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Abstract

A type description is a succinct noun com-
pound which helps human and machines to
quickly grasp the informative and distinctive
information of an entity. Entities in most
knowledge graphs (KGs) still lack such de-
scriptions, thus calling for automatic meth-
ods to supplement such information. How-
ever, existing generative methods either over-
look the grammatical structure or make fac-
tual mistakes in generated texts. To solve
these problems, we propose a head-modifier
template-based method to ensure the readabil-
ity and data fidelity of generated type descrip-
tions. We also propose a new dataset and two
automatic metrics for this task. Experiments
show that our method improves substantially
compared with baselines and achieves state-
of-the-art performance on both datasets.

1 Introduction

Large-scale open domain KGs such as DBpe-
dia (Auer et al., 2007), Wikidata (Vrandečić and
Krötzsch, 2014) and CN-DBpedia (Xu et al.,
2017) are increasingly drawing the attention from
both academia and industries, and have been suc-
cessfully used in many applications that require
background knowledge to understand texts.

In KGs, a type description (Bhowmik and de
Melo, 2018) is a kind of description which re-
flects the rich information of an entity with lit-
tle cognitive efforts. A type description must
be informative, distinctive and succinct to help
human quickly grasp the essence of an unfa-
miliar entity. Compared to other kinds of data
in a KG, types in entity-typing task (Shimaoka
et al., 2016; Ren et al., 2016) are too general
and not informative enough (e.g., when asked
about “what is rue Cazotte?”, street in
Paris, France is obviously more informative
and distinctive than a type location.), and the fixed
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Figure 1: An example of the two-stage generation of
our head-modifier template-based method. $hed$ and
$mod$ are the placeholder for head and modifier com-
ponents in the template.

type set is too inflexible to expand; while infobox
and abstract are too long with too much informa-
tion, which increases cognitive burden.

Type descriptions are useful for a wide range
of applications, including question answering (e.g.
what is rue Cazotte?), named entity disambigua-
tion (e.g. Apple (fruit of the apple tree) vs Apple
(American technology company)), taxonomy en-
richment, etc. However, many entities in current
open-domain KGs still lack such descriptions. For
example, in DBpedia and CN-DBpedia respec-
tively, there are only about 21% and 1.8% entities
that are provided with such descriptions1.

Essentially, a type description is a noun com-
pound, which follows a grammatical rule called
head-modifier rule (Hippisley et al., 2005; Wang
et al., 2014). It always contains a head component
(also head words or heads), and usually contains a
modifier component (also modifier words or mod-
ifiers). The head component representing the type

1According to DBpedia 2016-10 dump and CN-DBpedia
2015-07 dump.
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information of the entity makes it distinctive from
entities of other types; the modifier component
limits the scope of that type, making it more fine-
grained and informative. For example, in street
in Paris, France, the head word street
indicates that it is a street, and the modifier words
Paris and France indicate the street is located
in Paris, France.

Due to the low recall and limited patterns of ex-
tractive methods (Hearst, 1992), generative meth-
ods are more suitable to acquire more type de-
scriptions. Generally, there are several challenges
in generating a type description from an infobox:
1) it must be grammatically correct to be readable,
given that a trivial mistake could lead to a syntax
error (e.g. street with Paris, France);
2) it must guarantee the data fidelity towards in-
put infobox, e.g., the system shouldn’t generate
street in Germany for a French street; 3)
its heads must be the correct types for the entity,
and a mistake in heads is more severe than in mod-
ifiers, e.g., in this case, river in France is
much worse than street in Germany .

We argue that the head-modifier rule is cru-
cial to ensure readability and data-fidelity in type
description generation. However, existing meth-
ods pay little attention to it. Bhowmik and de
Melo (2018) first propose a dynamic memory-
based generative network to generate type descrip-
tions from infobox in a neural manner. They uti-
lize a memory component to help the model bet-
ter remember the training data. However, it tends
to lose the grammatical structure of the output, as
it cannot distinguish heads from modifiers in the
generation process. Also, it cannot handle the out-
of-vocabulary (OOV) problem, and many modi-
fier words may be rare and OOV. Other data-to-
text (Wiseman et al., 2017; Sha et al., 2018) and
text-to-text (Gu et al., 2016; Gulcehre et al., 2016;
See et al., 2017) models equipped with copy mech-
anism alleviate OOV problem, without consider-
ing the difference between heads and modifiers,
resulting in grammatical or factual mistakes.

To solve the problems above, we propose
a head-modifier template-based method. To
the best of our knowledge, we are the first to
integrate head-modifier rule into neural generative
models. Our method is based on the observation
that a head-modifier template exists in many
type descriptions. For example, by replacing
heads and modifiers with placeholders $hed$

and $mod$, the template for street in
Paris, France is $hed$ in $mod$,
$mod$, which is also the template for a series
of similar type descriptions such as library
in California, America, lake in
Siberia, Russia, etc. Note that, the $hed$
and $mod$ can appear multiple times, and
punctuation like a comma is also an important
component of a template.

Identifying the head and modifier components
is helpful for providing structural and contextual
cues in content selection and surface realization in
generation, which correspond to data fidelity and
readability respectively. As shown in Fig.1, the
model can easily select the corresponding prop-
erties and values and organize them by the guid-
ance of the template. The head-modifier template
is universal as the head-modifier rule exists in any
noun compound in English, even in Chinese (Hip-
pisley et al., 2005). Therefore, the templates are
applicable for open domain KGs, with no need to
design new templates for entities from other KGs.

There are no existing head-modifier templates
to train from, therefore we use the dependency
parsing technique (Manning et al., 2014) to ac-
quire templates in training data. Then, as pre-
sented in Fig.1, our method consists of two stages:
in Stage 1, we use an encoder-decoder frame-
work with an attention mechanism to generate
a template; in Stage 2, we use a new encoder-
decoder framework to generate a type descrip-
tion, and reuse previously encoded infobox and
apply a copy mechanism to preserve information
from source to target. Meanwhile, we apply an-
other attention mechanism upon generated tem-
plates to control the output’s structure. We then
apply a context gate mechanism to dynamically
select contexts during decoding.

In brief, our contributions2 in this paper include,
1) we propose a new head-modifier template-
based method to improve the readability and data
fidelity of generating type descriptions, which is
also the first attempt of integrating head-modifier
rule into neural generative models; 2) we apply
copy and context gate mechanism to enhance the
model’s ability of choosing contents with the guid-
ance of templates; 3) we propose a new dataset
with two new automatic metrics for this task, and
experiments show that our method achieves state-
of-the-art performance on both datasets.

2https://github.com/Michael0134/HedModTmplGen
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Figure 2: Overall architecture of our method. In Stage 1, the model generates a template from infobox of entity
rue Cazotte (the entity can be found at Wikidata by EntityID), then in Stage 2 the model completes this
template by reusing the infobox and generates a type description for this entity.

2 Method

In this section, we demonstrate our method in de-
tail. As shown in Fig.2, given an entity from Wiki-
data3 and its corresponding infobox, we split the
generation process into two stages. In Stage 1,
the model takes as input an infobox and generates
a head-modifier template. In Stage 2, the model
takes as input the previously encoded infobox and
the output template, and produces a type descrip-
tion. Note that our model is trained in an end-to-
end manner.

2.1 Stage 1: Template Generation

In this stage, we use an encoder-decoder frame-
work to generate a head-modifier template of the
type description.

2.1.1 Infobox Encoder
Our model takes as input an infobox of an entity,
which is a series of (property, value) pairs
denoted as I. We then reconstruct them into a se-
quence of words to apply Seq2Seq learning. In
order to embed structural information from the in-
fobox into word embedding xi, following Lebret
et al. (2016), we represent xi = [vxi ; fxi ;pxi

] for
the i-th word xi in the values, with the word em-

3www.wikidata.org
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3��� LQVWDQFH RI VWUHHW

3����QDPHG DIWHU -DFTXHV &D]RWWH
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Figure 3: An example of reconstructing a Wikidata in-
fobox (left) into a sequence of words with property and
position information (right). PN denotes a property ID
in Wikidata.

bedding vxi for xi, a corresponding property em-
bedding fxi and the positional information embed-
ding pxi

, and [·; ·] stands for vector concatenation.
For example, as shown in Fig.3, we recon-

struct (named after, Jacques Cazotte)
into Jacques with (named after, 0)
and Cazotte with (named after, 1), as
Jacques is the first token in the value and
Cazotte is the second. Next, we concatenate
the embedding of Jacques, named after and
0 as the reconstructed embedding for Jacques.
Notice that, we have three separate embedding
matrices for properties, value words and position,
that is, even though the property country is the
same string as the value country, they are not
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the same token.
Then, we employ a standard GRU (Chung et al.,

2014) to read the input X = {xi}Lx
i=1, then produce

a sequence of hidden states Hx = {h1
i }

Lx
i=1, which

are shared in both stages, where Lx is the length
of the input sequence.

2.1.2 Template Annotation

nmod

case

appos

punct
root

street in paris , france
head stop

word modifier modifier

$hed$ in $mod$ , $mod$

NN IN NNP , NNROOT

Template:

Type 
Description:

stop
word

Figure 4: An example of extracting head-modifier tem-
plate from type description by dependency parsing us-
ing Stanford CoreNLP toolkit.

In this task, the type descriptions are diversified
yet following the head-modifier rule. The Stage
1 in our model learns the templates from train-
ing data, but there are no existing templates for
the template generation training. Therefore, we
acquire head-modifier templates by using a de-
pendency parser provided by Stanford CoreNLP
(Manning et al., 2014).

Specifically, a type description is formed by
head words (or heads), modifier words (or mod-
ifiers) and conjunctions. In our work, we refer to
words that are types as heads in a type descrip-
tion, so there could be multiple heads. For ex-
ample, singer and producer in American
singer, producer are both head words.

During dependency parsing, the root of a
noun compound is always a head word of the type
description. Therefore, we acquire heads by find-
ing the root and its parallel terms. The remaining
words except conjunctions and stopwords are con-
sidered to be modifiers. We then obtain the tem-
plate by substituting heads with $hed$ and mod-
ifiers with $mod$, as shown in Fig.4.

2.1.3 Template Decoder
In template generation, the template decoder
D1 takes as input the previous encoded hidden
states Hx and produces a series of hidden states
{s11, s12, ..., s1Lx

} and a template sequence T =
{t1, t2, ..., tLt}, where Lt is the length of the gen-
erated template. As template generation is a rela-
tively lighter and easier task, we apply a canonical

attention decoder as D1, with GRU as the RNN
unit.

Formally, at each time step j, the decoder pro-
duces a context vector c1j ,

c1j =
Lx∑
i=1

αijh1
i ;αij =

η(s1j−1,h
1
i )∑Lx

k=1 η(s1j−1,h
1
i ))

(1)

where η(s1j ,h
1
i ) is a relevant score between en-

coder hidden state h1
i and a decoder hidden state

s1j . Among many ways to compute the score, in
this work, we apply general product (Luong et al.,
2015) to measure the similarity between both:

η(h1
i , s

1
j−1) = h1>

i W1s1j−1 (2)

where W1 is a learnable parameter.
Then the decoder state is updated by s1j =

GRU([tj−1; c1j ], s1j−1). Finally, the results are fed
into a softmax layer, from which the system pro-
duces tj .

2.2 Stage 2: Description Generation

After Stage 1 is finished, the generated template
sequence T and the infobox encoder hidden states
Hx are fed into Stage 2 to produce the final type
description.

2.2.1 Template Encoder
As the template is an ordered sequence, we use
a bidirectional (Schuster and Paliwal, 1997) GRU
to encode template sequence into another series of
hidden states Ht = {h2

i }
Lt
i=1. Then we fed both

Ht and Hx to the description decoder for further
refinement.

2.2.2 Description Decoder
The description decoder D2 is a GRU-based de-
coder, which utilizes a dual attention mechanism:
a canonical attention mechanism and a copy mech-
anism to attend over template representation Ht

and infobox representation Hx respectively. This
is because we need the model to preserve informa-
tion from the source while maintaining the head-
modifier structure learned from the templates.

In detail, let s2j be D2’s hidden state at time step
j. The first canonical attention mechanism is sim-
ilar to the one described in Section 2.1.3, except
that the decoder hidden states are replaced and re-
lated learnable parameters are changed. By apply-
ing this, we obtain a context vector ctj of Ht and a
context vector cxj of Hx.
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Then, we use context gates proposed by Tu et al.
(2017) to dynamically balance the contexts from
infobox, template, and target, and decide the ratio
at which three contexts contribute to the genera-
tion of target words.

Formally, we calculate the context gates g∗j by

gxj = σ(Wx
ge(yj−1) + Ux

gsj−1 + Cx
gcxj )

gtj = σ(Wt
ge(yj−1) + Ut

gsj−1 + Ct
gctj)

(3)

where W∗g,U∗g,C∗g are all learnable parameters, σ
is a sigmoid layer, and e(y) embeds the word y.
After that, we apply a linear interpolation to inte-
grate these contexts and update the decoder state:

c2j =(1− gxj − gtj)(We(yj−1) + Us2j−1)+
gxj C1cxj + gtjC2ctj

s2j =GRU([e(yj−1); c2j ], s
2
j−1)

(4)

where W,U,C1,C2 are all learnable parameters.
To conduct a sort of slot filling procedure and

enhance the model’s ability of directly copying
words from infobox, we further apply conditional
copy mechanism (Gulcehre et al., 2016) upon Hx.
As the produced words may come from the vo-
cabulary or directly from the infobox , we assume
a new decoding vocabulary V ′ = V ∪ {xi}Lx

i=1,
where V is the original vocabulary with the vocab-
ulary size of N , and unk is the replacement for
out-of-vocabulary words.

Following Wiseman et al. (2017), the proba-
bilistic function of yj is as follows:

p(yj , zj |y<j , I, T ) ={
pcopy(yj |y<j , I, T )p(zj |y<j , I), zj = 0

pgen(yj |y<j , I, T )p(zj |y<j , I), zj = 1

(5)

where zj is a binary variable deciding whether yj
is copied from I or generated, and p(zj |·) is the
switcher between copy and generate mode which
is implemented as a multi-layer perceptron (MLP).
pcopy(yj |·) and pgen(yj |·) are the probabilities of
copy mode and generate mode respectively, which
are calculated by applying softmax on copy scores
φcopy and generation scores φgen. These scores are
defined as follows:

φgen(yj = v) = Wg[s2j ; c2j ], v ∈ V ∪ {unk}
φcopy(yj = xi) = tanh(hx

i Wc)s2j , xi ∈ V ′ − V
(6)

where Wc,Wg are both learnable parameters.
Therefore, a word is considered as a copied word
if it appears in the value portion of the source in-
fobox.

2.3 Learning

Our model is able to be optimized in an end-to-
end manner and is trained to minimize the negative
log-likelihood of the annotated templates T given
infobox I and the ground truth type descriptions
given T and I. Formally,

L1 = −
Lt∑
i=1

log p(ti|t<i, I)

L2 = −
Ly∑
i=1

log p(yi|y<i, I, T )

L = L1 + L2

(7)

where L1 is the loss in Stage 1, L2 is the loss in
Stage 2, and Ly is the length of the target.

3 Experiments

In this section, we conduct several experiments to
demonstrate the effectiveness of our method.

3.1 Datasets

We conduct experiments on two English datasets
sampled from Wikidata, which are referred to as
Wiki10K and Wiki200K respectively. Wiki10K
is the original dataset proposed by Bhowmik and
de Melo (2018), which is sampled from Wiki-
data and consists of 10K entities sampled from
the official RDF exports of Wikidata dated 2016-
08-01. However, this dataset is not only too
small to reveal the subtlety of models, but it’s
also relatively imbalanced with too many human
entities based on the property instance of.
Therefore, we propose a new and larger dataset
Wiki200K, which consists of 200K entities more
evenly sampled from Wikidata dated 2018-10-01.
Note that, in both Wiki10K and Wiki200K, we
filter all the properties whose data type are not
wikibase-item, wikibase-property or
time according to Wikidata database reports4.

KGs such as Wikidata are typically composed
of semantic triples. A semantic triple is formed
by a subject, a predicate, and an object, corre-
sponding to entity, property and value in Wikidata.

4https://www.wikidata.org/wiki/Wikidata:Database reports/
List of properties/all
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We make sure that every entity from both datasets
has at least 5 property-value pairs (or statement in
Wikidata parlance) and an English type descrip-
tion. The basic statistics of the two datasets are
demonstrated in Table 1. Then, we randomly di-
vide two datasets into train, validation and test sets
by the ratio of 8:1:1.

Datasets Wiki10K Wiki200K

# entities 10,000 200,000
# properties 480 900

vocabulary size 28,785 130,686
# avg statement 8.90 7.96

Copy(%) 88.24 71.30

Table 1: Statistics for both datasets, where “#” de-
notes the number counted, and avg is short for aver-
age. “Copy(%)” denotes the copy ratio in the golden
type descriptions excluding stopwords, which is simi-
lar to the metric ModCopy defined in Section 3.2.

3.2 Evaluation Metrics

Following the common practice, we evaluate dif-
ferent aspects of the generation quality with au-
tomatic metrics broadly applied in many natural
language generation tasks, including BLEU (B-1,
B-2) (Papineni et al., 2002), ROUGE (RG-L) (Lin,
2004), METEOR (Banerjee and Lavie, 2005) and
CIDEr (Vedantam et al., 2015). BLEU measures
the n-gram overlap between results and ground
truth, giving a broad point of view regarding flu-
ency, while ROUGE emphasizes on the precision
and recall between both. METEOR matches hu-
man perception better and CIDEr captures human
consensus.

Nonetheless, these metrics depend highly on the
comparison with ground truth, instead of the sys-
tem’s input. In this task, the output may still be
correct judging by input infobox even if it’s dif-
ferent from the ground truth. Therefore, we intro-
duce two simple automatic metrics designed for
this task to give a better perspective of the data
fidelity of generated texts from the following as-
pects:

• Modifier Copy Ratio (ModCopy). We eval-
uate the data fidelity regarding preserving
source facts by computing the ratio of modi-
fier words (that is, excluding stopwords and
head words) in the type descriptions that
are copied from the source. In detail, we

roughly consider a word in a type descrip-
tion as a copied word if it shares a L-character
(4 in our experiments) prefix with any word
but stopwords in the values of source in-
fobox. For example, modifier Japanese
could be a copied modifier word from the fact
(country, Japan). To clarify, the copy ra-
tio of a type description can be calculated by

#copied words
#all words−#stopwords . The Modifier Copy
Ratio measures to what extent the informa-
tive words are preserved in the modifiers of
the model’s output.

• Head Accuracy (HedAcc). For a type de-
scription, it is crucial to make sure that the
head word is the right type of entity. There-
fore, in order to give an approximate estimate
of the data fidelity regarding head words,
we also evaluate the head word’s accuracy
in the output. Note that aside from ground
truth, infobox is also a reliable source to pro-
vide candidate types. Specifically, in Wiki-
data, the values in instance of (P31) and
subclass of (P279) are usually suitable
types for an entity, though not every entity
has these properties and these types could be
too coarse-grained like human. Therefore,
after dependency parsing, we count the head
words in the output with heads from corre-
sponding ground truth and values of corre-
sponding infobox properties, then gives an
accuracy of the heads of output. The Head
Accuracy measures model’s ability of pre-
dicting the right type of the entity.

3.3 Baselines and Experimental Setup
We compared our method with several competi-
tive generative models. All models except DGN
are implemented with the help of OpenNMT-py
(Klein et al., 2017). Note that we use the same in-
fobox reconstructing method described in Section
2.1.1 to apply Seq2Seq learning for all models ex-
cept DGN since it has its own encoding method.
The baselines include:

• AttnSeq2Seq (Luong et al., 2015). AttnS2S
is a standard RNN-based Seq2Seq model
with an attention mechanism.

• Pointer-Generator (See et al., 2017). Ptr-
Gen is originally designed for text summa-
rization, providing a strong baseline with a
copy mechanism. Note that, in order to make
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Wiki10K
Model B-1 B-2 RG-L METEOR CIDEr ModCopy HedAcc

AttnS2S 53.96 47.56 55.25 29.95 2.753 69.45 52.82
Ptr-Gen 64.24 57.11 65.37 36.42 3.536 83.88 67.92

Transformer 61.63 54.93 63.14 35.01 3.400 75.37 61.13
DGN 63.24 57.52 64.50 35.92 3.372 77.53 64.65

Our work 65.09 58.72 66.92 37.55 3.717 86.04 70.68

Wiki200K
Model B-1 B-2 RG-L METEOR CIDEr ModCopy HedAcc

AttnS2S 66.15 61.61 70.55 37.65 4.105 49.59 79.76
Ptr-Gen 70.13 66.21 75.21 41.38 4.664 58.27 85.38

Transformer 69.78 66.07 75.60 41.52 4.654 53.85 85.55
DGN 62.60 57.86 69.30 34.84 3.815 48.30 81.31

Our work 73.69 69.59 76.77 43.54 4.847 58.14 85.81

Table 2: Evaluation results of different models on both datasets.

a fairer comparison with our model, we ad-
ditionally equip Ptr-Gen with context gate
mechanism so that it becomes a no-template
version of our method.

• Transformer (Vaswani et al., 2017). Trans-
former recently outperforms traditional RNN
architecture in many NLP tasks, which makes
it also a competitive baseline, even if it’s not
specifically designed for this task.

• DGN (Bhowmik and de Melo, 2018). DGN
uses a dynamic memory based network with
a positional encoder and an RNN decoder. It
achieved state-of-the-art performance in this
task.

In experiments, we decapitalize all words and
keep vocabularies at the size of 10,000 and 50,000
for Wiki10K and Wiki200K respectively, and use
unk to represent other out-of-vocabulary words.

For the sake of fairness, the hidden size of RNN
(GRU in our experiments) and Transformer in all
models are set to 256. The word embedding size
is set to 256, and the property and position embed-
ding sizes are both set to 128. During training, we
use Adam (Kingma and Ba, 2014) as the optimiza-
tion algorithm.

3.4 Results and Analysis

The experimental results of metrics described in
Section 3.2 are listed in Table 2. In general, our
method achieves state-of-the-art performance over
proposed baselines.

As shown in the table, our method improves
substantially compared with standard encoder-
decoder models (AttnS2S and Transformer) and
the previous state-of-the-art method (DGN). In-
terestingly, DGN is out-performed by Ptr-Gen
in Wiki10K and by most of the models in the
larger dataset Wiki200K. We also notice that
Transformer performs much better on Wiki200K,
which is most likely because of its learning abil-
ity through massive training data. These results
further prove the necessity of proposing our new
dataset. Among baselines, Ptr-Gen achieves rel-
atively better results due to copy mechanism and
context gate mechanism. These mechanisms give
the model the ability to cope with the OOV prob-
lem and to directly preserve information from the
source, which is important in this task. Note
that, as described in Section 3.3, we enhance the
Pointer-Generator to become a no-template ver-
sion of our model, therefore the effect of the head-
modifier template can be measured by comparing
the results of these two methods. And the results
demonstrate that our head-modifier template plays
an important role in generating type descriptions.

In terms of the two proposed metrics, we find
these metrics roughly positively correlated with
traditional metrics, which in a way justifies our
metrics. These metrics provide interesting points
of view on measuring generation quality. The
performance on ModCopy indicates that methods
(Ptr-Gen, ours) with copy mechanism improves
data fidelity by copying facts from the source, and
the template helps the model know where and how
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to copy. The performance on HedAcc demon-
strates that our method is relatively better at pre-
dicting types for an entity, which in a way suggests
the templates help the generated text maintain the
head-modifier structure so that the head word is
successfully parsed by the dependency parsing
technique. Although, we notice that in Wiki200K,
models perform relatively worse on ModCopy
and better on HedAcc than in Wiki10K. This is
most likely because the types of entities are finite,
and more training data leads to more accuracy in
predicting types. Due to the size of the dataset and
the limit of vocabulary size, the factual informa-
tion is harder to preserve in the output. This again
proves the necessity of the new dataset.

3.4.1 Manual Evaluation
In this task, the readability of the generated type
description is mostly related to its grammati-
cal correctness, which benefits from the head-
modifier templates. Therefore, in order to mea-
sure the influence the templates make in terms of
readability as well as how ModCopy (M.C.) and
HedAcc (H.A.) correlate with manual judgment,
we manually evaluate the generation from two as-
pects: Grammar Accuracy (G.A.) and Overall Ac-
curacy (O.A.). In detail, Grammar Accuracy is
the grammatical correctness judging by the gram-
mar of the generated text alone; Overall Accuracy
is the grammatical and de facto correctness of the
generated type description given an infobox and
the ground truth. Note that Overall Accuracy is
always lower than or equal to Grammar Accuracy.

In our experiment, we randomly select 200
pieces of data from the test set of Wiki200K, and
provide the results of each method to the volun-
teers (who are all undergraduates) for manual eval-
uation. We make sure each result is evaluated by
two volunteers so as to eliminate the influence of
subjective factors to some extent.

Model G.A. O.A. M.C. H.A.

AttnS2S 92.25 50.50 51.53 80.27
Ptr-Gen 90.00 65.00 62.50 88.01

Transformer 95.25 58.00 55.70 89.67
DGN 89.50 56.00 47.29 81.37

Our work 96.50 66.25 61.32 90.29

Table 3: Results of manual evaluation as well as two
proposed metrics.

The results, as shown in Table 3, prove again the

effectiveness of our method. Our method outper-
forms other baselines in term of Grammar Accu-
racy, which demonstrates that the model benefits
from the head-modifier templates in term of read-
ability by knowing “how to say it”. In particular,
the templates improves the Grammar Accuracy
substantially compared with Ptr-Gen. Results on
the Overall Accuracy indicate that our method en-
sures readability as well as data-fidelity, which in-
dicates that the model benefits from the templates
by knowing “what to say”. As for the proposed
metrics ModCopy and HedAcc, they are, in line
with intuition, relatively positively correlated with
human judgment in general. Also, notice that the
statistics on both metrics are consistent with Table
2.

3.4.2 Effect of Templates
We aim to investigate whether the model is able
to correct itself if the template generated in Stage
1 deviates from the correct one. We select cases
from Wiki10K test set to conduct experiments.
During inference, we deliberately replace the tem-
plate in Stage 2 to see if the generated text still
complies with the given template or if the model
will be able to generate the right type description.

Entity ID: Q859415
Gold: commune in paris, france
Template 1: $hed$ in $mod$, $mod$
Output 1: commune in paris, france
Template 2: $mod$ $hed$
Output 2: commune in france
Template 3: $hed$ $mod$
Output 3: commune

Entity ID: Q18758590
Gold: italian architect and teacher
Template 1: $mod$ $hed$ and $hed$
Output 1: italian architect and architect
Template 2: $mod$ $hed$
Output 2: italian architect
Template 3: $hed$ $mod$ and $mod$
Output 3: italy and teacher

Figure 5: Examples of replacing templates.
Template 1’s are the inital generated templates,
while the remaining ones are produced by the authors.
We use bold to denote the heads and use italic red to
denote mistaken words.

The experimental results, as presented in Fig.
5, show our method’s resilience against mistaken
templates. In the first case: 1) the replaced
template Template 2 is obviously inconsistent
with the golden template Template 1 (though
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it’s also a possible template for other type de-
scriptions), yet the model still manages to gener-
ate a type description though paris is lost; 2)
Template 3 doesn’t have the conjunction in,
which causes confusion but the model still suc-
cessfully predicts the right head.

In the second case, the model originally gen-
erates repetitive heads: 1) in Template 2,
we delete the second $hed$ in Template 1,
and as a result, the model successfully gener-
ates a correct though incomplete output; 2) while
Template 3 is completely wrong judging by
the head-modifier rule, and as a result Output
3 is lost in readability. Nevertheless, due to the
fact that the number of type descriptions is infi-
nite yet the number of head-modifier templates is
rather finite, the model can hardly generate a tem-
plate that’s completely wrong, therefore this sce-
nario rarely happens in real life. Still, the model
tries to maintain a similar structure and success-
fully keeps data fidelity by predicting teacher,
and preserving italy.

4 Related Work

There has been extensive work on mining entity-
type pairs (i.e. isA relations) automatically. Hearst
(1992) uses a pattern-based method to extract
isA pairs directly from free text with Hearst
Patterns (e.g., NP1 is a NP2; NP0 such as
{NP1, NP2, ..., (and|or)}NPn) from which tax-
onomies can be induced (Poon and Domingos,
2010; Velardi et al., 2013; Bansal et al., 2014). But
these methods are limited in patterns, which often
results in low recall and precision.

The most related line of work regarding pre-
dicting types for entities is entity-typing (Collins
and Singer, 1999; Jiang and Zhai, 2006; Ratinov
and Roth, 2009), which aims to assign types such
as people, location from a fixed set to en-
tity mentions in a document, and most of them
model it a classification task. However, the types,
even for those aiming at fine-grained entity-typing
(Shimaoka et al., 2016; Ren et al., 2016; Anand
et al., 2017) are too coarse-grained to be infor-
mative about the entity. Also, the type set is too
small and inflexible to meet the need for an ever-
expanding KG.

In this task, the structured infobox is a source
more suitable than textural data compared with
text summarization task (Gu et al., 2016; See et al.,
2017; Cao et al., 2018), because not every entity in

a KG possesses a paragraph of description. For ex-
ample, in CN-DBpedia (Xu et al., 2017), which is
one of the biggest Chinese KG, only a quarter of
the entities have textual descriptions, yet almost
every entity has an infobox.

Natural language generation (NLG) from struc-
tured data is a classic problem, in which many ef-
forts have been made. A common approach is to
use hand-crafted templates (Kukich, 1983; McKe-
own, 1992), but the acquisition of these templates
in a specific domain is too costly. Some also focus
on automatically creating templates by clustering
sentences and then use hand-crafted rules to in-
duce templates (Angeli et al., 2010; Konstas and
Lapata, 2013). Recently with the rise of neural
networks, many methods generate text in an end-
to-end manner (Liu et al., 2017; Wiseman et al.,
2017; Bhowmik and de Melo, 2018). However,
they pay little attention to the grammatical struc-
ture of the output which may be ignored in gener-
ating long sentences, but it is crucial in generating
short noun compounds like type descriptions.

5 Conclusion and Future Work

In this paper, we propose a head-modifier
template-based type description generation
method, powered by a copy mechanism and
context gating mechanism. We also propose a
larger dataset and two metrics designed for this
task. Experimental results demonstrate that our
method achieves state-of-the-art performance
over baselines on both datasets while ensuring
data fidelity and readability in generated type
descriptions. Further experiments regarding the
effect of templates show that our model is not
only controllable through templates, but resilient
against wrong templates and able to correct
itself. Aside from such syntax templates, in the
future, we aim to explore how semantic templates
contribute to type description generation.
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