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Abstract

Transformer is the state-of-the-art model in
recent machine translation evaluations. Two
strands of research are promising to im-
prove models of this kind: the first uses
wide networks (a.k.a. Transformer-Big) and
has been the de facto standard for the de-
velopment of the Transformer system, and
the other uses deeper language representation
but faces the difficulty arising from learn-
ing deep networks. Here, we continue the
line of research on the latter. We claim that
a truly deep Transformer model can surpass
the Transformer-Big counterpart by 1) proper
use of layer normalization and 2) a novel
way of passing the combination of previous
layers to the next. On WMT’16 English-
German, NIST OpenMT’12 Chinese-English
and larger WMT’18 Chinese-English tasks,
our deep system (30/25-layer encoder) out-
performs the shallow Transformer-Big/Base
baseline (6-layer encoder) by 0.4∼2.4 BLEU
points. As another bonus, the deep model is
1.6X smaller in size and 3X faster in training
than Transformer-Big1.

1 Introduction

Neural machine translation (NMT) models have
advanced the previous state-of-the-art by learn-
ing mappings between sequences via neural net-
works and attention mechanisms (Sutskever et al.,
2014; Bahdanau et al., 2015). The earliest of
these read and generate word sequences using a
series of recurrent neural network (RNN) units,
and the improvement continues when 4-8 layers
are stacked for a deeper model (Luong et al.,
2015; Wu et al., 2016). More recently, the system
based on multi-layer self-attention (call it Trans-
former) has shown strong results on several large-

∗Corresponding author.
1The source code is available at https://github.

com/wangqiangneu/dlcl

scale tasks (Vaswani et al., 2017). In particu-
lar, approaches of this kind benefit greatly from
a wide network with more hidden states (a.k.a.
Transformer-Big), whereas simply deepening the
network has not been found to outperform the
“shallow” counterpart (Bapna et al., 2018). Do
deep models help Transformer? It is still an open
question for the discipline.

For vanilla Transformer, learning deeper net-
works is not easy because there is already a rel-
atively deep model in use2. It is well known that
such deep networks are difficult to optimize due
to the gradient vanishing/exploding problem (Pas-
canu et al., 2013; Bapna et al., 2018). We note that,
despite the significant development effort, simply
stacking more layers cannot benefit the system and
leads to a disaster of training in some of our exper-
iments.

A promising attempt to address this issue is
Bapna et al. (2018)’s work. They trained a 16-
layer Transformer encoder by using an enhanced
attention model. In this work, we continue the line
of research and go towards a much deeper encoder
for Transformer. We choose encoders to study be-
cause they have a greater impact on performance
than decoders and require less computational cost
(Domhan, 2018). Our contributions are threefold:

• We show that the proper use of layer normal-
ization is the key to learning deep encoders.
The deep network of the encoder can be
optimized smoothly by relocating the layer
normalization unit. While the location of
layer normalization has been discussed in re-
cent systems (Vaswani et al., 2018; Domhan,
2018; Klein et al., 2017), as far as we know,
its impact has not been studied in deep Trans-

2For example, a standard Transformer encoder has 6 lay-
ers. Each of them consists of two sub-layers. More sub-layers
are involved on the decoder side.

https://github.com/wangqiangneu/dlcl
https://github.com/wangqiangneu/dlcl
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Figure 1: Examples of pre-norm residual unit and post-
norm residual unit. F = sub-layer, and LN = layer nor-
malization.

former.

• Inspired by the linear multi-step method
in numerical analysis (Ascher and Petzold,
1998), we propose an approach based on dy-
namic linear combination of layers (DLCL)
to memorizing the features extracted from all
preceding layers. This overcomes the prob-
lem with the standard residual network where
a residual connection just relies on the output
of one-layer ahead and may forget the earlier
layers.

• We successfully train a 30-layer encoder, far
surpassing the deepest encoder reported so
far (Bapna et al., 2018). To our best knowl-
edge, this is the deepest encoder used in
NMT.

On WMT’16 English-German, NIST
OpenMT’12 Chinese-English, and larger
WMT’18 Chinese-English translation tasks,
we show that our deep system (30/25-layer
encoder) yields a BLEU improvement of 1.3∼2.4
points over the base model (Transformer-Base
with 6 layers). It even outperforms Transformer-
Big by 0.4∼0.6 BLEU points, but requires 1.6X
fewer model parameters and 3X less training time.
More interestingly, our deep model is 10% faster
than Transformer-Big in inference speed.

2 Post-Norm and Pre-Norm Transformer

The Transformer system and its variants follow the
standard encoder-decoder paradigm. On the en-
coder side, there are a number of identical stacked
layers. Each of them is composed of a self-
attention sub-layer and a feed-forward sub-layer.
The attention model used in Transformer is multi-
head attention, and its output is fed into a fully
connected feed-forward network. Likewise, the

decoder has another stack of identical layers. It
has an encoder-decoder attention sub-layer in ad-
dition to the two sub-layers used in each encoder
layer. In general, because the encoder and the de-
coder share a similar architecture, we can use the
same method to improve them. In the section, we
discuss a more general case, not limited to the en-
coder or the decoder.

2.1 Model Layout
For Transformer, it is not easy to train stacked lay-
ers on neither the encoder-side nor the decoder-
side. Stacking all these sub-layers prevents the ef-
ficient information flow through the network, and
probably leads to the failure of training. Residual
connections and layer normalization are adopted
for a solution. Let F be a sub-layer in encoder or
decoder, and θl be the parameters of the sub-layer.
A residual unit is defined to be (He et al., 2016b):

xl+1 = f(yl) (1)

yl = xl + F(xl; θl) (2)

where xl and xl+1 are the input and output of the
l-th sub-layer, and yl is the intermediate output fol-
lowed by the post-processing function f(·). In this
way, xl is explicitly exposed to yl (see Eq. (2)).

Moreover, layer normalization is adopted to re-
duce the variance of sub-layer output because hid-
den state dynamics occasionally causes a much
longer training time for convergence. There are
two ways to incorporate layer normalization into
the residual network.

• Post-Norm. In early versions of Transformer
(Vaswani et al., 2017), layer normalization is
placed after the element-wise residual addi-
tion (see Figure 1(a)), like this:

xl+1 = LN(xl + F(xl; θl)) (3)

where LN(·) is the layer normalization func-
tion, whose parameter is dropped for simplic-
ity. It can be seen as a post-processing step of
the output (i.e., f(x) = LN(x)).

• Pre-Norm. In recent implementations (Klein
et al., 2017; Vaswani et al., 2018; Domhan,
2018), layer normalization is applied to the
input of every sub-layer (see Figure 1(b)):

xl+1 = xl + F(LN(xl); θl) (4)
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Eq. (4) regards layer normalization as a part
of the sub-layer, and does nothing for post-
processing of the residual connection (i.e.,
f(x) = x).3

Both of these methods are good choices for im-
plementation of Transformer. In our experiments,
they show comparable performance in BLEU for a
system based on a 6-layer encoder (Section 5.1).

2.2 On the Importance of Pre-Norm for Deep
Residual Network

The situation is quite different when we switch to
deeper models. More specifically, we find that pre-
norm is more efficient for training than post-norm
if the model goes deeper. This can be explained by
seeing back-propagation which is the core process
to obtain gradients for parameter update. Here we
take a stack of L sub-layers as an example. Let
E be the loss used to measure how many errors
occur in system prediction, and xL be the output
of the topmost sub-layer. For post-norm Trans-
former, given a sub-layer l, the differential of E
with respect to xl can be computed by the chain
rule, and we have

∂E
∂xl

=
∂E
∂xL

×
L−1∏
k=l

∂LN(yk)

∂yk
×

L−1∏
k=l

(
1 +

∂F(xk; θk)

∂xk

)
(5)

where
∏L−1
k=l

∂LN(yk)
∂yk

means the backward pass of

the layer normalization, and
∏L−1
k=l (1 + ∂F(xk;θk)

∂xk
)

means the backward pass of the sub-layer with the
residual connection. Likewise, we have the gradi-
ent for pre-norm 4:

∂E
∂xl

=
∂E
∂xL

×
(

1 +
L−1∑
k=l

∂F(LN(xk); θk)

∂xl

)
(6)

Obviously, Eq. (6) establishes a direct way to
pass error gradient ∂E

∂xL
from top to bottom. Its

merit lies in that the number of product items on
the right side does not depend on the depth of the
stack.
In contrast, Eq. (5) is inefficient for passing gra-
dients back because the residual connection is not

3We need to add an additional function of layer normal-
ization to the top layer to prevent the excessively increased
value caused by the sum of unnormalized output.

4For a detailed derivation, we refer the reader to Appendix
A.

a bypass of the layer normalization unit (see Fig-
ure 1(a)). Instead, gradients have to be passed
through LN(·) of each sub-layer. It in turn intro-
duces term

∏L−1
k=l

∂LN(yk)
∂yk

into the right hand side
of Eq. (5), and poses a higher risk of gradient van-
ishing or exploring if L goes larger. This was con-
firmed by our experiments in which we success-
fully trained a pre-norm Transformer system with
a 20-layer encoder on the WMT English-German
task, whereas the post-norm Transformer system
failed to train for a deeper encoder (Section 5.1).

3 Dynamic Linear Combination of
Layers

The residual network is the most common ap-
proach to learning deep networks, and plays an
important role in Transformer. In principle, resid-
ual networks can be seen as instances of the or-
dinary differential equation (ODE), behaving like
the forward Euler discretization with an initial
value (Chang et al., 2018; Chen et al., 2018b). Eu-
ler’s method is probably the most popular first-
order solution to ODE. But it is not yet accu-
rate enough. A possible reason is that only one
previous step is used to predict the current value
5(Butcher, 2003). In MT, the single-step property
of the residual network makes the model “forget”
distant layers (Wang et al., 2018b). As a result,
there is no easy access to features extracted from
lower-level layers if the model is very deep.

Here, we describe a model which makes di-
rect links with all previous layers and offers ef-
ficient access to lower-level representations in a
deep stack. We call it dynamic linear combina-
tion of layers (DLCL). The design is inspired by
the linear multi-step method (LMM) in numerical
ODE (Ascher and Petzold, 1998). Unlike Euler’s
method, LMM can effectively reuse the informa-
tion in the previous steps by linear combination to
achieve a higher order. Let {y0, ..., yl} be the out-
put of layers 0 ∼ l. The input of layer l + 1 is
defined to be

xl+1 = G(y0, . . . , yl) (7)

where G(·) is a linear function that merges pre-
viously generated values {y0, ..., yl} into a new
value. For pre-norm Transformer, we define G(·)

5Some of the other single-step methods, e.g. the Runge-
Kutta method, can obtain a higher order by taking several
intermediate steps (Butcher, 2003). Higher order generally
means more accurate.
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Figure 2: Connection weights for 3-layer encoder: (a) residual connection (He et al., 2016a), (b) dense residual con-
nection (Britz et al., 2017; Dou et al., 2018), (c) multi-layer representation fusion (Wang et al., 2018b)/transparent
attention (Bapna et al., 2018) and (d) our approach. y0 denotes the input embedding. Red denotes the weights are
learned by model.

to be

G(y0, . . . , yl) =

l∑
k=0

W
(l+1)
k LN(yk) (8)

where W l+1
k ∈ R is a learnable scalar and weights

each incoming layer in a linear manner. Eq. (8)
provides a way to learn preference of layers in dif-
ferent levels of the stack. Even for the same in-
coming layer, its contribution to succeeding layers
could be different (e.g. W i

k 6= W k
k ) . Also, the

method is applicable to the post-norm Transformer
model. For post-norm, G(·) can be redefined as:

G(y0, . . . , yl) = LN
( l∑
k=0

W
(l+1)
k yk

)
(9)

Comparison to LMM. DLCL differs from LMM
in two aspects, though their fundamental model is
the same. First, DLCL learns weights in an end-
to-end fashion rather than assigning their values
deterministically, e.g. by polynomial interpola-
tion. This offers a more flexible way to con-
trol the model behavior. Second, DLCL has an
arbitrary size of the past history window, while
LMM generally takes a limited history into ac-
count (Lóczi, 2018). Also, recent work shows
successful applications of LMM in computer vi-
sion, but only two previous steps are used in their
LMM-like system (Lu et al., 2018).

Comparison to existing neural methods. Note
that DLCL is a very general approach. For ex-
ample, the standard residual network is a special
case of DLCL, where W l+1

l = 1, and W l+1
k = 0

for k < l. Figure (2) compares different meth-
ods of connecting a 3-layer network. We see that
the densely residual network is a fully-connected
network with a uniform weighting schema (Britz

et al., 2017; Dou et al., 2018). Multi-layer repre-
sentation fusion (Wang et al., 2018b) and trans-
parent attention (call it TA) (Bapna et al., 2018)
methods can learn a weighted model to fuse lay-
ers but they are applied to the topmost layer only.
The DLCL model can cover all these methods. It
provides ways of weighting and connecting lay-
ers in the entire stack. We emphasize that al-
though the idea of weighting the encoder layers
by a learnable scalar is similar to TA, there are
two key differences: 1) Our method encourages
earlier interactions between layers during the en-
coding process, while the encoder layers in TA
are combined until the standard encoding process
is over; 2) For an encoder layer, instead of learn-
ing a unique weight for each decoder layer like
TA, we make a separate weight for each succes-
sive encoder layers. In this way, we can create
more connections between layers6.

4 Experimental Setup

We first evaluated our approach on WMT’16
English-German (En-De) and NIST’12 Chinese-
English (Zh-En-Small) benchmarks respectively.
To make the results more convincing, we also ex-
perimented on a larger WMT’18 Chinese-English
dataset (Zh-En-Large) with data augmentation by
back-translation (Sennrich et al., 2016a).

4.1 Datasets and Evaluation

For the En-De task, to compare with Vaswani
et al. (2017)’s work, we use the same 4.5M pre-
processed data 7, which has been tokenized and

6Let the encoder depth be M and the decoder depth be
N (M > N for a deep encoder model). Then TA newly
adds O(M × N) connections, which are fewer than ours of
O(M2)

7https://drive.google.com/uc?export=
download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8

https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8
https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8
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Model Param. Batch Updates †Times BLEU ∆
(×4096) (×100k)

Vaswani et al. (2017) (Base) 65M 1 1 reference 27.3 -
Bapna et al. (2018)-deep (Base, 16L) 137M - - - 28.0 -

Vaswani et al. (2017) (Big) 213M 1 3 3x 28.4 -
Chen et al. (2018a) (Big) 379M 16 †0.075 1.2x 28.5 -

He et al. (2018) (Big) †210M 1 - - 29.0 -
Shaw et al. (2018) (Big) †210M 1 3 3x 29.2 -
Dou et al. (2018) (Big) 356M 1 - - 29.2 -
Ott et al. (2018) (Big) 210M 14 0.25 3.5x 29.3 -

post-norm

Transformer (Base) 62M 1 1 1x 27.5 reference

Transformer (Big) 211M 1 3 3x 28.8 +1.3
Transformer-deep (Base, 20L) 106M 2 0.5 1x failed failed

DLCL (Base) 62M 1 1 1x 27.6 +0.1
DLCL-deep (Base, 25L) 121M 2 0.5 1x 29.2 +1.7

pre-norm

Transformer (Base) 62M 1 1 1x 27.1 reference

Transformer (Big) 211M 1 3 3x 28.7 +1.6
Transformer-deep (Base, 20L) 106M 2 0.5 1x 28.9 +1.8
DLCL (Base) 62M 1 1 1x 27.3 +0.2
DLCL-deep (Base, 30L) 137M 2 0.5 1x 29.3 +2.2

Table 1: BLEU scores [%] on English-German translation. Batch indicates the corresponding batch size if
running on 8 GPUs. Times ∝ Batch×Updates, which can be used to approximately measure the required
training time. † denotes an estimate value. Note that “-deep” represents the best-achieved result as depth changes.

jointly byte pair encoded (BPE) (Sennrich et al.,
2016b) with 32k merge operations using a shared
vocabulary 8. We use newstest2013 for validation
and newstest2014 for test.

For the Zh-En-Small task, we use parts of the
bitext provided within NIST’12 OpenMT9. We
choose NIST MT06 as the validation set, and
MT04, MT05, MT08 as the test sets. All the sen-
tences are word segmented by the tool provided
within NiuTrans (Xiao et al., 2012). We remove
the sentences longer than 100 and end up with
about 1.9M sentence pairs. Then BPE with 32k
operations is used for both sides independently,
resulting in a 44k Chinese vocabulary and a 33k
English vocabulary respectively.

For the Zh-En-Large task, we use exactly the
same 16.5M dataset as Wang et al. (2018a),
composing of 7.2M-sentence CWMT corpus,
4.2M-sentence UN and News-Commentary com-
bined corpus, and back-translation of 5M-sentence
monolingual data from NewsCraw2017. We refer
the reader to Wang et al. (2018a) for the details.

8The tokens with frequencies less than 5 are filtered out
from the shared vocabulary.

9LDC2000T46, LDC2000T47, LDC2000T50,
LDC2003E14, LDC2005T10, LDC2002E18, LDC2007T09,
LDC2004T08

For evaluation, we first average the last 5 check-
points, each of which is saved at the end of an
epoch. And then we use beam search with a beam
size of 4/6 and length penalty of 0.6/1.0 for En-
De/Zh-En tasks respectively. We measure case-
sensitive/insensitive tokenized BLEU by multi-
bleu.perl for En-De and Zh-En-Small respec-
tively, while case-sensitive detokenized BLEU is
reported by the official evaluation script mteval-
v13a.pl for Zh-En-Large. Unless noted otherwise
we run each experiment three times with different
random seeds and report the mean of the BLEU
scores across runs10.

4.2 Model and Hyperparameters

All experiments run on fairseq-py11 with 8
NVIDIA Titan V GPUs. For the post-norm Trans-
former baseline, we replicate the model setup of
Vaswani et al. (2017). All models are optimized
by Adam (Kingma and Ba, 2014) with β1 = 0.9,
β2 = 0.98, and ε = 10−8. In training warmup
(warmup = 4000 steps), the learning rate linearly
increases from 10−7 to lr =7×10−4/5×10−4 for

10Due to resource constraints, all experiments on Zh-En-
Large task only run once.

11https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq
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Model (Base, 16L) BLEU

post-norm
Bapna et al. (2018) 28.0
Transformer failed
DLCL 28.4

pre-norm
Transformer 28.0
DLCL 28.2

Table 2: Compare with Bapna et al. (2018) on
WMT’16 English-German translation under a 16-layer
encoder.

Transformer-Base/Big respectively, after which it
is decayed proportionally to the inverse square
root of the current step. Label smoothing εls=0.1
is used as regularization.

For the pre-norm Transformer baseline, we fol-
low the setting as suggested in tensor2tensor12.
More specifically, the attention dropout Patt = 0.1
and feed-forward dropout Pff = 0.1 are addition-
ally added. And some hyper-parameters for op-
timization are changed accordingly: β2 = 0.997,
warmup = 8000 and lr = 10−3/7×10−4 for
Transformer-Base/Big respectively.

For both the post-norm and pre-norm baselines,
we batch sentence pairs by approximate length
and restrict input and output tokens per batch
to batch = 4096 per GPU. We set the update
steps according to corresponding data sizes. More
specifically, the Transformer-Base/Big is updated
for 100k/300k steps on the En-De task as Vaswani
et al. (2017), 50k/100k steps on the Zh-En-Small
task, and 200k/500k steps on the Zh-En-Large
task.

In our model, we use the dynamic linear combi-
nation of layers for both encoder and decoder. For
efficient computation, we only combine the out-
put of a complete layer rather than a sub-layer. It
should be noted that for deep models (e.g. L ≥
20), it is hard to handle a full batch in a single GPU
due to memory size limitation. We solve this issue
by accumulating gradients from two small batches
(e.g. batch = 2048) before each update (Ott et al.,
2018). In our primitive experiments, we observed
that training with larger batches and learning rates
worked well for deep models. Therefore all the re-
sults of deep models are reported with batch =
8192, lr = 2×10−3 and warmup = 16,000 unless
otherwise stated. For fairness, we only use half of
the updates of baseline (e.g. update = 50k) to
ensure the same amount of data that we actually

12https://github.com/tensorflow/
tensor2tensor

see in training. We report the details in Appendix
B.

5 Results

5.1 Results on the En-De Task

In Table 1, we first report results on WMT En-De
where we compare to the existing systems based
on self-attention. Obviously, while almost all pre-
vious results based on Transformer-Big (marked
by Big) have higher BLEU than those based on
Transformer-Base (marked by Base), larger pa-
rameter size and longer training epochs are re-
quired.

As for our approach, considering the post-norm
case first, we can see that our Transformer base-
lines are superior to Vaswani et al. (2017) in both
Base and Big cases. When increasing the en-
coder depth, e.g. L = 20, the vanilla Transformer
failed to train, which is consistent with Bapna et al.
(2018). We attribute it to the vanishing gradient
problem based on the observation that the gradi-
ent norm in the low layers (e.g. embedding layer)
approaches 0. On the contrary, post-norm DLCL

solves this issue and achieves the best result when
L = 25.

The situation changes when switching to pre-
norm. While it slightly underperforms the post-
norm counterpart in shallow networks, pre-norm
Transformer benefits more from the increase in en-
coder depth. More concretely, pre-norm Trans-
former achieves optimal result when L=20 (see
Figure 3(a)), outperforming the 6-layer baseline
by 1.8 BLEU points. It indicates that pre-norm
is easier to optimize than post-norm in deep net-
works. Beyond that, we successfully train a 30-
layer encoder by our method, resulting in a fur-
ther improvement of 0.4 BLEU points. This
is 0.6 BLEU points higher than the pre-norm
Transformer-Big. It should be noted that although
our best score of 29.3 is the same as Ott et al.
(2018), our approach only requires 3.5X fewer
training epochs than theirs.

To fairly compare with transparent attention
(TA) (Bapna et al., 2018), we separately list the
results using a 16-layer encoder in Table 2. It
can be seen that pre-norm Transformer obtains the
same BLEU score as TA without the requirement
of complicated attention design. However, DLCL

in both post-norm and pre-norm cases outperform
TA. It should be worth that TA achieves the best
result when encoder depth is 16, while we can fur-

https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor
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Model (pre-norm) Param. Valid. MT04 MT05 MT08 Average
Transformer (Base) 84M 51.27 54.41 49.43 45.33 49.72
Transformer (Big) 257M 52.30 55.37 52.21 47.40 51.66
Transformer-deep (Base, 25L) 144M 52.50 55.80 51.98 47.26 51.68
DLCL (Base) 84M 51.61 54.91 50.58 46.11 50.53
DLCL-deep (Base, 25L) 144M 53.57 55.91 52.30 48.12 52.11

Table 3: BLEU scores [%] on NIST’12 Chinese-English translation.

Model Param. newstest17 newstest18 ∆avg.

Wang et al. (2018a) (post-norm, Base) 102.1M 25.9 - -
pre-norm Transformer (Base) 102.1M 25.8 25.9 reference

pre-norm Transformer (Big) 292.4M 26.4 27.0 +0.9
pre-norm DLCL-deep (Base, 25L) 161.5M 26.7 27.1 +1.0
pre-norm DLCL-deep (Base, 30L) 177.2M 26.9 27.4 +1.3

Table 4: BLEU scores [%] on WMT’18 Chinese-English translation.

Base-6L Big-6L Transformer DLCL

6 1620 25 30 35
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Figure 3: BLEU scores [%] against the encoder depth
for pre-norm Transformer and pre-norm DLCL on
English-German and Chinese-English tasks.

ther improve performance by training deeper en-
coders.

5.2 Results on the Zh-En-Small Task

Seen from the En-De task, pre-norm is more effec-
tive than the post-norm counterpart in deep net-
works. Therefore we evaluate our method in the
case of pre-norm on the Zh-En task. As shown
in Table 3, firstly DLCL is superior to the base-
line when the network’s depth is shallow. Interest-
ingly, both Transformer and DLCL achieve the best
results when we use a 25-layer encoder. The 25-
layer Transformer can approach the performance
of Transformer-Big, while our deep model out-
performs it by about 0.5 BLEU points under the
equivalent parameter size. It confirms that our
approach is a good alternative to Transformer no
matter how deep it is.

5.3 Results on the Zh-En-Large Task

While deep Transformer models, in particular
the deep pre-norm DLCL, show better results

6 16 20 25 30
1,800
2,000
2,200
2,400
2,600
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ee

d

Base-6L Big-6L DLCL

Figure 4: GPU generation speed (target tokens/sec.)
against the depth of encoder for pre-norm DLCL on
English-German task (batch size = 32, beam size = 4).

than Transformer-Big on En-De and Zh-En-Small
tasks, both data sets are relatively small, and
the improved performance over Transformer-Big
might be partially due to over-fitting in the wider
model. For a more challenging task , we report
the results on Zh-En-Large task in Table 4. We
can see that the 25-layer pre-norm DLCL slightly
surpassed Transformer-Big, and the superiority is
bigger when using a 30-layer encoder. This result
indicates that the claiming of the deep network de-
feating Transformer-Big is established and is not
affected by the size of the data set.

6 Analysis

6.1 Effect of Encoder Depth

In Figure 3, we plot BLEU score as a function
of encoder depth for pre-norm Transformer and
DLCL on En-De and Zh-En-Small tasks. First of
all, both methods benefit from an increase in en-
coder depth at the beginning. Remarkably, when
the encoder depth reaches 20, both of the two deep
models can achieve comparable performance to
Transformer-Big, and even exceed it when the en-
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coder depth is further increased in DLCL. Note that
pre-norm Transformer degenerates earlier and is
less robust than DLCL when the depth is beyond
20. However, a deeper network (>30 layers) does
not bring more benefits. Worse still, deeper net-
works consume a lot of memory, making it impos-
sible to train efficiently.

We also report the inference speed on GPU in
Figure 4. As expected, the speed decreases lin-
early with the number of encoder layers. Never-
theless, our system with a 30-layer encoder is still
faster than Transformer-Big, because the encoding
process is independent of beam size, and runs only
once. In contrast, the decoder suffers from severe
autoregressive problems.

6.2 Effect of Decoder Depth

Enc. Depth Dec. Depth BLEU Speed
6 4 27.12 3088.3
6 6 27.33 2589.2
6 8 27.42 2109.6

Table 5: Tokenized BLEU scores [%] and GPU gen-
eration speed (target tokens per second) in pre-norm
Transformer (Base) on the test set of WMT English-
German (batch size = 32, beam size = 4).

Table 5 shows the effects of decoder depth on
BLEU and inference speed on GPU. Different
from encoder, increasing the depth of decoder only
yields a slight BLEU improvement, but the cost is
high: for every two layers added, the translation
speed drops by approximate 500 tokens evenly.
It indicates that exploring deep encoders may be
more promising than deep decoders for NMT.

6.3 Ablation Study

We report the ablation study results in Table 6. We
first observe a modest decrease when removing the
introduced layer normalization in Eq. (8). Then
we try two methods to replace learnable weights
with constant weights: All-One (W i

j = 1) and Av-
erage (W i

j = 1/(i+1)). We can see that these two
methods consistently hurt performance, in particu-
lar in the case of All-One. It indicates that making
the weights learnable is important for our model.
Moreover, removing the added layer normaliza-
tion in the Average model makes BLEU score drop
by 0.28, which suggests that adding layer normal-
ization helps more if we use the constant weights.
In addition, we did two interesting experiments on
big models. The first one is to replace the base en-

Model BLEU
pre-norm DLCL-20L 28.80
- layer norm. 28.67
- learnable weight (fix 1) 28.22
- learnable weight (fix 1/N) 28.51

- layer norm. 28.23
pre-norm Transformer-Base 27.11
+ big encoder 27.59

pre-norm Transformer-Big 28.72
+ 12-layer encoder (DLCL) 29.17

Table 6: Ablation results by tokenized BLEU [%] on
the test set of WMT English-German translation.

coder with a big encoder in pre-norm Transformer-
Base. The other one is to use DLCL to train a
deep-and-wide Transformer (12 layers). Although
both of them benefit from the increased network
capacity, the gain is less than the “thin” counter-
part in terms of BLEU, parameter size, and train-
ing efficiency.

6.4 Visualization on Learned Weights
We visually present the learned weights matri-
ces of the 30-layer encoder (Figure 5(a)) and its
6-layer decoder (Figure 5(b)) in our pre-norm
DLCL-30L model on En-De task. For a clearer
contrast, we mask out the points with an absolute
value of less than 0.1 or 5% of the maximum per
row. We can see that the connections in the early
layers are dense, but become sparse as the depth
increases. It indicates that making full use of ear-
lier layers is necessary due to insufficient informa-
tion at the beginning of the network. Also, we find
that most of the large weight values concentrate on
the right of the matrix, which indicates that the im-
pact of the incoming layer is usually related to the
distance between the outgoing layer. Moreover,
for a fixed layer’s output yi, it is obvious that its
contribution to successive layers changes dynam-
ically (one column). To be clear, we extract the
weights of y10 in Figure 5(c). In contrast, in most
previous paradigms of dense residual connection,
the output of each layer remains fixed for subse-
quent layers.

7 Related Work

Deep Models. Deep models have been ex-
plored in the context of neural machine transla-
tion since the emergence of RNN-based models.
To ease optimization, researchers tried to reduce
the number of non-linear transitions (Zhou et al.,
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(b) 6-layer decoder of DLCL
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(a) 30-layer encoder of DLCL (c) Weight distribution of y10 in the encoder

Figure 5: A visualization example of learned weights in our 30-layer pre-norm DLCL model.

2016; Wang et al., 2017). But these attempts are
limited to the RNN architecture and may not be
straightforwardly applicable to the current Trans-
former model. Perhaps, the most relevant work
to what is doing here is Bapna et al. (2018)’s
work. They pointed out that vanilla Transformer
was hard to train if the depth of the encoder was
beyond 12. They successfully trained a 16-layer
Transformer encoder by attending the combina-
tion of all encoder layers to the decoder. In
their approach, the encoder layers are combined
just after the encoding is completed, but not dur-
ing the encoding process. In contrast, our ap-
proach allows the encoder layers to interact ear-
lier, which has been proven to be effective in ma-
chine translation (He et al., 2018) and text match
(Lu and Li, 2013). In addition to machine transla-
tion, deep Transformer encoders are also used for
language modeling (Devlin et al., 2018; Al-Rfou
et al., 2018). For example, Al-Rfou et al. (2018)
trained a character language model with a 64-
layer Transformer encoder by resorting to aux-
iliary losses in intermediate layers. This method
is orthogonal to our DLCL method, though it is
used for language modeling, which is not a very
heavy task.

Densely Residual Connections. Densely
residual connections are not new in NMT. They
have been studied for different architectures, e.g.,
RNN (Britz et al., 2017) and Transformer (Dou
et al., 2018). Some of the previous studies fix
the weight of each layer to a constant, while
others learn a weight distribution by using ei-
ther the self-attention model (Wang et al., 2018b)
or a softmax-normalized learnable vector (Peters

et al., 2018). They focus more on learning con-
nections from lower-level layers to the topmost
layer. Instead, we introduce additional connectiv-
ity into the network and learn more densely con-
nections for each layer in an end-to-end fashion.

8 Conclusion

We have studied deep encoders in Transformer.
We have shown that the deep Transformer models
can be easily optimized by proper use of layer nor-
malization, and have explained the reason behind
it. Moreover, we proposed an approach based on
a dynamic linear combination of layers and suc-
cessfully trained a 30-layer Transformer system.
It is the deepest encoder used in NMT so far. Ex-
perimental results show that our thin-but-deep en-
coder can match or surpass the performance of
Transformer-Big. Also, its model size is 1.6X
smaller. In addition, it requires 3X fewer training
epochs and is 10% faster for inference.
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A Derivations of Post-Norm
Transformer and Pre-Norm
Transformer

A general residual unit can be expressed by:

yl = xl + F(xl; θl), (10)

xl+1 = f(yl), (11)

where xl and xl+1 are the input and output of the
l-th sub-layer, and yl is the intermediate output fol-
lowed by the post-processing function f(·).

We have known that the post-norm Transformer
incorporates layer normalization (LN(·)) by:

xl+1 = LN
(
xl + F(xl; θl)

)
= LN

(
xl + Fpost(xl; θl)

) (12)

where Fpost(·) = F(·). Note that we omit the pa-
rameter in LN for clarity. Similarly, the pre-norm
Transformer can be described by:

xl+1 = xl + F
(
LN(xl); θl

)
= xl + Fpre(xl; θl)

(13)

where Fpre(·) = F(LN(·)). In this way, we can
see that both post-norm and pre-norm are special
cases of the general residual unit. Specifically, the
post-norm Transformer is the special case when:

fpost(x) = LN(x), (14)

while for pre-norm Transformer, it is:

fpre(x) = x. (15)

Here we take a stack of L sub-layers as an ex-
ample. Let E be the loss used to measure how
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many errors occur in system prediction, and xL be
the output of the top-most sub-layer. Then from
the chain rule of back propagation we obtain:

∂E
∂xl

=
∂E
∂xL

∂xL
∂xl

(16)

To analyze it, we can directly decompose ∂xL
∂xl

layer by layer:

∂xL
∂xl

=
∂xL
∂xL−1

∂xL−1
∂xL−2

. . .
∂xl+1

∂xl
. (17)

Consider two adjacent layers as Eq.10 and Eq. 11,
we have:

∂xl+1

∂xl
=
∂xl+1

∂yl

∂yl
∂xl

=
∂f(yl)

∂yl

(
1 +

∂F(xl; θl)

∂xl

) (18)

For post-norm Transformer, it is easy to know
∂fpost(yl)

∂yl
= ∂LN(yl)

∂yl
according to Eq.(14). Then

put Eq.(17) and (18) into Eq.(16) and we can ob-
tain the differential L w.r.t. xl:

∂E
∂xl

=
∂E
∂xL

×
L−1∏
k=l

∂LN(yk)

∂yk
×

L−1∏
k=l

(
1 +

∂F(xk; θk)

∂xk

)
(19)

Eq.(19) indicates that the number of product terms
grows linearly with L, resulting in prone to gradi-
ent vanishing or explosion.

However, for pre-norm Transformer, instead
of decomposing the gradient layer by layer in
Eq. (17), we can use the good nature that xL =
xl +

∑L−1
k=l Fpre(xk; θk) by recursively using

Eq. (13):

xL = xL−1 + Fpre(xL−1; θL−1)
= xL−2 + Fpre(xL−2; θL−2) + Fpre(xL−1; θL−1)
· · ·

= xl +
L−1∑
k=l

Fpre(xk; θk)

(20)

In this way, we can simplify Eq.(17) as:

∂xL
∂xl

= 1 +

L−1∑
k=l

∂Fpre(xk; θk)
∂xl

(21)

Due to ∂fpre(yl)
∂yl

= 1, we can put Eq. (21) into
Eq. (16) and obtain:

∂E
∂xl

=
∂E
∂xL

×
(

1 +
L−1∑
k=l

∂Fpre(xk; θk)
∂xl

)
=

∂E
∂xL

×
(

1 +

L−1∑
k=l

∂F(LN(xk); θk)

∂xl

)
(22)

B Training Hyper-parameters for Deep
Models

Model Batch Upd. Lr Wu. PPL
post 4096 100k 7e−4 4k 4.85
post 8192 50k 2e−3 16k *
post-20L 4096 100k 7e−4 4k *
post-20L 8192 50k 2e−3 16k *
pre 4096 100k 1e−3 8k 4.88
pre 8192 50k 2e−3 16k 4.86
pre-20L 4096 100k 1e−3 8k 4.68
pre-20L 8192 50k 2e−3 16k 4.60

Table 7: Hyper-parameter selection for shallow and
deep models based on perplexity on validation set for
English-German translation. “post-20L” is short for
post-norm Transformer with a 20-layer encoder. Sim-
ilarly, “pre-20L” denotes the pre-norm Transformer
case. * indicates that the model failed to train.

We select hyper-parameters by measuring per-
plexity on the validation set of WMT En-De
task. We compare the effects of hyper-parameters
in both shallow networks (6 layers) and deep
networks (20 layers). We use the standard hyper-
parameters for both models as the baselines.
More concretely, for post-norm Transformer-
Base, we set batch/update/lr/warmup to
4096/100k/7×10−4/4k as the original Trans-
former, while for pre-norm Transformer-Base, the
configuration is 4096/100k/10−3/8k as suggested
in tensor2tensor. As for deep models, we uni-
formly use the setting of 8192/50k/2×10−3/16k.
Note that while we use a 2X larger batch size for
deep models, we reduce a half of the number of
updates. In this way, the amount of seen training
data keeps the same in all experiments. A larger
learning rate is used to speed up convergence
when we use large batch. In addition, we found
simultaneously increasing the learning rate and
warmup steps worked best.

Table 7 report the results. First of all, we can see
that post-norm Transformer failed to train when
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the network goes deeper. Worse still, the shal-
low network also failed to converge when switch-
ing to the setting of deep networks. We attribute
it to post-norm Transformer being more sensitive
to the large learning rate. On the contrary, in the
case of either a 6-layer encoder or a 20-layer en-
coder, the pre-norm Transformer benefits from the
larger batch and learning rate. However, the gain
under deep networks is larger than that under shal-
low networks.


