
• O B L E M LOCALIZATION STRATEGIES

FOR PRAGMATI~S ~ IN NATURAL-LANGUAGE FRONT ENDS•

Lance A. Remshaw & Ralph ~L Welschedel
Department of Ccaputer and Information Sciences

U n i v e r s i t y of Delaware
Newark, Delaware 19716 USA

ABSTRACT

Problem localization Is the identification of
the most slgnlflcant failures i n the AND-OR tree
resulting from an unsuocass/ul attempt to achieve a
goal, for instance, In planning, b a c k w a r d - c h n i n i n g
inference, or top-down parnin~ We examine beurls-
tics and strategies for problem localization in the
context of using a planner to check for pragmatic
failures in natural language input to computer sys-
tems, such as a cooperative natural language
interface to Unix •• . Our heuristics call for
selecting the most hopeful branch at ORs, but the
most problematic one at ANDs. Surprise scores and
speclal-purpose rules are the maln strategies sug-
gested to determine this.

I PRAGMATIC OVERSHOOT AND PRCBLEM LOCALIZATION

Even if the syntactic and semantic content of
a request is correct, so that a natural language
front end can derive s coherent representation of
its meaning, its praamatlc content or the structure
of the underlying system may make aSy direct
response to the request impossible or mlsleadln~
According to Sondbelmer end Welschedel (Sondhelmer,
1980) , an i n p u t e x h i b i t s ~ ~ I f t h e
r e p r e s e n t a t i o n o f i t s meaning i s beyond t h e capa-
b i l i t i e s o f t he u n d e r l y i n g system. Kaplan (1979) ,
Mays (1980e) , and Ca rbe r ry (1984) have each worked
on strategies for dealing wltb particular classes
of such praamatlc failures. This paper addresses
the problem of identifying the most si~ctflcant
reason that a plan to achieve a user goal cannot be
carried out.

The approach to pragmatic fnilure taken In
thls paper is to use a planner to verify the
presumptions in a request. The presumptions behind
a request become the subEoals of e plan to fulfill
the request. Oslng Mays' (1980a) example, the
query "Which faculty members take coursas?" Is here
handled as an instance of an IDENTIFY-SET-~EHS

• This material Is based upon work supported by
the National Sclence Foundation under grants
LST-8009673 and IST-8311~00.

• • Unix is a trademark of Bell Laboratories.

goal, and the pragmatlcs of the query are checked
by looklng for a plan to a c h i e v e that goal. Deter-
m i n i n g both that faculty members and courses do
exist and that faculty members can take courses are
subEoals within that plan. A presuppositlonal
failure is noted if the planner is unable to com-
plete a p l a n f o r the goa l .

F u r t h e r m o r e , £r~formation f o r r e c o v e r y p r o c e s s -
i n g or e x p l e a a t o r y r e s p o n s e s can be d e r i v e d
d i r e c t l y from the f n i l e d p l a n by i d e n t i f y i n g wha t -
e v e r b locked goal i n t h e p l a n n i n g t r e e of s u b g o a l s
I s most n i g n i f ~ c a n t . Thus, i n t h e example above,
i f t he p l a n n e r f a i l e d because I t was u n a b l e to show
t h a t f a c u l t y can t ake c o u r s e s , t h e h e l p f u l r e s p o n s e
would be to e x p l a i n this presumption failure. We
concentrate here on identifying the signifleant
blocks rather than on generating natural language
responses.

The examples in this paper will be drawn from
a pleaning System intended to function as the prag-
matic overshoot component of a cooperative natural
l anguage i n t e r f a c e t o t h e Unix o p e r a t i n g system.
We chose Unix, much as Wilensky (1982) did for his
Unix Consultant, as a fomiliar domain that was
still complex enough to require interesting plan-
ning~ In this system, the praRmatics of a user
request are tested by building a tree of plan
structures whose leaves are elementary facts avail-
able to the operating system. For instance, the
following planning tree Is built in response to the
request to print a file:

(PRINT-FILE ?user ?file ?device)
& (IS-TEXT-FILE ?file)
& (UP-AND-RUNNING ?device)
& (READ-PERM ?user ?file)

I (WORLD-READ-PERM-BIT-SET ?file)
I (READ-PERM-USER ?user ?file)

& (IS-O~NER ?user ?file)
& (USER-READ-PERM-BIT-SET ? f i l e) "

[(READ-PERM-GROUP ?use r ?file)
& (SA~-GROUP ?user ?file)
& (OROUP-REAI>-PERM-BIT-SET ?file)

I (READ-PERM-SUPER-USER ?user)
& (AUTHORIZED-SUPER-USER ?user)
& (SUPEH-USER-PASSWORD-GIV~ ?user)

(The c h i l d r e n o f AND nodes a r e p receded by amper-
sands , and OR c h i l d r e n by v e r t i c a l b a r s . I n i t i a l
q u e s t i o n marks p recede p l e a v a r i a b l e s .) I f a s i n g i e
node In thls planning tree fails, say (IS-TEXT-FILE
?f i l e) , that Information can be used In explnining
the failure to the user.

139

The failure of certain nodes could also
trigger recovery processing, as in the following
example, where the failure of (UP-AND-RUNNING
?device) triggers the suggestion of an alternative
device:

User: Please send the file to the laser printer.
System: The laser printer is dowm

Is the line printer satisfactory?

This planning scheme offers a way of recognizing
and responding to such temporarily unfulfillable
requests as well as to other pragmatic failures
from requests unfulfillable in context, which is an
important, though largely untouched, problem.

A difficulty arises, however, when more than
one of the planning tree precondition nodes fail.
Even in a tree that was entirely made up of AND
nodes, multiple failures would require either a
llst of responses, or else scme way of choosing
which of the failures is most meaningful to report.
In a plan tree containing OR nodes, where there are
often many alternative ways that have all failed of
achieving particular goals, it becomes even more
important that the system be able to identify which
of the failures is most significant. This process
of identifying the significant failures is called
"problem localization", and this paper describes
heuristics and strategies that can be used for
problem localization in failed planning trees.

II HEURISTICS FOR PROBLEM LOCALIZATION

The basic heuristics for problem localization
can be derived by considering how a human expert
would respond to someone who was pursuing an impos-
aible goal. Hot finding any suosessful plan, the
expert tries to explain the block by showing that
every plan must fail. Thus, if more than one
branch of an AND node in a plan fails, the most
significant one to be reported is the one that the
user is least likely t o be able to change , since it
makes the strongest case. (The planner must check
all the branches of an AND node, even after one
fails, to know which is most significant to
report.) For instance, if all three of the children
of PRINT-FILE in our example fail, (I~-TEXT-FILE
?file) is the one that should be reported, since it
is least llkely that the user can affect that node.
If the READ-PERM failure were reported first, the
user would waste time changing the read permission
of a non-text file. Unix's actual behavior, which
reports the first problem that it happens to dis-
cover in trying to execute the co@mend, is often
frustrating for exactly that reason. This heuris-
tic of reporting the most serious failure at an AND
node is closely related to ABSTRIP's use of "crltl-
callty" numbers to divide a planner into levels of
abstraction, so that the most critical features are
dealt with first (Sacerdoti, 1974).

The s i t u a t i o n i s d i f f e r e n t a t OR node s , where
o n l y a s i n g l e c h i l d h a s t o s u e s e e d . Here t h e mos t
s e r i o u s f a i l u r e can s a f e l y be i g n o r e d , a s l o n g a s
some o t h e r b r anch can be r e p a i r e ~ Thus t h e mos t

si~iflcant branch at an OR node should be the one
the user is most likely to be able to affect. In

• o u r example, READ-PERM-USER s h o u l d usually be
reported rather than READ-PERM-SUPER-USER, if both
have failed, since most users have more hope of
changing the former than the letter. There is a
duality here between the AND and OR node heuristics
that is llke the duality in the minimax evaluation
of a move in a game tree, where one picks the best
score at nodes where the choice is one's own, and
the worst score at nodes where the opponent gets to
choose.

III STRATEGIES FOR PR~LEM LOCALIZATION

Identification of the most significant failure
requires the addition to the planner of knowledge
about significance to be used in problea loealiza-
tio~ Many mechanisms are possible, ranging from
fixed, pre-set ordering of the children of nodes up
through complex knowledge-based mechanlqms that
include knowledge about the user,s probable goals.
In this paper, we suggest a combination of statist-
Ical "surprise scores" and speclal-purpose rules.

Statistical ~UslnISurorise Scores

This strategy relies on statistics that the
system keeps dynamically onthe number of times
that each branch of each plan has succeeded or
failed. These are used to define a success ratio
for each branch. For example, the PRINT-FILE plan
might be annotated as follows:

SUCCESSES RATIO
(PRINT-FILE ?user ?file ?device)

& (IS-TEXT-FILE ?file) 235 3 0.99
& (UP-AND-RUNNING ? d e v i c e) 185 53 0 . 7 8
& (READ-PERM ?user ?file) 228 10 0.96

FAILURES

From these ratios, we derive surprise scores
to provide some measure of how usual or unusual it
i s f o r a p a r t i c u l a r node t o have s u c c e e d e d o r
failed in the context of the goal giving rise to
the node. The surprise score of a successful node
is defined as 1.0 minus the success ratio, so that
the success of a node llke I~-TEXT-FILE, that
almost always succeeds, is less surprising than the
success of UP-AND-RUNNING. Failed nodes get nega-
tive surprise scores, with the absolute value of
the score again reflecting the amount of surprise.
The surprise score of a failed node is set to the
negative of the success ratio, so that the failure
of IE-TEXT-FILE would be more surprising than that
of UP-AND-RUNNING, and that would be reflected by a
more strongly negative score.

Here is an example of our PRINT-FILE plan
instantiated for an unlucky user who has failed on
all but two preconditions, with surprise scores
added:

140

SURPRISE
SUCCESS/FAILURE SCORE

(PR~T-FILE Ann Filel laser)
& (IS-TEXT-FIIE Filel) -.99
& (UP-AND-RUNNING laser) -.78
& (READ-PERM Ann Filel) -.96

I (WORLD-READ-PERF,-BIT-SET Filel) -.02
] (READ-PERM-USER Ann Filel) -.87

& (IS-0WNER Ann Fllel) -.87
& (USER-READ-PERM-BIT-SET Fllel) +.01

J (READ-PERF,-GROUP Ann Filel) -.55
& (SA~-GROUP Ann Filel) +.05

-.58
I -.02

-.03
-.02

F
F
F
F
F
F
S
F
S

& (GROUP-READ-PERM-BIT-SET Filel) F
(BEAD-PERF~SUPER-USER Ann) F
& (AUTHORIZED-SUPER-USER Ann) F
& (SUPER-USER-PASSWORD-GIVEN Ann) F

Note tbat the success of USER-READ-PERM-BIT-SET is
not very surprising, s i n c e that node almost always
succeeds; the failure of a node llke READ-PERM-
SUPER-USER, which seldom succeeds, is much less
surprising than the failure of UP-AND-RUNNING.

We suggest keeping statistics and deriving
surprise scores because we believe that they pro-
vide a useful if imperfect handle on judging the
signlflcence cf failed nodes. Regarding OR nodes,
strongly negative surprise scores identify branches
that in the past experience of the system have usu-
ally succeeded, and these are the best guesses to
be likely to succeed again. Thus READ-PERM-USER,
the child of READ-PERM with the most strongly nega-
tive score, turns out to be the most likely to be
tractable. The negatlve surprise scores at a
failed OR node give a profile of the typical suc-
cess ratios; to select the nodes that are generally
most likely to succeed, we pick the most surprising
failures, those with the most strongly negatlve
surprise scores.

At AND nodes, on the other hand, the goal is
to identify the branch that is most critical, that
is, least likely to succeed. Surprisingly, we find
that the most critical branch tends in thls case
also to be the most surprlalng failure. In our
example, IS-TEXT-FILE, which the user can do noth-
ing about, is the most surprising failure under
PRINT-FILE, READ-PERM is next most surprising, and
UP-AND-RUNNING, for which simply waiting often
works, comes last. Therefore at AND nodes, llke at
OR nodes, we will report the child wlth the most
negative surprise score; at AND nodes, this tends
to identify the most critical failures, while at OR
nodes, it tends to select the most hopeful. Note
that the combined effect of the AND and OR stra-
tegies is to choose from among all the failed nodes
those that were statistically most likely to
succeed.

The main ad v an t age of the statistical surprise
score strategy is its low cost, both to design and
execute. Another nice feature is the self-
adjusting character of the surprise scores, based
as they are on success statistics that the system
updates on an onEolng basis. For example, the
likelihood of GROUP-READ-PERM being reported would
depend on how often that feature was used at a par-
tlcular site. The main difficulty is that surprise

scores are only a rough guide to the actual siEnl-
ficance of a failed node. The true significance of
a failure in the context of a particular command
may depend on world knowledge that is beyond the
grasp of the planning system (e.~, the laser
printer is down for days this time rather than
hours), or even on a part of the planning context
itself that is not reflected in the statistical
averages (e.~, READ-PERM-SUPER-USER is much more
likely to succeed when READ-PERM is called as part
o f a system d,-,p ceamand than when it is called as
part of PRINT-FILE). To get a more accurate grasp
on the significance of particular failures, more
knowledge-intenslve strategies must be employed.

~. Svecial-Purnose Problem Localization Rules

As a mechanism for adding extra knowledge, we
propose supplementing the surprise scores with
conditlon-action rules attached to particular nodes
in the planning tree. The cendltlons in these
rules can test the success or failure of other
nodes in the tree or determine the hi~er-level
planning context, while the actions alter the prob-
lem localization result by changing the surprise
scores attached to the nodes.

The speclal-purpose rules which we have found
useful so far add information about the criticality
of particular nodes. Consider the following plan-
a i n g tree, which is somewhat more successful than
the previous one:

SURPRISE
SUCCESS/FAILURE SCORE

(PRINT-FILE Ann File2 laser)
& (IS-TEXT-FILE Flle2) S
& (UP-AND-RUNNING laser) S
& (READ-PERM Ann Flle2) F

I (WORLD-READ-PERM-BIT-SET Flle2) F
] (READ-PERM-USER Ann File2) F

& (IS-OWNER Ann File2) F
& (USER-REAI~PERM-BIT-SET File2) 3

I (READ-PERM-GROUP Ann Flle2) F
& (SA~.-GROUP Ann Flle2) S
& (GRODP-READ-PERM-BIT-SET Flle2) F

I (READ-PERM-~PER-USER Ann) F
& (AUTHORIZED-S~PER-USER Ann) S
& (SUPER-USER-PASSWORD-GIVEN Ann) F

+.01
÷.22
- . 96
- . 0 2
- . 87
- . 87
÷.01
- . 5 5
÷.05
- . 5 8
- . 0 2
+. 97
-.02

Relying on surprise scores alone, the most signifi-
cant child of READ-PERM would be READ-PERM-USER,
since its score is most strongly negative. How-
ever, since IS-OWNER has failed, a node which most
users are powerless to change, it is clearly not
helpful to choose READ-PERM-USER as the path to
report. This is an example of the general rule that
if we know that one child of an AND node is critl-
cal, we should include a rule to suppress that AND
node whenever that child fails. Thus we attach the
followln8 rule to READ-PENM-USER:

IF (FAILED-CHILD (IS-OWNER ?user ?file))
TH~ (SUPPRESS-SCORE 0.8)

In our current formulation, the numeric argument to
SUPPRESS-SCORE gives the factor (i.e., percentage)

141

by which t h e s c o r e s h o u l d be reduced . T h e - r u l e ' s
a f f e c t i s t o change READ-PERM-USER's s c o r e t o - . 1 7 ,
which prevents it from being selected.

With READ-PERM-USER suppressed, the surprise
scores would then select READ-PERM-GROUP, which is
a r e a s o n a b l e c h o i c e , bu t p robab ly no t t h e be s t one.
While the failure of IS-~NER makes us less
interested in READ-PERM-USER, the very surprising
success of AUTHORIZED-SUPER-USER should draw the
system's a t t e n t i o n t o the READ-PERM-SUPER-USER
branch. We can arrange for this by attaching to
READ-PERM-SUPER-USER a r u l e t h a t s t a t e s :

IF (~CCESSFUL-CHILD
(AUTH 0RIZ ED--qU PER-USER ?user))

THEN (ENHANCE-SCORE 0.8)

This rule would change READ-PERM-SUPER-USER's score
from -.02 to -.79, and thus cause it to be the
branch o f READ-PEBM selected for reportln~

While our current rules are ell in these two
forms, either suppressing or enhancing a parent's
score on the basis of a critical child's failure or
success, the mechanlam of special-purpose rules
could be expanded to handle more complex forms of
deduction. For example, it mlght be useful to add
rules that calculate a criticality score for each
node, working upward frem preassigned scores
assigned to the leaves. If the rules could access
information about the state of the system, they
could also use that in Judging criticality, so that
an UP-AND-RUNNING failure would be more critical If
the device was expected to be down for a long time.

OtheF Problem L o c a l i z a t i o n

While our System depends on surprise scores
and rules, an entire range of strategies is possi-
ble. The s i m p l e s t s t r a t e g y would be t o hand -code
the problam localization into the plans themselves
by the ordering of the branches. At AND nodes, the
children that are more critical would be listed
first, while at OR nodes, the lees critical, more
hopeful, children would come first. In such a
blocked tree, the first failed child could be
s e l e c t e d below each node. A form of this h a n d -
coded strategy is i n force in a~y planner that
stops exploring an AND node when a single child
b l o c k s ; t h a t e f f e c t i v e l y s e l e c t s t h e f i r s t c h i l d
t e s t e d a s t h e s i g n i f i c a n t f a i l u r e i n e ve ry c a s e ,
s i n c e t h e o t h e r s a r e no t even e x p l o r e d . Hand-
coding is an alternative to surprise scores for
providing an initial comparative ranking of the
children at each node, but it also would need sup-
plementingwlth a strategy that can take account of
unusual situations, such as our specisi-purpose
rules.

It might be possible to improve the parfor~-
mance of a surprise score System without adding the
complexity of special-purpose rules by using a for-
mula t h a t allows the surprising success or failure
of a child to Inarease or decrease the chances o£

i t s p a r e n t b e i n g r e p o r t e d . While such a f o r m u l a
c ou ld p e r h a p s do much of t h e work now done by
s p e c i a l - p u r p o s e r u l e s , i t seams a h a r d e r approach
t o c o n t r o l , and one more l i k e l y t o be s e n s i t i v e t o
i n a c c u r a c i e s i n t h e s u r p r i s e s c o r e s t h e m s e l v e s .

P rope r Leve l p..~Deta.4.1

One f i n a l q u e s t i o n c o n c e r n s i d e n t i f y i n g t h e
p rope r l e v e l of d e t a i l f o r h e l p f u l r e s p o n s e s . The
s t r a t e g i e s d i s c u s s e d so f a r have a l l f o c u s e d on
c h o o s i n g which o f m u l t i p l e b locked c h i l d r e n t o
r e p o r t , so t h a t t he y i d e n t i f y a pa th f rem t h e r o o t
t o a l e a f . Yet t h e l e a v e s o f t h e p l a n n i n g t r e e may
w e l l be t oo d e t a i l e d t o r e p r e s e n t h e l p f u l
r e s p o n s e s . A s e l e c t i o n s t r a t e g y cou ld r e p o r t t h e
node c o n t a i n i n g t h e a p p r o p r i a t e l e v e l of d e t a i l f o r
a g i v e n u s e r . Model ing t h e e x p e r t i s e o£ a u s e r and
u s i n g t h a t to s e l e c t an a p p r o p r i a t e d e s c r i p t i o n o f
t h e problem a r e s i g n i f i c a n t p rob l e ms i n n a t u r a l

• l a n g u a g e g e n e r a t i o n which we have not a d d r e s s e d .

IV RELATED APPLICATION ARE~

While deve loped h e r e i n t h e c o n t e x t o f a p r a g -
m a t i c e p l a n n e r , s t r a t e g i e s f o r problem l o c a l i z a t i o n
cou ld ha ve wide a p p l i c a b i l i t y . For i n s t a n c e , t h e
MYCIN-llke "How?" and "why?" questions (Shortllffe,
1976) used in the explanation components of many
expert systems already use either the already-built
s u c c e s s f u l p roo f t r e e or t h e p o r t i o n c u r r e n t l y
b e i n g e x p l o r e d a s a sou rc e o f e x p l a n a t i o n ~ Swat-
t o u t (1983) adds e x t r a knowledge t h a t a l l o w s t h e
s y s t e m t o J u s t i f y i t s a n sw e r s i n t h e u s e r ' s t e r m s ,
but t h e u s e r mus t s t i l l d i r e c t t h e e x p l o r a t i o n . An
e f f e c t i v e problem l o c a l i z a t i o n f a c i l i t y would a l low
t h e System to answer t h e q u e s t i o n "Why n o t ? e ; t h a t
i s , t h e u s e r cou ld a sk why a c e r t a i n goa l was no t
s u b s t a n t i a t e d , and t h e System would r e p l y by i d e n -
t i f y i n g t h e s u r p r i s i n g nodes t h a t a r e l i k e l y t o be
the slgnlflcant causes of the failure. Such "Why
not? n questions could be useful not only in expla-
nation but also in debugEin~

/

In the same way, since the execution of a PRO-
LCQ progr-m can be seen as the exploration of and
AND-OR tree, effective problem localization tech-
niques cou ld be u s e f u l i n d e b u g g i n g t h e f a i l e d
t r e e s t h a t r e s u l t f rem i n c o r r e c t l o g i c p rograms .

Another example is recovery processing in
top-down paralng, such as using au~nented transi-
tion networks (Woods, 1970). When an ATN fails to
parse a sentence, the blocked parse tree is quite
similar to a blocked planning tree. Weischedel
(1983) suEaests an approach to understanding ill-
formed input that makes use of meta-rules to relax
some of ' the constraints on ATN arcs that blocked
the original parse. Recovery processing in that
model requires searching the blocked parse tree for
nodes to which meta-rules can be applied. A prob-
lem localization strategy could be used to sort the

142

llst of blocked nodes, so that the most llkely can-
didatea would be tested first. The statistics of
success ratios here would describe likely paths
through the grammar. Nodes that exhibit surprising
failure would be prime candidates for mets-rule
processiag~

Before problem l o r ~ a l i z a t i o n can be a p p l i e d i n
t h e s e r e l a t e d a r e a s , f u r t h e r work needs t o be done
t o see how many of the h e u r i s t i c s and s t r a t e g i e s
t h a t apply to problem l o c a l i z a t i o n i n t he p l ann i n g
con t ex t can be c a r r i e d over . The l a r g e r and more
complex trees of an ATN or PROLO~. program may well
require development of further strategies. Ho~-
ever, the nature of the problem is such that even
an imperfect result is likely to be useful.

V IMPLEMENTATION DE~CRIPTION

The examples i n t h i s paper a re t aken frem an
I n t e r l i s p im p lemen ta t i on o f a p l anne r which does
p r s ~ a t i c s checking f o r a l i m i t e d s e t of Unix-
do , s i n r e q u e s t s . The problem l o c a l i z a t i o n c ~ -
ponent uses a combination of surprise scores and
special purpose rules, as desoA'ibed. The statis-
tics were derived by running the planner on a test
set of commands in a simulated Unix environment.

VI CONCLUSIONS

In planning-based pra~matlcs processing, prob-
lem localization addresses t h e largely untouched
problem of p r o v i d i n g h e l p f u l responses t o requests
unfulfillable i n c o n t e x t . Problem l o c a l i z a t i o n i n
the planning context requires identifying the most
hopeful and t r a c t a b l e cho ice a t OR nodes , but the
most c r i t i c a l and p r o b l e m a t i c one a t AND nodes.
S t a t i s t i c a l s u r p r i s e s c o r e s p rov ide a cheap but
e f f e c t i v e base s t r a t e g y f o r problem l o c a l i z a t i o n ,
and c o n d i t i o n - a c t i o n r u l e s a r e an a p p r o p r i a t e
mechanism for adding further sophistlcatio~

F u r t h e r work should a d d r e s s (1) a p p l y i n g
r ecove ry s t r a t e g i e s t o t h e l o c a l i z e d problem, i f
any r ecove ry i s a p p r o p r i a t e ; (2) i n v e s t i g a t i n g
other applications, such as expert systems,
back~ard-chnining inference, and top-down parsing;
and (3) exploring natural language generation to
r e p o r t a b lock a t an a p p r o p r i a t e l e v e l o f d e t a i l .

VII REFER~ CE -~

Carber ry , E $andra. "Under s t and ing P r a g m a t i c a l l y
I l l - F o r m e d Inpu t . • ~ o f ~he I n t e r n ~

1984.

Kaplan, Samuel J. ~ ~ From a
Portable Natural ~ Data ~ase Ouerv System.
PbD. D i s s e r t a t i o n , Computer and I n f o r m a t i o n S c i -
ence D e p t . , U n i v e r s i t y of Pen n s y l v an i a , 1979.

Mays, Eric. "Correcting Misconceptions About Data
Base S t r u c t u r e . " ~ of the ~ of
the Canadian S o c i e t y f o r ~ S t u d i e s o f
~ . Victoria, British Col,~bla,
Canada, May 1980, 123-128.

Maya, Eric. WFailtmes in Natural Language Systems:
Applications t o Data Base Query Systems. •
~ of t~e Ltnn~ Ammal aa~Aonal Conre~
ence on ~ ~ (AAA~-~0~. Stan-
ford, C a l i f o r n i a , August 1980, 3~ -330 .

Sacerdot i , F~ D. =Planning i n a Hierarchy of
A b s t r a c t i o n S p a c e s . " ~ ~
(197~l), 115-135.

$hortllffe, F. ~ Comvuter Based Medical Cons~t~-
~ons: ~ (North-Holland, 1976).

Sondheimer, N. and R. ~t Weischedel. "A Rule-Based
Approach to I l l - F o r m e d Inpu t . • ~ o f the
8th ~ ~ on ~
~ , 1 980.

Swar tou t , Willlam R. " IPL A ~: A System f o r Crea t -
i n g and Explaining Expert Consultlng Programs. •

~ 21 (1983), 285-325.

Weischedel, Ralph ~ and Norman K. Sondheimer.
• Meta-Rules as a Basis for ProcessinE Ill-Formed
Inpu t . = AmeriQan Journal o f .~.Ji~JI.~4ZJ~

~ (1983) , t o appear .

Wilensk~, Robert . "Ta lk ing t o UNIX i n E n g l i s h : An
Overview of UC." ~ of the 1982 N a t i o n a l
C o ~ e ~ n a e of ~ ~ (A A ~ - ~) ,
103-106.

Woods, Willi am A. " T r a n s i t i o n Network Grammars
f o r Na tu ra l Language A n a l y s i s . " ~.dm~g£.i,Q/,,~l~ o f
t h e ~ 1.~ (Oct. 1970), 591-606.

143

