@inproceedings{feng-etal-2019-misleading,
title = "Misleading Failures of Partial-input Baselines",
author = "Feng, Shi and
Wallace, Eric and
Boyd-Graber, Jordan",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1554",
doi = "10.18653/v1/P19-1554",
pages = "5533--5538",
abstract = "Recent work establishes dataset difficulty and removes annotation artifacts via partial-input baselines (e.g., hypothesis-only model for SNLI or question-only model for VQA). A successful partial-input baseline indicates that the dataset is cheatable. But the converse is not necessarily true: failures of partial-input baselines do not mean the dataset is free of artifacts. We first design artificial datasets to illustrate how the trivial patterns that are only visible in the full input can evade any partial-input baseline. Next, we identify such artifacts in the SNLI dataset{---}a hypothesis-only model augmented with trivial patterns in the premise can solve 15{\%} of previously-thought {``}hard{''} examples. Our work provides a caveat for the use and creation of partial-input baselines for datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="feng-etal-2019-misleading">
<titleInfo>
<title>Misleading Failures of Partial-input Baselines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shi</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent work establishes dataset difficulty and removes annotation artifacts via partial-input baselines (e.g., hypothesis-only model for SNLI or question-only model for VQA). A successful partial-input baseline indicates that the dataset is cheatable. But the converse is not necessarily true: failures of partial-input baselines do not mean the dataset is free of artifacts. We first design artificial datasets to illustrate how the trivial patterns that are only visible in the full input can evade any partial-input baseline. Next, we identify such artifacts in the SNLI dataset—a hypothesis-only model augmented with trivial patterns in the premise can solve 15% of previously-thought “hard” examples. Our work provides a caveat for the use and creation of partial-input baselines for datasets.</abstract>
<identifier type="citekey">feng-etal-2019-misleading</identifier>
<identifier type="doi">10.18653/v1/P19-1554</identifier>
<location>
<url>https://aclanthology.org/P19-1554</url>
</location>
<part>
<date>2019-jul</date>
<extent unit="page">
<start>5533</start>
<end>5538</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Misleading Failures of Partial-input Baselines
%A Feng, Shi
%A Wallace, Eric
%A Boyd-Graber, Jordan
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 jul
%I Association for Computational Linguistics
%C Florence, Italy
%F feng-etal-2019-misleading
%X Recent work establishes dataset difficulty and removes annotation artifacts via partial-input baselines (e.g., hypothesis-only model for SNLI or question-only model for VQA). A successful partial-input baseline indicates that the dataset is cheatable. But the converse is not necessarily true: failures of partial-input baselines do not mean the dataset is free of artifacts. We first design artificial datasets to illustrate how the trivial patterns that are only visible in the full input can evade any partial-input baseline. Next, we identify such artifacts in the SNLI dataset—a hypothesis-only model augmented with trivial patterns in the premise can solve 15% of previously-thought “hard” examples. Our work provides a caveat for the use and creation of partial-input baselines for datasets.
%R 10.18653/v1/P19-1554
%U https://aclanthology.org/P19-1554
%U https://doi.org/10.18653/v1/P19-1554
%P 5533-5538
Markdown (Informal)
[Misleading Failures of Partial-input Baselines](https://aclanthology.org/P19-1554) (Feng et al., ACL 2019)
ACL
- Shi Feng, Eric Wallace, and Jordan Boyd-Graber. 2019. Misleading Failures of Partial-input Baselines. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5533–5538, Florence, Italy. Association for Computational Linguistics.