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ABSTRACT 

The paper begins by defining a class of 
distributed memory machines which have useful 
properties as retrieval and filtering devices. 
These memory mechanisms store large numbers of 
associations on a single composite vector. They 
provide a natural format for encoding the 
syntactic and semantic constraints associated 
with linguistic elements. A computational 
architecture for parsing natural language is 
proposed which utillses the retrieval and 
associative features of these devices. The 
parsing mechanism is based on the principles of 
Lexlcal Functional Grammar and the paper 
demonstrates how these principles can be derived 
from the properties of the memory mechanisms. 

I INTRODUCTION 

Recently, interest has focussed on 
computational architectures employing massively 
parallel processing lip2]. Some of these 
systems have used a distributed form of 
knowledge representation [3]. This type of 
representation encodes an item of knowledge in 
terms of the relationships among a collection of 
elementary processing units, and such 
assemblages can encode large numbers of items. 
Representational similarity and the ability to 
generalize are the principal features of such 
memory systems. The next section defines a 
distributed memory machine which incorporates 
some of the computational advantages of 
distributed representations within a traditional 
yon Neumann architecture. The rest of the paper 
explores the properties of such machines as the 
basis for natural language parsing. 

II DISTRIBUTED MEMORY MACHINES 

Distributed memory machines (DMM) can be 
represented formally by the septuple 
DMM=(V,X,Y,Q,qo,p,A) , where 

V is a finite set denoting the total vocabulary; 
X is a finite set of inputs, and XGV; 
Y is a finite set of acceptable outputs and Y~V; 
Q is a set of internal states; 

q0 is a distinguished initial state; 
~.QxX-->Q, the retrieval function; 
A:Q-->Qxy, the output function. 

Further, where Y" denotes the set of all finite 
concatenations of the elements of the set Y, 
Q~Y', and therefore QgV'. This statement 
represents the notion that internal states of 
DMMs can encode multiple outputs or hypotheses. 
The vocabulary, V, can be represented by the 
space I k, where I is some interval range defined 
within a chosen number system, N; IoN. The 
elements of X, Y and Q are encoded as k-element 
vectors, referred to as memory vectozs. 

A. Holographic Associative Memory 

One form of DMM is the holographic associative 
memory [4,5,6] which encodes large numbers of 
associations on a single composite vector. 
Items of information are encoded as k-element 
zero-centred vectors over an interval such as 
[-I,+I]; <X>=(...x.t,x0,x~t,...). Two items, <A> 
and <B> (angular brackets denote memory 
vectors), are associated in memory through the 
operation of convolution. This method of 
association formation is fundamental to the 
concept of holographic memory and the resulting 
associative trace is denoted <A>*<B>. The 
operation of convolution is define by the 
equation (<A>*<B>~=.~AIB~. i and has the 
following propertles*[7]: 

Commutative: <A>*<B> = <B>*<A>, 
Associative: <A>*(<B>*<C>) = (<A>*<B>)*<C>. 

Further, where a delta vector, denoted ~, is 
defined as a vector that has values of zero on 
all features except the central feature, which 
has a value of one, then <A>* ~ffi <A>. Moreover, 
<A>*0 ffi 0, where 0 is a zero vector in which all 
feature values are zero. Convolving an item 
wlth an attenuated delta vector (i.e., a vector 
with values of zero on all features except the 
central one, which has a value between 0 and i) 
produces the original item with a strength that 
is equal to the value of the central feature of 
the attenuated delta vector. 

The initial state, qo, encodes all the 
associations stored in the machine. In this 
model, associative traces are concatenated (+) 
through the operations of vector addition and 
normalization to produce a single vector. 
Overlapping associative items produce composite 
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vectors which represent both the range of items 
stored and the central tendency of the those 
items. This form of prototype generation is a 
basic property of distributed memories. 

The retrieval function,@ , is simulated by the 
operation of correlation. If the state, q~, 
encodes the association <A>*<B>, then presenting 
say <A> as an input, or retrieval key, produces 
a new state, q{~, which encodes the item <B>', a 
noisy version of <B>, under the operation of 
correlation. This operation is defined by the 
equation (<A>#<B>~=~A%Bm,%and has the 
following properties: % An item correlated with 
itself, autocorrelation, produces an 
approximation to a delta vector. If two similar 
memory vectors are correlated, the central 
feature of the resulting vector will be equal to 
their similarity, or dot product, producing an 
attenuated delta vector. If the two items are 
completely independent, correlation produces a 
zero vector. 

The r e l a t i o n  between c o n v o l u t i o n  and 
c o r r e l a t i o n  i s  g i v e n  by 
<A>~(<A>*<B>) = (<A>~<A>)*<B> + 

(<A>~<B>)*<A> + noise ...(I) 
where the noise component results from some of 
the less significant cross products. Assuming 
that <A> and <B> are unrelated, Equation (I) 
becomes: 

<AMI(<A>*<B>) = ~*<B> + 0*<A> + noise 
- <B> + 0 + noise 

Extending these results to a composite trace, 
suppose that q encodes two associated pairs of 
four unrelated items forming the vector (<A>*<B> 
+ <C>*<D>). When <A> is given as the retrieval 
cue, the reconstruction can be characterized as 
follows: 

<A>~(<A>*<B> + <C>*<D>) 
= (<A>~t<A>)*<B> + (<A>~<B>)*<A> + noise 

+ (<A>~<C>)*<D> + (<A>@<D>)*<C> + noise 
= ~ *<B>+0*<A>+noise+O*<D>+O*<C>+noise 
- <B> + noise + noise 

When the additional unrelated items are added to 
the memory trace their affect on retrieval is to 
add noise to the reconstructed item <B>, which 
was associated with the retrieval cue. In a 
situation in which the encoded items are related 
to each other, the composite trace causes all of 
the related items to contribute to the 
reconstructed pattern, in addition to producing 
noise. The amount of noise added to a retrieved 
item is a function of both the amount of 
information held on the composite memory vector 
and the size of the vector. 

III BUILDING NATURAL LANCUACZ PARSERS 

A. Case-Frame Parsing 

The computational properties of distributed 
memory machines (DMM) make them natural 
mechanisms for case-frame parsing. Consider a 
DMM which encodes case-frame structures of the 
following form: 

<Pred>*(<Cl>*<Pl> + <C2>*<P2> + ...+ <Cn>*<Pn>) 
where <Pred> i s  the  v e c t o r  r e p r e s e n t i n g  the  
p r e d i c a t e  a s s o c i a t e d  w i th  t he  verb  of  an i n p u t  
c l a u s e ;  <C1> to  <Cn> a r e  t he  c a se  v e c t o r s  such  
as <agent>, <instrument>, etc., and <PI> to <Pn> 
are vectors representing prototype concepts 
which can fill the associated cases. These 
structures can be made more complex by including 
tagging vectors which indicate such features as 
o b l i g a t o r y  c a s e ,  as shown in the case-frame 
vector for the predicate BREAK: 

(<agent>*<anlobJ+natforce> + <obJect>*<physobJ> 
*<obllg> + <instrument>*<physobJ>) 

In this example, the object case has a prototype 
covering the category of physical objects, and 
is tagged as obligatory. 

The initial state of the DMM, qo, encodes the 
concatenation of the set of case-frame vectors 
stored by the parser. The system receives two 
types of inputs, noun concept vectors 
representing noun phrases, and predicate vectors 
representing the verb components. If the system 
is in state qo only a predicate vector input 
produces a significant new state representing 
the case-frame structure associated with it. 
Once in this state, noun vector inputs identify 
the case slots they can potentially fill as 
illustrated in the following example: 
In  p a r s i n g  the  s e n t e n c e  Fred broke t h e  window 
w i t h  e s t o n e ,  t he  i n p u t  v e c t o r  e n c o d i n  E broke  
w i l l  r e t r i e v e  t he  c a s e - f r a m e  s t r u c t u r e  f o r  b r e ak  
g i v e n  a bove .  The i n p u t  of  <Fred> now g i v e s  

<Fred>~q<agent>*<Pa>+<obJ>*<Po>+<instr>*<Pi>) " 
<Fred>g<agent>*<Pa>+<Fred>~<Pa>*<agent> + ... - 
0*<Pa>+ee*<agent> O*<Po>+e@*<obJ> + 
O*<Pi>+e%*<instr> : 
e~agent> + e~obJ> + es<instr> 

where ej is a measure of the similarity between 
the vectors, and underlying concepts, <Fred> and 
the case prototype <Pj>. In this example, 
<Fred> would be identified as the agent because 
e 0 and e~ would be low relative to ee. The 
vector is "cleaned-up" by a threshold function 
which is a component of the output function,)%. 
This process is repeated for the other noun 
concepts in the sentence, linking <window> and 
<stone> with the object and instrument cases, 
r e s p e c t i v e l y .  However, t he  p a r s e r  r e q u i r e s  
a d d i t i o n a l  m a c h i n e r y  to h a n d l e  the  l a r g e  s e t  of  
s e n t e n c e s  i n  which t he  c a s e  a s s i g n m e n t  i s  
ambiguous u s i n g  s e m a n t i c  knowledge a l o n e .  

B. Encodin~ Syntactic Knowledge 

Unambiguous c a se  a s s i g n m e n t  can on ly  be 
a c h i e v e d  t h r o u g h  t he  i n t e g r a t i o n  of  s y n t a c t i c  
and s e m a n t i c  p r o c e s s i n g .  Moreover ,  an a de qua t e  
p a r s e r  shou ld  g e n e r a t e  an  encod ing  of  t he  
grammatical relations between sentential elements 
i n  a d d i t i o n  to  a s e m a n t i c  r e p r e s e n t a t i o n .  The r e s t  
o f  t he  paper  d e m o n s t r a t e s  how the  p r o p e r t i e s  o f  
DMMs can  be combined w i th  the  i d e a s  embodied i n  
t he  t h e o r y  of  L e x t c a l - f u n c t i o n a l  CTammar (LFG) [8] 
in a parser which builds both types of relational 
structure. 
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In LFG the mapping between grammatical and 
semantic relations is represented directly in 
the semantic form of the lexlcal entries for 
verbs. For example, the lexlcal entry for the 
verb hands is given by 

hands: V, #participle) = NONE 
#tense) = PRESENT 
(tsubJ hum) = SO 
~pred) = HAND[@subJ)#obj2)@obJ)] 

where the arguments of the predicate HAND are 
ordered such that they map directly onto the 
arguments of the semantic predicate-argument 
structure. The order and value of the arguments 
in a lexical entry are transformed by lexlcal 
rules, such as the passive, to produce new 
lexical entries, e.g., HAND[#byobJ)~subJ)(~oobJ)]. 
The direct mapping between lexical predicates and 
case-frame structures is encoded on the case-frame 
DMM by augmenting the vectors as follows: 

Hands:- <HAND>*(<agent>*<Pa>*<subJ> + 
<obJect>*<Po>*<obJ2>+<goal>*<Pg>*<obJ>) 

When the SUBJ component has been identified 
through syntactic processing the resulting 
association vector, for example <subJ>*<John> 
for the sentence John handed Mary the book, will 
retrieve <agent> on input to the CF-DMM, 
according to the principles specified above. 
The multiple lexical entries produced by lexical 
rules have corresponding multiple case-frame 
vectors which are tagged by the appropriate 
grammatical vector. The CF-DMM encodes multiple 
case-frame entries for verbs, and the grammatical 
vector tags, such as <PASSIVE>, generated by the 
syntactic component, are input to the CF-DMM to 
retrieve the appropriate case-frame for the verb. 

The grammatical relations Between the 
sententlal elements are represented in the form 
of functional structure (f-structures) as in 
LFG. These structures correspond to embedded 
lists of attrlbute-value pairs, and because of 
the Uniqueness criterion which governs their 
format they are efficiently encoded as memory 
vectors. As an example, the grammatical 
relations for the sentence John handed Mary a 
book are encoded in the f-structure below: 

SUBJ NUM 
RED 'JO 

PAST 

'HAND[( SUBJ)( OSJ2)( OBJ)] 

TENSE 

PRED 

OBJ [~UM MARY 3 SG 
RED " 

OBJ2 [~C ASG K~" 

[,PRED "BOO 

The lists of grammatical functions and features 
are encoded as single vectors under the + 
operator, and the embedded structure is 
preserved by the associative operator, *. The 
f-structure is encoded by the vector 

(<SUBJ>*(<NUM>*<SG>+<PRED>*<JOHN>) + <TENSE> 
*<PAST> + <PRED>*(<HAND>*(<#SUBJ>*<TOBJ2>* 
<TOBJ>)) + <OBJ>*(<NUM>*<SG>+<PRED>*<MARY>)+ 
<OBJ2>*(<SPEC>*<A>+<NUM>*<SG>+<PRED>*<BOOK>)) 

This compatibility between f-structures and 
memory vectors is the basis for an efficient 
procedure for deriving f-structures from input 
strings. In LFG f-structures are generated in 
three steps. First, a context-free grammar 
(CFG) is used to derive an input string's 
constituent structure (C-structure). The grammar 
is augmented so that it generates a phrase 
structure tree which includes statements about 
the properties of the string's f-structure. In 
the next step, this structure is condensed to 
derive a series of equations, called the functional 
description of the string. Finally, the f-structure 
is derived from the f-description. The properties 
of DMMs enable a simple procedure to be written 
which derives f-structures from augmented phrase 
structure trees, obviating the need for an 
f-descrlptlon. Consider the tree in figure 1 
generated for our example sentence: 

~SUBJ) - & St& 

~ENSE)-PAST \ 
@FRED) =HAND[ ..] ~ \ 

(I'NUM)- SO [ ~OBJ)-~, 
~PRED)=JOHN) I (~qUM) =SG 

~PRED)=MARY #OBJ2)=& 

/ [ b John handed Mary a k 

Figure I. Augmented Phrase Structure Tree 

The f-structure, encoded as a memory vector, can 
be derived from this tree by the following 
procedure. First, all the grammatical 
functions, features and semantic forms must be 
encoded as vectors. The~-variables, f,-f#, 
have no values at this point; they are derived 
by the procedure. All the vectors dominated by 
a node are concatenated to produce a single 
vector at that node. The symbol '=" is 
interpreted as the association operator ,*. 
Applying this interpretation to the tree from 
the bottom up produces a memory vector for the 
value of f! which encodes the f-structure for 
the string, as given above. Accordingly, f~ 
takes the value (<TNUM>*<SG>+<TPRED>*<JOHN>); 
applying the rule specified at the node, (f, SUBJ)=f~ 
gives <tSUBJ>*(<tNUM>*<SG>+<TPRED>*<JOHN>) as a 
component of f,. The other components of fl are 
derived in the same way. The front-end CFG can 
be veiwed as generating the control structure 
for the derivation of a memory vector which 
represents the input string's f-structure. 
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The properties of memory vectors also enable 
the procedure to automatically determine the 
consistency Df the structure. For example, in 
deriving the value of f& the concatenation 
operator merges the (%NUM)~SG features for A and 
book to form a single component of the f~vector, 
(<SPEC>*<A>+<NUM>*<SG>+<PRED>*<MARY>). .owever, 
if the two features had not matched, producing 
the vector component <NU}~*(<SG>+<PL>) for 
example, the vectors encoding the incompatible 
feature values are set such that their 
concatenation produces a special control vector 
which signals the mismatch. 

C. A Parsing Architecture 

The ideas outlined above are combined in the 
design of a tentative parsing architecture shown 
in figure 2. The diamonds denote DMMs, and the 

r 

Figure 2. Parsing Archi tec ture  

ellipse denotes a form of DMM functioning as a 
working memory for encoding temporary f-structures. 

As elements of the input string enter the 
lexicon their associated entries are retrieved. 
The syntactic category of the element is passed 
onto the CFG, and the lexical schemata {e.g., 
~PRED)='JOHN'}, encoded as memory vectors, are 
passed to the f-structure working memory. The 
lexical entry associated with the verb is passed 
to the case-frame memory to retrieve the 
appropriate set of structures. The partial 
results of the CFG control the formation of 
memory vectors in the f-structure memory, as 
indicated by the broad arrow. The CFG also 
generates grammatical vectors as inputs for 
case-frame memory to select the appropriate 
structure from the multiple encodings associated 
with each verb. The partial f-structure 
encoding can then be used as input to the 
case-frame memory to assign the semantic forms 
of grammatical functions to case slots. When 
the end of the string is reached both the 
case-frame instantiation and the f-structure 
should be complete. 

IV CONCLUSIONS 

This paper attempts to demonstrate the value of 
distributed memory machines as components of a 

parsing system which generates both semantic and 
grammatical relational structures. The ideas 
presented are similar to those being developed 
within the connectlonist paradigm [I]. Small, 
and his colleagues [9], have proposed a parsing 
model based directly on connectionist principles. 
The computational architecture consists of a large 
number of appropriately connected computing units 
communicating through weighted levels of excitation 
and inhibition. The ideas presented here differ 
from those embodied in the connectionist parser 
in that they emphasise distributed information 
storage and retrieval, rather than distributed 
parallel processing. Retrieval and filtering 
are achieved through simple computable functions 
operating on k-element arrays, in contrast to 
the complex interactions of the independent 
units in connectlonist models. In figure 2, 
although the network of machines requires 
heterarchical control, the architecture can be 
considered to be at the lower end of the family 
of parallel processing machines [i0]. 
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