this procedure, the entire functional
description of Figure 2 can be represented by the
logical formula given in Figure 7.

voice = pass ive

goal = < sub j >

cat = pp
prep = by

a d j e n c t =
obj =< actor >

= [case----objective]

Figure 5: Functional
non-local values.

voice : pass ive

^ goal :< sub j >

^ ad junc t : (eat : pp

^ prep : by

^ obj :< actor >

^ obj : ease : object ive)

Description containing

path
expansion

voice : pass ive

^ goal :< sub3" >
^ ad junc t : eat : pp
^ ad junc t : prep : by

^ ad junc t : obj :< actor >

^ ad junc t : obj : ease : object ive

path
equivalence
==~

voice : pass ive

^ [< goat >, < sub j >]
^ ad junc t : cat : pp

/~ ad junc t : prep : by

^ [< ad junc t obj >, < actor >]
^ a d j u n c t : obj : case : object ive

Figure 6: Conversion of non-local values to equiv-
alence classes of paths.

263

cat : s

A s u b j : case : n o m i n a t i v e

A

((v d c e : ac~ve
^ [< acto,. >, < subj >i)
V

(voice : pas~ve
^ |< goal >, < subj >]
A a d j u n c t : cat : pp

A adjunct : prep : by
A [< a d j u n c t obj >, < actor >]
^ a d j u n c t : obj : case : object ive)}
^

(mood : dec larat ive

V

m o o d : in t e r roga t i ve)

Figure 7: Logical formula representing the de-
scription of Figure 2.

It is now possible to unify the description of
Figure 7 (call this X in the following discus-
sion) with another description, making use of the
equivalence classes to simplify the result. Con-
sider unifTing X with the description

Y = actor : case : n o m i n a t i v e .

The commutative law (10) makes it possible to
unify Y with any of the conjuncts of X. If we
unify Y with the disjunction which contains the
vo/ce attributes, we can use the distributive law
(16) to unify Y with both disjuncts. When Y is
unified with the term containing

[< a d j u n c t obj >, < actor >],

the equivalence (22) specifies that we can add the
term

a d j u n c t : obj : case : n o m i n a t i v e .

This term is incompatible with the term

a d j u n c t : obj : case : object ive ,

and by applying the equivalences (6, 4, 1, and
2) we can transform the entire disjunct to T O P .
Equivalence (8) specifies that this disjunction can
be eliminated. Thus, we are able to use the
path equivalences during unification to reduce the

number of disjunctions in a formula without ex-
panding to DNF.

Note that path expansion does not require an
expansion to full DNF, since disjunctions are not
multiplied. While the DNF expansion of a for-
mula may be exponentially larger than the origi-
nal, the path expansion is at most quadratically
larger. The size of the formula with paths ex-
panded is at most n x p, where n is the length
of the original formula, and p is the length of the
longest path. Since p is generally much less than
n the size of the path expansion is usually not a
very large quadratic.

5.5 V a l u e D i s j u n c t i o n a n d
General Disjunction

The path expansion procedure illustrated in
Figure 6 can also be used to transform formulas
containing value disjucntion into formulas con-
taining general disjunction. For the reasons given
above, value disjunctions which contain non-local
path expressions must be converted into general
disjunctions for further simplification.

While it is possible to convert value disjunc-
tions into general disjunctions, it is not always
possible to convert general disjunctions into value
disjunctions. For example, the first disjunction
in the formula of Figure 7 cannot be converted
into a value disjunction. The left side of equiva-
lence (9) requires both disjuncts to begin with
a common label prefix. The terms of these
two disjuncts contain several different prefixes
(voice, actor, sub j , goat, and ad junc t) , so they
cannot be combined into a common value.

Before the equivalences of section 4 were formu-
lated, the first author a t tempted to implement a
facility to represent disjunctive feature structures
with non-local paths using only value disjunction.
It seemed that the unification algorithm would be
simpler if it had to deal with disjuncti+ns only
in the context of at tr ibute values, rather than
in more general contexts. While it w ~ possi-
ble to write down grammatical definitions using
only value disjunction, it was very difficult to
achieve a correct unification algorithm, because
each non-local path was much like an unknown
variable. The logical calculus presented here
clearly demonstrates that a representation of gen-
eral disjunction provides a more direct method to
determine the values for non-local paths.

264

6 Implementat ion

The calculus described here is currently being
implemented as a program which selectively ap-
plies the equivalences of Figure 4 to simplify for-
mulas. A strategy (or algorithm) for simplifying
formulas corresponds to choosing a particular or-
der in which to apply the equivalences whenever
more than one equivalence matches the form of
the formula. The program will make it possi-
ble to test and evaluate different strategies, with
the correctness of any such strategy following di-
rectly from the correctness of the calculus. While
this program is primarily of theoretical interest, it
might yield useful improvements to current meth-
ods for processing feature structures.

The original motivation for developing this
treatment of feature structures came from work
on an experimental parser based on Nigel [9], a
large systemic grammar of English. The parser is
being developed at the USC/Information Sciences
Institute by extending the PATR-II system of SRI
International. The systemic grammar has been
translated into the notation of Functional Uni-
fication Grammar, as described in [6]. Because
this grammar contains a large number (several
hundred) of disjunctions, it has been necessary to
extend the unification procedure so that it han-
dles disjunctive values containing non-local paths
without expansion to DNF. We now think that
this implementation of a relatively large grammar
can be made more tractable by applying some of
the transformations to feature descriptions which
have been suggested by the logical calculus.

7 Conclusion

We have given a precise logical interpreta-
tion for feature structures and their descriptions
which are used in unification-based grammar for-
malisms. This logic can be used to guide and im-
prove implementations of these grammmm, and
the processors which use them. It has allowed
a closer examination of several sources of com-
plexity that are present in these grammars, par-
ticularly when they make use of disjunctive de-
scriptions. We have found a set logical equiva-
lences helpful in suggesting ways of coping with
this complexity.

It should be possible to augment this logic to
include characterizations of negation and implica-
tion, which we are now developing. It may also be
worthwhile to integrate the logic of feature struc-

tures with other grammatical formalisms based
on logic, such as DCG [10] and LFP [13].

References

[1] Ait-Kaci, H. A New Model of Computa-
tion Based on a Calculus of Type Subsump-
tion. PhD thesis, University of Pennsylva-
nia, 1984.

[2] Gazdar, G., E. Klein, G.K. Pullum, and I.A.
Sag. Generalized Phrase Structure Gram-
mar. BlackweU Publishing, Oxford, Eng-
land, and Harvard University Press, Cam-
bridge, Massachusetts, 1985.

[3] G.R. Kress, editor. Halliday: System and
Function in Language. Oxford University
Press, London, England, 1976.

[4] Kaplan, R. and J. Bresnan. Lexical Func-
tional Grammar: A Formal System for
Grammatical Representation. In J. Bresnan,
editor, The Mental Representation of Gram-
matical Relations. MIT Press, Cambridge,
Massachusetts, 1983.

[5] Karttunen, L. Features and Values. In Pro-
ceedings of the Tenth International Confer-
ence on Computational Linguistics, Stanford
University, Stanford, California, July 2-7,
1984.

[6] Kasper, R. Systemic Grammar and Func-
tional Unification Grammar. In J. Ben-
son and W. Greaves, editors, Proceedings of
the I~ h International Systemics Workshop,
Norwood, New Jersey: Ablex (forthcoming).

[7] Kay, M. Functional Grammar. In Pro-
ceedings of the Fifth Annual Meeting of the
Berkeley Linguistics Society, Berkeley Lin-
guistics Society, Berkeley, California, Febru-
ary 17-19, 1979.

[8] Kay, M. Parsing in Functional Unification
Grammar. In D. Dowty, L. Kartunnen,
and A. Zwicky, editors, Natural Language
Parsing. Cambridge University Press, Cam-
bridge, England, 1985.

[9] Mann, W.C. and C. Matthiessen. Nigel:
A Systemic Grammar for Text Generation.
USC / Information Sciences Institute, RR-
83-105. Also appears in R. Benson and
J. Greaves, editors, Systemic Perspectives
on Discourse: Selected Papers Papers from
the Ninth International Systemics Work-
shop, Ablex, London, England, 1985.

265

[10] Pereira, F. C. N. and D. H. D. Warren. Defi-
nite clause grammars for language analysis -
a survey of the formalism and a comparison
with augmented transition networks. Arh'~-
¢ial Intelligence, 13:231-278, 1980.

[11] Pereira, F. C. N. and S. M. Shieber. The se-
mantics of grammar formalisms seen as com-
puter languages. In Proceedings of the Tenth
International Conference on Computational
Linguist,s, Stanford University, Stanford,
California, July 2-7, 1984.

[12] Rounds, W. C. and R. Kasper. A Complete
Logical Calculus for Record Strucutres Rep-
resenting Linguistic Information. Submitted
to the ~ymposium on Logic in Computer Sci-
ence, to be held June 16-18, 1986.

[13] Rounds, W. C. LFP: A Logic for Linguis-
tic Descriptions and an Analysis of its Com-
plexlty. Submitted to Computational Lir,-
Cui.~tics.

[14] Shieber, S. M. The design of a computer lan-
guage for linguistic information. In Proceed-
ing8 o[t~ Tenth International Con/erence
on Computational Linguistics, Stanford Uni-
versity, Stanford, California, July 2-7, 1984.

[15] Shieber, S. M. An Introduction to
Uai~ation-bo~ed Approaches to Grammar.
Chicago: University of Chicago Press, CSLI
Lecture Notes Series (forthcoming).

266

