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PREL1MIN A R IES 

We study the formal and linguistic proper- 
ties of a class of parenthesis-free categorial 
grammars derived from those of Ades and Steed- 
man by varying the set of reduction rules. We 
characterize the reduction rules capable of gen- 
erating context-sensitive languages as those having 
a partial combination rule and a combination rule 
in the reverse direction. We show that any 
categorial language is a permutation of some 
context-free language, thus inheriting properties 
dependent on symbol counting only. We compare 
some of their properties with other contem- 
porary formalisms. 

INTRODUCTION 
Categorial grammars have recently been the topic 

of renewed interest, stemming in part from their use as 
the underlying formalism in Montague grammar. While 
the original categorial grammars were early shown to be 
equivalent to context-free grammars, 1, 2, 3 modifications 
to the formalism have led to systems both more and less 
powerful than context-free grammars. 

Motivated by linguistic considerations, Ades and 
Steedman 4 introduced categorial grammars with some 
additional cancellation rules. Full cancellation rules 
correspond to application of functions to arguments. 
Their partial cancellation rules correspond to functional 
composition. The new backward combination rule is 
motivated by the need to treat preposed elements. They 
also modified the formalism by making category symbols 
parenthesis-free, treating them in general as governed 
by a convention of association to the left, but violat-  
ing this convention in certain of the rules. 

This treatment of categorial grammar suggests a 
family of eategorial systems, differing in the set of can-  
cellation rules that are allowed. Earlier, we began a 
study of the mathematical properties of that family of 
systems, s showing that some members are fully 
equivalent to context-free grammars, while others yield 
only a subset of the context-free languages, or a super- 
set of them. 

In this paper we continue with these investigations. 
We characterize the rule systems that can obtain 
context-sensitive languages, and compare the sets of 
categorial ]ar~guages with the context-free languages. 
Finally, we discuss the linguistic relevance of these 
results, and compare categorial grammars with TAG 
systems i ,  this regard. 

A categorial grammar under a set R of reduction 
rules is a quadruple CGR ( V T ,  VA,  S ,  F),  whose ele- 
ments are defined as follows: VT is a finite set of mor-  
phemes. VA is a finite set of atomic category symbols. 
S EVA is a distinguished element of VA.  To define F ,  
we must first define CA, the set of category symbols. 
CA is given by: i )  i f A E V A , t h e n A  E C A ; i i )  i f X  EUA 
and A E V A ,  then X / A  ECA; andi i i )  nothing e l s e l s i n  
CA . F is the lexicon, a function from VT to 2 ea such 
that for every a E V T ,  F ( a )  is finite. We often write 
CGR to denote a categorial grammar with rule set R, 
when the elements of the quadruple are known. 

Notation: Morphemes are denoted by a, b; mor- 
pheme strings by u , v , w .  The symbols S , A , B , C  
denote atomic category symbols, and U. V, X ,  Y 
denote arbitrary (complex) category symbols. Complex 
category symbols whose left-most symbol is S (symbols 

"headed" by S )  are denoted by X s ,  Ys .  Strings of 
category symbols are denoted by z ,  y .  

The language of a categorial grammar is determined 
in part by the set R of reduction rules. This set can 
include any subset of the following five rules. In each 
statement,  A E V A ,  and 
U / A , A / U , A / V ,  VIA  E CA.  

(1) (F Rule) The string of category symbols U/A A 
can be replaced by U .  We write: U/A A---*U; 

(2) (FP Rule) The string U/A A / V  can be 
replaced by U / V .  Wewri te :  U /A A / V - * U / V ;  

(3) (B Rule) The string A V / A  can be replaced 
by U.  We wri te :A U / A ~ U ;  

(4) (Bs Rule) Same as B rule, except that U is 
headed by S .  

(5) (BP Rule) The string A / U  V / A  can be 
replaced by V / U .  We write: A / U  V / A - - * V / U .  

If X Y  ---,Z by the F-rule , XY is called an F-redex. 
Similarly, for the other four rules. Any one of them may 
simply be called a redex. 

The reduction relation determined by a subset of 
these rules is denoted by = >  and defined by: if X Y --* Z 
by one of the rules of R, then for any a, /~ in CA* , 
aXY/3  >aZ/3 .  The reflexive and transitive closure of 
the relation - >  is = > * .  A morpheme string 
w=wlu,~" " ' w ,  is accepted by C G R ( V T ,  V A , S , F )  
if there is a category string z = X1X2 "" • X ,  such that  
X i E F ( w , )  for each i = l , 2 , ' - - n ,  and x = > *  S .  The 
language L(CGR) accepted by C G R ( V T ,  V A , S , F )  
is the set of all morpheme strings that are accepted. 
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I. N O N - C O N T E X T - F R E E  C A T E G O R I A L  
LANGUAGES 

In this section we present a characterization 
theorem for the categorial systems tha t  generate only 
context - f ree  languages. 

First ,  we introduce a lexicon FEQ t ha t  we will show 
has the property tha t  for any choice R of metarules  any 
str ing in L ( C G R )  has equal numbers  of a , b ,  and c.  
We define the lexicon FEQ as FEQ (a ) = {A }, 
FEQ(b) = {BI ,  F~Q(c)  = { C / A / C / B ,  C / D } ,  
FEQ (d ) {D}, F E Q ( e ) = { S / A / C / B } .  

We will also make use of two languages on the 
alphabet  { a , b , e , d ,  e} L l = { a " d b  " e  c ~ In  >/1 } ,and 
LEQ = {w ! #a = #b = #c  >1 1 , # d  = # e  = 1}. 

A lemma shows t ha t  with any set R of rules the lex- 
icon FEQ yields a subset of LEQ. 

L e m m a  1 Let G be -any categorial grammar,  
C G R ( V T , V A , S , F E Q ) ,  where V T  = { a , b , c , d , e } ,  
VA = { S , A , B , C , D } ,  with R ~ { F , F P , B , B P } .  Then 

L (C)CL~Q. 
Proof Let z = X IX 2...X~ = > *S.  Let 

w = wl . . .w.  be a corresponding morpheme string. To 
differentiate between the occurrence of a symbol as a head 
and otherwise, write C / A / C / B  = CA -1C-1B-1'  
S /A / C  / B  = S A - 1 C - 1 B  -1 and C /D = CD -1. For 

any rule system R, a redex is two adjacent categories, 
the tail of one matching  the head of the other, and is 
reduced to a single category af ter  cancelling the matching 
symbols. Since all occurrences of A must  cancel to yield 
a reduction to S ,  #A = #A -1. This holds for all 
atomic categories except S, for which # S  = # S - l + l .  
This lexicon has the property t ha t  any derivable 
category symbol,  ei ther has exactly one S and is S -  
headed or does not have an occurrence of S .  Hence in x ,  
# S  = 1, i.e., w has exactly one e.  Let the number  of 
occurrences in x of C / A / C / B  and C / D  be p and 
q respectively. ]t follows t ha t  # C  = p + q ,  # C  -1 = p +1. 
Hence q = 1 and w ha.~ exactly one d .  Each occurrence 
of C / A / C / B  introduces o n e A - l a n d B - 1 .  S incew has 
one e,  # A - 1  = # B - J  = p +1. Hence #A = # B  = p +1. 
Since for each A ,B and C in z there must  be exactly 
o n e a , b  and c , # a  = # b  = # c .  [] 

We show next  tha t  in the restricted ease where R 
contains only the two rules F P  and B s , the language L 1 
is obtained. 

L e m m a  2 Let CG R be the categorial g rammar  with lexi- 
con FEQ and rule set R = {FP  ,Bs }. Then 
L (CGR ) = L1. 

Proof  Any x EL 1 has a unique parse of the form 
(Bs F P  ) n Bs Bs  ~, and hence L 1CL (CG R ). Conversely, 
any x having a parse must  have exactly one e.  Fur ther ,  
all b ' s  and c ' s  can appear  only on the left and right of e 
respectively. Any derivable category having an A has the 
form S / ( A / ) "  U where U does not have any A.  Thus 
all A's appear  consecutively on the left of the e.  For the 
r ightmost  e , F ( c )  = C / D .  A d must  be in between a ' s  
and b's.  By lemma 1, # ( a ) = # ( b )  = #  (c) .  Thus 
x = a n db n ec" , for some n .  Hence L 1 = L (CGR).  [] 

The next lemma shows tha t  no language intermediate 
to L1 and LEQ can be context-free.  It  really does not 
involve eategorial g rammar  at  all. 

L e m m a  3 If L 1C.L C-LEQ, then L is not context-free.  

Proof Suppose L is context-free.  Since L contains 
L1, it has arbi trar i ly long str ings of the form 
a '~ b db"e c" .  Let k and K be pumping lemma con- 
stants.  Choose n > m a x ( K , k ) .  This string, if pumped, 
yields a s t r ing not  in LEQ, hence we have a contradiction.  
[] 

C o r o l l a r y  Let {FP  ,Bs } ~ R .  Then there is a non-  
context - f ree  language L ( CGR ). 

Proof  Use the lexicon FEQ. Then by lemma 1 
L ( C G R ) ~ L E Q .  B u t { F P , B s } ~ R , s o L I ~ L ( C G R ) .  [] 

The following theorem summarizes  the results by 
characterizing the rule sets tha t  can be used to generate 
context  sensitive languages. 

M a i n  T h e o r e m  A categorial system with rule set R can 
generate a context-sensi t ive  language if and only if R 
contains a partial combinat ion rule and a combinat ion rule 
in the reverse direction. 

Proof The "if" par t  follows for { F P , B s  }by lemmas 
1, 2, and 3. It  follows for {BP ,F  } by symmetry .  For the 
"only if" part ,  first note tha t  any unidirectional system 
(system with rules t ha t  are all forward, or all backward) 
can generate only context - f ree  languages. 5 The only 
remaining cases are {F ,B } and {FP  , B P  1. The first gen-  
erates only context  free languages. 5 The second generates 
only the empty language, since no atomic symbol can be 
derived using only these two rules. 

II. C A T E G O R I A L  LANGUAGES ARE P E R M U T A -  
TIONS OF C O N T E X T - F R E E  LANGUAGES 

Let V T  = {a l, a2 " - . , ak  }. A Par ikh mapping 6 v / i s  
a mapping from morpheme str ings to vectors such t ha t  
x~(w) = ( # a l , # a 2  . . . . .  # a  k). u is a permuta t ion  of v 
iff ~ ( u ) = ~ ( v ) .  Let ~ P ( L ~ = { W ( w ) I w E L } ,  A 
language L is a permuta t ion  of L iff ~ ( L  ) = xC(L). We 
define a rotat ion as follows. In the parse tree for u E L ,  at  
any node corresponding to a B redex or B P - r e d e x  
exchange its left and right  subtrees,  obtaining an F - r e d e x  
or an FP-redex .  Let v the resulting terminal  string. We 
say tha t  u has been t ransformed into v by rotation.  

We now obtain results tha t  are helpful in showing 
t ha t  certain languages eannol be generated by. categorial 
grammars.  First  we show that ,  every categorial language 
is a permutat ion of a context  free language. This will 
enable us to show tha t  properties of context - f ree  
languages tha t  depend only on the symbol counts must  
also hold of categorial languages. 

T h e o r e m  Let R c: {F, FP,  B, BP}. Then there exists a 
LCF such tha t  ¢ ( L  (CGR))  = ¢ ( L c F ) ,  where LcF is 
context  free. 

Proof Let x eL  (CGR). In its parse tree at  each 
node corresponding to a B-redex or a BP- redex  perform 
a rotat ion,  so tha t  it becomes a F -redex or a F P  -redex. 
Since the t ransformed str ing y is obtained by rearranging 
the parse tree, x t , (x )=  ~ ( y  ). Also y derivable using 
R I = {FP ,F  } only. Hence the set of such y obtained as a 
permuta t ion  of some x is the same as L (CGRt),  which is 
context  free, 5 i.e., L ( CGR I) = LCF . [] 
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C o r o l l a r y  For any R ~ {F, FP, B, BP}, L (CGR) is 
semilinear , Parikh bounded and has the linear growth 
property. 

Semilinearity follows from Parikh's Lemma and 
linear growth from the pumping lemma for context-free 
languages. Parikh boundedness follows from the fact that 
any context-free language is Parikh bounded. 6 I-1 

P r o p o s i t i o n  Any one--symbol categorial grammar is reg- 
ular. 

Note that  if L is a semilinear subset of nonnegative 
integers, {a n In  eL } is regular. 

III. N O N - C A T E G O R I A L  LANGUAGES 

We now exhibit some non-categorial languages and 
compare eategorial languages with others. From the corol- 
lary of the previous section we have the following results. 

T h e o r e m  Categorial languages are properly contained in 
the context-sensit ive languages. 

Proof The languages {a h (n) [ n >/0 }, where 
h ( n ) = n  2 or h (n )=2"  which do not have linear growth 
rate, are not generated by any CGR. These are context 
sensitive. A l so{a rab"  I either m > n  , g r i n  is prime and 
n ~<m and m is prime } is not semilinear 7 and 
hence not categorial. 

It is interesting to note that lexieal functional gram- 
mar can generate the first two languages mentioned 
above 8 and indexed languages can generate 
{a nbn2a ~' In>tl}.  

Linguistic Properties 

We now look at some languages that exhibit cross- 
serial dependencies. 

Let G3 be the CGR with R = { F P , B s } ,  
VT = {a ,b ,c ,d }, and with the lexicon 

FFI~I =IS~S1}'= {S l IB/S  1,F(c)={S1}'B }. F ( a ) = l S 1 / a / s l ,  m},Then 

L3 = L (G3) = {wcdw tw E{a,b}*}. The reasoning is 
similar to that  of lemma 1. First #c  = #d  = 1, from 
# S  = 1. Since we have Bs rule, c occurs on the left of 
d and all occurrences of a and b on the left of c get 
assigned A and B respectively. Similarly all a and b 
on the right of c ,  get assigned to the complex category as 
defined by F .  It follows that all symbols to the right of 
d get combined by FP rule and those on the left by Bs 
rule. Hence a symbol occurring n symbols to the right of 
d must be matched by an occurrence n symbols to the 
right of the left-most symbol. 

For any k ,  let G4(k) be the CGR with 
R = {FP ,Bs } again, VT = {al ,hi ] 1 <~ i ~k } U 
{ci I1 ~<i <k} O {d,e}, and the lexicon 
F(b,) ={s , / a i / s , } ,  F(al)  =[A,},l<~ i <~k, 
F(e,)  ={S,/S,+I},I <i < k, F (d )  ={Sk}, 
F (e) = {S/S  a}. Then 
L ( G , ( k ) )  = l a l " ~ a 2  " 2  - - -  a ~ " k d e b l " ' c x  ' ek-~ bk"kJ 
for any k. Note that  # A  i = #Ai -a. This implies 
# b  i = # a  i . The rest of the argument parallels that for 
L3 above . Thus {FP, Bs } has the power to express 
unbounded cross-serial dependencies. 

Now we can compare with Tree Adjoining Grammars 
(TAG). s A TAG without local constraints cannot generate 
L3. A TAG with local constraints can generate this, but it 
cannot generate L6 = {am b" c m d"  ] m , n  >-1}. L4(2) can 
be transformed into L6 by the homomorphism erasing 
ca,d and e. TAG languages are closed under homomor- 
phisms and thus the categorial language L4(2) is not a 
TAG language. TAG languages exhibit only limited cross 
serial dependencies. Thus, though TAG Languages and 
CG languages share some properties like linear growth, 
semilinearity, generation of all context-free languages, 
limited context sensitive power, and Parikh boundedness, 
they are different in their generative capacities. 
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