@inproceedings{chen-etal-2019-numeracy,
title = "Numeracy-600{K}: Learning Numeracy for Detecting Exaggerated Information in Market Comments",
author = "Chen, Chung-Chi and
Huang, Hen-Hsen and
Takamura, Hiroya and
Chen, Hsin-Hsi",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1635",
doi = "10.18653/v1/P19-1635",
pages = "6307--6313",
abstract = "In this paper, we attempt to answer the question of whether neural network models can learn numeracy, which is the ability to predict the magnitude of a numeral at some specific position in a text description. A large benchmark dataset, called Numeracy-600K, is provided for the novel task. We explore several neural network models including CNN, GRU, BiGRU, CRNN, CNN-capsule, GRU-capsule, and BiGRU-capsule in the experiments. The results show that the BiGRU model gets the best micro-averaged F1 score of 80.16{\%}, and the GRU-capsule model gets the best macro-averaged F1 score of 64.71{\%}. Besides discussing the challenges through comprehensive experiments, we also present an important application scenario, i.e., detecting exaggerated information, for the task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2019-numeracy">
<titleInfo>
<title>Numeracy-600K: Learning Numeracy for Detecting Exaggerated Information in Market Comments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chung-Chi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hen-Hsen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we attempt to answer the question of whether neural network models can learn numeracy, which is the ability to predict the magnitude of a numeral at some specific position in a text description. A large benchmark dataset, called Numeracy-600K, is provided for the novel task. We explore several neural network models including CNN, GRU, BiGRU, CRNN, CNN-capsule, GRU-capsule, and BiGRU-capsule in the experiments. The results show that the BiGRU model gets the best micro-averaged F1 score of 80.16%, and the GRU-capsule model gets the best macro-averaged F1 score of 64.71%. Besides discussing the challenges through comprehensive experiments, we also present an important application scenario, i.e., detecting exaggerated information, for the task.</abstract>
<identifier type="citekey">chen-etal-2019-numeracy</identifier>
<identifier type="doi">10.18653/v1/P19-1635</identifier>
<location>
<url>https://aclanthology.org/P19-1635</url>
</location>
<part>
<date>2019-jul</date>
<extent unit="page">
<start>6307</start>
<end>6313</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Numeracy-600K: Learning Numeracy for Detecting Exaggerated Information in Market Comments
%A Chen, Chung-Chi
%A Huang, Hen-Hsen
%A Takamura, Hiroya
%A Chen, Hsin-Hsi
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 jul
%I Association for Computational Linguistics
%C Florence, Italy
%F chen-etal-2019-numeracy
%X In this paper, we attempt to answer the question of whether neural network models can learn numeracy, which is the ability to predict the magnitude of a numeral at some specific position in a text description. A large benchmark dataset, called Numeracy-600K, is provided for the novel task. We explore several neural network models including CNN, GRU, BiGRU, CRNN, CNN-capsule, GRU-capsule, and BiGRU-capsule in the experiments. The results show that the BiGRU model gets the best micro-averaged F1 score of 80.16%, and the GRU-capsule model gets the best macro-averaged F1 score of 64.71%. Besides discussing the challenges through comprehensive experiments, we also present an important application scenario, i.e., detecting exaggerated information, for the task.
%R 10.18653/v1/P19-1635
%U https://aclanthology.org/P19-1635
%U https://doi.org/10.18653/v1/P19-1635
%P 6307-6313
Markdown (Informal)
[Numeracy-600K: Learning Numeracy for Detecting Exaggerated Information in Market Comments](https://aclanthology.org/P19-1635) (Chen et al., ACL 2019)
ACL