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Abstract

Inter-sentence relation extraction deals with
a number of complex semantic relationships
in documents, which require local, non-local,
syntactic and semantic dependencies. Exist-
ing methods do not fully exploit such depen-
dencies. We present a novel inter-sentence
relation extraction model that builds a la-
belled edge graph convolutional neural net-
work model on a document-level graph. The
graph is constructed using various inter- and
intra-sentence dependencies to capture local
and non-local dependency information. In or-
der to predict the relation of an entity pair, we
utilise multi-instance learning with bi-affine
pairwise scoring. Experimental results show
that our model achieves comparable perfor-
mance to the state-of-the-art neural models on
two biochemistry datasets. Our analysis shows
that all the types in the graph are effective for
inter-sentence relation extraction.

1 Introduction

Semantic relationships between named entities of-
ten span across multiple sentences. In order to
extract inter-sentence relations, most approaches
utilise distant supervision to automatically gen-
erate document-level corpora (Peng et al., 2017;
Song et al., 2018). Recently, Verga et al. (2018)
introduced multi-instance learning (MIL) (Riedel
et al., 2010; Surdeanu et al., 2012) to treat multiple
mentions of target entities in a document.

Inter-sentential relations depend not only on
local but also on non-local dependencies. De-
pendency trees are often used to extract local
dependencies of semantic relations (Culotta and
Sorensen, 2004; Liu et al., 2015) in intra-sentence
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Figure 1: Sentences with non-local dependencies between
named entities. The red arrow represents a relation be-
tween co-referred entities and yellow arrows represent se-
mantically dependent relations. Example adapted from the
CDR dataset (Wei et al., 2015).

relation extraction (RE). However, such depen-
dencies are not adequate for inter-sentence RE,
since different sentences have different depen-
dency trees. Figure 1 illustrates such a case be-
tween Oxytocin and hypotension. To capture their
relation, it is essential to connect the co-referring
entities Oxytocin and Oxt. RNNs and CNNs,
which are often used for intra-sentence RE (Zeng
et al., 2014; dos Santos et al., 2015; Zhou et al.,
2016b; Lin et al., 2016), are not effective on longer
sequences (Sahu and Anand, 2018) thus failing to
capture such non-local dependencies.

We propose a novel inter-sentence RE model
that builds a labelled edge Graph CNN (GCNN)
model (Marcheggiani and Titov, 2017) on a
document-level graph. The graph nodes corre-
spond to words and edges represent local and non-
local dependencies among them. The document-
level graph is formed by connecting words with
local dependencies from syntactic parsing and se-
quential information, as well as non-local depen-
dencies from coreference resolution and other se-
mantic dependencies (Peng et al., 2017). We
infer relations between entities using MIL-based
bi-affine pairwise scoring function (Verga et al.,
2018) on the entity node representations.

Our contribution is threefold. Firstly, we pro-
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Figure 2: Proposed model architecture. The input word sequence is mapped to a graph structure, where nodes are words and
edges correspond to dependencies. We omit several edges, such as self-node edges of all words and syntactic dependency edges
of different labels, for brevity. GCNN is employed to encode the graph and a bi-affine layer aggregates all mention pairs.

pose a novel model for inter-sentence RE using
GCNN to capture local and non-local dependen-
cies. Secondly, we apply the model on two bio-
chemistry corpora and show its effectiveness. Fi-
nally, we developed a novel, distantly supervised
dataset with chemical reactant-product relations
from PubMed abstracts.1

2 Proposed Model

We formulate the inter-sentence, document-level
RE task as a classification problem. Let
[w1, w2, · · · , wn] be the words in a document t
and e1 and e2 be the entity pair of interest in t.
We name the multiple occurrences of these enti-
ties in the document entity mentions. A relation
extraction model takes a triple (e1, e2, t) as in-
put and returns a relation for the pair, including
the “no relation” category, as output. We assume
that the relationship of the target entities in t can
be inferred based on all their mentions. We thus
apply multi-instance learning on t to combine all
mention-level pairs and predict the final relation
category of a target pair.

We describe the architecture of our proposed
model in Figure 2. The model takes as input an
entire abstract of scientific articles and two target
entities with all their mentions in the input layer.
It then constructs a graph structure with words as
nodes and labelled edges that correspond to local
and non-local dependencies. Next, it encodes the
graph structure using a stacked GCNN layer and
classifies the relation between the target entities by
applying MIL (Verga et al., 2018) to aggregate all

1The dataset is publicly available at http://nactem.
ac.uk/CHR/.

mention pair representations.

2.1 Input Layer

In the input layer, we map each word i and its rela-
tive positions to the first and second target entities
into real-valued vectors, wi, d1

i , d
2
i , respectively.

As entities can have more than one mention, we
calculate the relative position of a word from the
closest target entity mention. For each word i, we
concatenate the word and position representations
into an input representation, xi = [wi;d

1
i ;d

2
i ].

2.2 Graph Construction

In order to build a document-level graph for an
entire abstract, we use the following categories
of inter- and intra-sentence dependency edges, as
shown with different colours in Figure 2.
Syntactic dependency edge: The syntactic struc-
ture of a sentence reveals helpful clues for intra-
sentential RE (Miwa and Bansal, 2016). We thus
use labelled syntactic dependency edges between
the words of each sentence, by treating each syn-
tactic dependency label as a different edge type.
Coreference edge: As coreference is an important
indicator of local and non-local dependencies (Ma
et al., 2016), we connect co-referring phrases in a
document using coreference type edges.
Adjacent sentence edge: We connect the syntac-
tic root of a sentence with the roots of the previ-
ous and next sentences with adjacent sentence type
edges (Peng et al., 2017) for non-local dependen-
cies between neighbouring sentences.
Adjacent word edge: In order to keep sequen-
tial information among the words of a sentence,
we connect each word with its previous and next

http://nactem.ac.uk/CHR/
http://nactem.ac.uk/CHR/
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words with adjacent word type edges.
Self-node edge: GCNN learns a node representa-
tion based solely on its neighbour nodes and their
edge types. Hence, to include the node informa-
tion itself into the representation, we form self-
node type edges on all the nodes of the graph.

2.3 GCNN Layer

We compute the representation of each input word
i by applying GCNN (Kipf and Welling, 2017;
Defferrard et al., 2016) on the constructed doc-
ument graph. GCNN is an advanced version of
CNN for graph encoding that learns semantic rep-
resentations for the graph nodes, while preserv-
ing its structural information. In order to learn
edge type-specific representations, we use a la-
belled edge GCNN, which keeps separate param-
eters for each edge type (Vashishth et al., 2018).
The GCNN iteratively updates the representation
of each input word i as follows:

xk+1
i = f

 ∑
u∈ν(i)

(
Wk

l(i,u) x
k
u + bkl(i,u)

) ,

where xk+1
i is the i-th word representation re-

sulted from the k-th GCNN block, ν(i) is a set
of neighbouring nodes to i, Wk

l(i,u) and bkl(i,u) are
the parameters of the k-th block for edge type l be-
tween nodes i and u. We stackK GCNN blocks to
accumulate information from distant neighbouring
nodes and use edge-wise gating to control infor-
mation from neighbouring nodes.

Similar to Marcheggiani and Titov (2017), we
maintain separate parameters for each edge direc-
tion. We, however, tune the number of model pa-
rameters by keeping separate parameters only for
the top-N types and using the same parameters for
all the remaining edge types, named “rare” type
edges. This can avoid possible overfitting due to
over-parameterisation for different edge types.

2.4 MIL-based Relation Classification

Since each target entity can have multiple men-
tions in a document, we employ a multi-instance
learning (MIL)-based classification scheme to ag-
gregate the predictions of all target mention pairs
using bi-affine pairwise scoring (Verga et al.,
2018). As shown in Figure 2, each word i is
firstly projected into two separate latent spaces
using two-layered feed-forward neural networks
(FFNN), which correspond to the first (head) or

second (tail) argument of the target pair.

xheadi = W
(1)
head

(
ReLU

(
W

(0)
head x

K
i

))
,

xtaili = W
(1)
tail

(
ReLU

(
W

(0)
tail x

K
i

))
,

where xKi corresponds to the representation of the
i-th word after |K| blocks of GCNN encoding,
W(0), W(1) are the parameters of two FFNNs for
head and tail respectively and xheadi , xtaili ∈ Rd
are the resulted head/tail representations for the i-
th word.

Then, mention-level pairwise confidence scores
are generated by a bi-affine layer and aggregated
to obtain the entity-level pairwise score.

scores(ehead, etail) =

log
∑

i∈Ehead, j∈Etail

exp
((

xheadi R
)
xtailj

)
,

where, R ∈ Rd×r×d is a learned bi-affine ten-
sor with r the number of relation categories, and
Ehead, Etail denote a set of mentions for entities
ehead and etail respectively.

3 Experimental Settings

We first briefly describe the datasets where the
proposed model is evaluated along with their pre-
processing. We then introduce the baseline mod-
els we use for comparison. Finally, we show the
training settings.

3.1 Data Sets
We evaluated our model on two biochemistry
datasets.
Chemical-Disease Relations dataset (CDR):
The CDR dataset is a document-level, inter-
sentence relation extraction dataset developed for
the BioCreative V challenge (Wei et al., 2015).
CHemical Reactions dataset (CHR): We created
a document-level dataset with relations between
chemicals using distant supervision. Firstly, we
used the back-end of the semantic faceted search
engine Thalia2 (Soto et al., 2018) to obtain ab-
stracts annotated with several biomedical named
entities from PubMed. We selected chemical com-
pounds from the annotated entities and aligned
them with the graph database Biochem4j (Swain-
ston et al., 2017). Biochem4j is a freely available
database that integrates several resources such as

2http://www.nactem.ac.uk/Thalia/

http://www.nactem.ac.uk/Thalia/
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Data Count Train Dev. Test

CDR
# Articles 500 500 500
# Positive pairs 1,038 1,012 1,066
# Negative pairs 4,198 4,069 4,119

CHR
# Articles 7,298 1,182 3,614
# Positive pairs 19,643 3,185 9,578
# Negative pairs 69,843 11,466 33,339

Table 1: Statistics of the CDR and CHR datasets.

UniProt, KEGG and NCBI Taxonomy3. If two
chemical entities have a relation in Biochem4j, we
consider them as positive instances in the dataset,
otherwise as negative.

3.2 Data Pre-processing
Table 1 shows the statistics for CDR and CHR
datasets. For both datasets, the annotated enti-
ties can have more than one associated Knowledge
Base (KB) ID. If there is at least one common
KB ID between mentions then we considered all
these mentions to belong to the same entity. This
technique results in less negative pairs. We ig-
nored entities that were not grounded to a known
KB ID and removed relations between the same
entity (self-relations). For the CDR dataset, we
performed hypernym filtering similar to Gu et al.
(2017) and Verga et al. (2018). In the CHR dataset,
both directions were generated for each candidate
chemical pair as chemicals can be either a reactant
(first argument) or a product (second argument) in
an interaction.

We processed the datasets using the GENIA
Sentence Splitter4 and GENIA tagger (Tsuruoka
et al., 2005) for sentence splitting and word tokeni-
sation, respectively. Syntactic dependencies were
obtained using the Enju syntactic parser (Miyao
and Tsujii, 2008) with predicate-argument struc-
tures. Coreference type edges were constructed
using the Stanford CoreNLP software (Manning
et al., 2014).

3.3 Baseline Models
For the CDR dataset, we compare with five state-
of-the-art models: SVM (Xu et al., 2016b), en-
semble of feature-based and neural-based mod-
els (Zhou et al., 2016a), CNN and Maximum En-
tropy (Gu et al., 2017), Piece-wise CNN (Li et al.,
2018) and Transformer (Verga et al., 2018). We
additionally prepare and evaluate the following

3http://biochem4j.org
4http://www.nactem.ac.uk/y-matsu/

geniass/

models: CNN-RE, a re-implementation from Kim
(2014) and Zhou et al. (2016a) and RNN-RE, a re-
implementation from Sahu and Anand (2018). In
all models we use bi-affine pairwise scoring to de-
tect relations.

3.4 Model Training

We used 100-dimentional word embeddings
trained on PubMed with GloVe (Pennington et al.,
2014; TH et al., 2015). Unlike Verga et al. (2018),
we used the pre-trained word embeddings in place
of sub-word embeddings to align with our word
graphs. Due to the size of the CDR dataset, we
merged the training and development sets to train
the models, similarly to Xu et al. (2016a) and Gu
et al. (2017). We report the performance as the
average of five runs with different parameter ini-
tialisation seeds in terms of precision (P), recall
(R) and F1-score. We used the frequencies of the
edge types in the training set to choose the top-N
edges in Section 2.3. We refer to the supplemen-
tary materials for the details of the training and
hyper-parameter settings.

4 Results

We show the results of our model for the CDR and
CHR datasets in Table 2. We report the perfor-
mance of state-of-the-art models without any ad-
ditional enhancements, such as joint training with
NER, model ensembling and heuristic rules, to
avoid any effects from the enhancements in the
comparison. We observe that the GCNN outper-
forms the baseline models (CNN-RE/RNN-RE) in
both datasets. However, in the CDR dataset, the
performance of GCNN is 1.6 percentage points
lower than the best performing system of (Gu
et al., 2017). In fact, Gu et al. (2017) incorpo-
rates two separate neural and feature-based mod-
els for intra- and inter-sentence pairs, respec-
tively, whereas we utilize a single model for both
pairs. Additionally, GCNN performs compara-
bly to the second state-of-the-art neural model Li
et al. (2018), which requires a two-step process for
mention aggregation unlike our unified approach.

Figure 3 illustrates the performance of our
model on the CDR development set when using
a varying number of most frequent edge types N .
While tuning N , we observed that the best per-
formance was obtained for top-4 edge types, but
it slightly deteriorated with more. We chose the
top-4 edge types in other experiments.

http://biochem4j.org
http://www.nactem.ac.uk/y-matsu/geniass/
http://www.nactem.ac.uk/y-matsu/geniass/
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Data Model P (%) R (%) F1 (%)

CDR

Xu et al. (2016a) 59.6 44.0 50.7
Zhou et al. (2016a) 64.8 49.2 56.0
Gu et al. (2017) 60.9 59.5 60.2
Li et al. (2018) 55.1 63.6 59.1
Verga et al. (2018) 49.9 63.8 55.5
CNN-RE 51.5 65.7 57.7
RNN-RE 52.6 62.9 57.3
GCNN 52.8 66.0 58.6

CHR
CNN-RE 81.2 87.3 84.1
RNN-RE 83.0 90.1 86.4
GCNN 84.7 90.5 87.5

Table 2: Performance on the CDR and CHR test sets in com-
parison with the state-of-the-art.

Figure 3: Performance of GCNN model on the CDR devel-
opment set when using the top-N most frequent edge types
and consider the rest as a single “rare” type.

Model Overall Intra Inter
GCNN (best) 57.19 63.43 36.90
− Adjacent word 55.75 62.53 35.61
− Syntactic dependency 56.12 62.89 34.75
− Coreference 56.44 63.27 35.65
− Self-node 56.85 63.84 33.20
− Adjacent sentence 57.00 63.99 35.20

Table 3: Ablation analysis on the CDR development set, in
terms of F1-score (%), for intra- (Intra) and inter-sentence
(Inter) pairs.

We perform ablation analysis on the CDR
dataset by separating the development set to intra-
and inter-sentence pairs (approximately 70% and
30% of pairs, respectively). Table 3 shows the
performance when removing an edge category at
a time. In general, all dependency types have pos-
itive effects on inter-sentence RE and the over-
all performance, although self-node and adjacent
sentence edges slightly harm the performance of
intra-sentence relations. Additionally, coreference
does not affect intra-sentence pairs.

5 Related Work

Inter-sentence RE is a recently introduced task.
Peng et al. (2017) and Song et al. (2018) used
graph-based LSTM networks for n-ary RE in mul-
tiple sentences for protein-drug-disease associa-

tions. They restricted the relation candidates in
up to two-span sentences. Verga et al. (2018) con-
sidered multi-instance learning for document-level
RE. Our work is different from Verga et al. (2018)
in that we replace Transformer with a GCNN
model for full-abstract encoding using non-local
dependencies such as entity coreference.

GCNN was firstly proposed by Kipf and
Welling (2017) and applied on citation networks
and knowledge graph datasets. It was later used
for semantic role labelling (Marcheggiani and
Titov, 2017), multi-document summarization (Ya-
sunaga et al., 2017) and temporal relation extrac-
tion (Vashishth et al., 2018). Zhang et al. (2018)
used a GCNN on a dependency tree for intra-
sentence RE. Unlike previous work, we introduced
a GCNN on a document-level graph, with both
intra- and inter-sentence dependencies for inter-
sentence RE.

6 Conclusion

We proposed a novel graph-based method for
inter-sentence RE using a labelled edge GCNN
model on a document-level graph. The graph
is constructed with words as nodes and multiple
intra- and inter-sentence dependencies between
them as edges. A GCNN model is employed to en-
code the graph structure and MIL is incorporated
to aggregate the multiple mention-level pairs . We
show that our method achieves comparable perfor-
mance to the state-of-the-art neural models on two
biochemistry datasets. We tuned the number of la-
belled edges to maintain the number of parameters
in the labelled edge GCNN. Analysis showed that
all edge types are effective for inter-sentence RE.

Although the model is applied to biochemistry
corpora for inter-sentence RE, our method is also
applicable to other relation extraction tasks. As fu-
ture work, we plan to incorporate joint named en-
tity recognition training as well as sub-word em-
beddings in order to further improve the perfor-
mance of the proposed model.
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A Training and Hyper-parameter
Settings

We implemented all models using Tensorflow5.
The development set was used for hyper-
parameter tuning. For all models, parameters
were optimised using the Adam optimisation algo-
rithm with exponential moving average (Kingma
and Ba, 2015), learning rate of 0.0005, learn-
ing rate decay of 0.75 and gradient clipping 10.
We used early stopping with patience equal to
5 epochs in order to determine the best training
epoch. For other hyper-parameters, we performed
a non-exhaustive hyper-parameter search based on
the development set. We used the same hyper-
parameters of both CDR and CHR datasets. The
best hyper-parameter values are shown in Table 4.

Hyper-parameter Value
Batch size 32
Learning rate 5 · 10−3

Word dimension 100
Position dimension 20
GCNN dimension 140
Number of GCNN blocks (K) 2
MIL feed-forward layer dimension 140
Dropout rate (input layer) 0.1
Dropout rate (GCNN layer) 0.05
Dropout rate (MIL feed-forward layer) 0.05
Residual connection on GCNN layer yes

Table 4: Best performing hyper-parameters used in the pro-
posed model.

5https://www.tensorflow.org

https://www.tensorflow.org

