@inproceedings{wang-etal-2019-spherere,
title = "{S}phere{RE}: Distinguishing Lexical Relations with Hyperspherical Relation Embeddings",
author = "Wang, Chengyu and
He, Xiaofeng and
Zhou, Aoying",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1169",
doi = "10.18653/v1/P19-1169",
pages = "1727--1737",
abstract = "Lexical relations describe how meanings of terms relate to each other. Typical examples include hypernymy, synonymy, meronymy, etc. Automatic distinction of lexical relations is vital for NLP applications, and also challenging due to the lack of contextual signals to discriminate between such relations. In this work, we present a neural representation learning model to distinguish lexical relations among term pairs based on Hyperspherical Relation Embeddings (SphereRE). Rather than learning embeddings for individual terms, the model learns representations of relation triples by mapping them to the hyperspherical embedding space, where relation triples of different lexical relations are well separated. Experiments over several benchmarks confirm SphereRE outperforms state-of-the-arts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-spherere">
<titleInfo>
<title>SphereRE: Distinguishing Lexical Relations with Hyperspherical Relation Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaofeng</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aoying</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lexical relations describe how meanings of terms relate to each other. Typical examples include hypernymy, synonymy, meronymy, etc. Automatic distinction of lexical relations is vital for NLP applications, and also challenging due to the lack of contextual signals to discriminate between such relations. In this work, we present a neural representation learning model to distinguish lexical relations among term pairs based on Hyperspherical Relation Embeddings (SphereRE). Rather than learning embeddings for individual terms, the model learns representations of relation triples by mapping them to the hyperspherical embedding space, where relation triples of different lexical relations are well separated. Experiments over several benchmarks confirm SphereRE outperforms state-of-the-arts.</abstract>
<identifier type="citekey">wang-etal-2019-spherere</identifier>
<identifier type="doi">10.18653/v1/P19-1169</identifier>
<location>
<url>https://aclanthology.org/P19-1169</url>
</location>
<part>
<date>2019-jul</date>
<extent unit="page">
<start>1727</start>
<end>1737</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SphereRE: Distinguishing Lexical Relations with Hyperspherical Relation Embeddings
%A Wang, Chengyu
%A He, Xiaofeng
%A Zhou, Aoying
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 jul
%I Association for Computational Linguistics
%C Florence, Italy
%F wang-etal-2019-spherere
%X Lexical relations describe how meanings of terms relate to each other. Typical examples include hypernymy, synonymy, meronymy, etc. Automatic distinction of lexical relations is vital for NLP applications, and also challenging due to the lack of contextual signals to discriminate between such relations. In this work, we present a neural representation learning model to distinguish lexical relations among term pairs based on Hyperspherical Relation Embeddings (SphereRE). Rather than learning embeddings for individual terms, the model learns representations of relation triples by mapping them to the hyperspherical embedding space, where relation triples of different lexical relations are well separated. Experiments over several benchmarks confirm SphereRE outperforms state-of-the-arts.
%R 10.18653/v1/P19-1169
%U https://aclanthology.org/P19-1169
%U https://doi.org/10.18653/v1/P19-1169
%P 1727-1737
Markdown (Informal)
[SphereRE: Distinguishing Lexical Relations with Hyperspherical Relation Embeddings](https://aclanthology.org/P19-1169) (Wang et al., ACL 2019)
ACL