@inproceedings{iso-etal-2019-learning,
title = "Learning to Select, Track, and Generate for Data-to-Text",
author = "Iso, Hayate and
Uehara, Yui and
Ishigaki, Tatsuya and
Noji, Hiroshi and
Aramaki, Eiji and
Kobayashi, Ichiro and
Miyao, Yusuke and
Okazaki, Naoaki and
Takamura, Hiroya",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1202",
doi = "10.18653/v1/P19-1202",
pages = "2102--2113",
abstract = "We propose a data-to-text generation model with two modules, one for tracking and the other for text generation. Our tracking module selects and keeps track of salient information and memorizes which record has been mentioned. Our generation module generates a summary conditioned on the state of tracking module. Our proposed model is considered to simulate the human-like writing process that gradually selects the information by determining the intermediate variables while writing the summary. In addition, we also explore the effectiveness of the writer information for generations. Experimental results show that our proposed model outperforms existing models in all evaluation metrics even without writer information. Incorporating writer information further improves the performance, contributing to content planning and surface realization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="iso-etal-2019-learning">
<titleInfo>
<title>Learning to Select, Track, and Generate for Data-to-Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hayate</namePart>
<namePart type="family">Iso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yui</namePart>
<namePart type="family">Uehara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuya</namePart>
<namePart type="family">Ishigaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Noji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eiji</namePart>
<namePart type="family">Aramaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ichiro</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a data-to-text generation model with two modules, one for tracking and the other for text generation. Our tracking module selects and keeps track of salient information and memorizes which record has been mentioned. Our generation module generates a summary conditioned on the state of tracking module. Our proposed model is considered to simulate the human-like writing process that gradually selects the information by determining the intermediate variables while writing the summary. In addition, we also explore the effectiveness of the writer information for generations. Experimental results show that our proposed model outperforms existing models in all evaluation metrics even without writer information. Incorporating writer information further improves the performance, contributing to content planning and surface realization.</abstract>
<identifier type="citekey">iso-etal-2019-learning</identifier>
<identifier type="doi">10.18653/v1/P19-1202</identifier>
<location>
<url>https://aclanthology.org/P19-1202</url>
</location>
<part>
<date>2019-jul</date>
<extent unit="page">
<start>2102</start>
<end>2113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Select, Track, and Generate for Data-to-Text
%A Iso, Hayate
%A Uehara, Yui
%A Ishigaki, Tatsuya
%A Noji, Hiroshi
%A Aramaki, Eiji
%A Kobayashi, Ichiro
%A Miyao, Yusuke
%A Okazaki, Naoaki
%A Takamura, Hiroya
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 jul
%I Association for Computational Linguistics
%C Florence, Italy
%F iso-etal-2019-learning
%X We propose a data-to-text generation model with two modules, one for tracking and the other for text generation. Our tracking module selects and keeps track of salient information and memorizes which record has been mentioned. Our generation module generates a summary conditioned on the state of tracking module. Our proposed model is considered to simulate the human-like writing process that gradually selects the information by determining the intermediate variables while writing the summary. In addition, we also explore the effectiveness of the writer information for generations. Experimental results show that our proposed model outperforms existing models in all evaluation metrics even without writer information. Incorporating writer information further improves the performance, contributing to content planning and surface realization.
%R 10.18653/v1/P19-1202
%U https://aclanthology.org/P19-1202
%U https://doi.org/10.18653/v1/P19-1202
%P 2102-2113
Markdown (Informal)
[Learning to Select, Track, and Generate for Data-to-Text](https://aclanthology.org/P19-1202) (Iso et al., ACL 2019)
ACL
- Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke Miyao, Naoaki Okazaki, and Hiroya Takamura. 2019. Learning to Select, Track, and Generate for Data-to-Text. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2102–2113, Florence, Italy. Association for Computational Linguistics.