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Abstract

Over-dependence on domain ontology and
lack of knowledge sharing across domains are
two practical and yet less studied problems of
dialogue state tracking. Existing approaches
generally fall short in tracking unknown slot
values during inference and often have diffi-
culties in adapting to new domains. In this
paper, we propose a TRAnsferable Dialogue
statE generator (TRADE) that generates di-
alogue states from utterances using a copy
mechanism, facilitating knowledge transfer
when predicting (domain, slot, value) triplets
not encountered during training. Our model is
composed of an utterance encoder, a slot gate,
and a state generator, which are shared across
domains. Empirical results demonstrate that
TRADE achieves state-of-the-art joint goal ac-
curacy of 48.62% for the five domains of Mul-
tiWOZ, a human-human dialogue dataset. In
addition, we show its transferring ability by
simulating zero-shot and few-shot dialogue
state tracking for unseen domains. TRADE
achieves 60.58% joint goal accuracy in one of
the zero-shot domains, and is able to adapt
to few-shot cases without forgetting already
trained domains.

1 Introduction

Dialogue state tracking (DST) is a core component
in task-oriented dialogue systems, such as restau-
rant reservation or ticket booking. The goal of
DST is to extract user goals/intentions expressed
during conversation and to encode them as a com-
pact set of dialogue states, i.e., a set of slots and
their corresponding values. For example, as shown
in Fig. 1, (slot, value) pairs such as (price, cheap)
and (area, centre) are extracted from the conver-
sation. Accurate DST performance is crucial for

∗Work partially done while the first author was an intern
at Salesforce Research.

Usr: I am looking for a cheap restaurant in the centre of the city.
Sys: There is a cheap chinese restaurant called Dojo Noodle Bar.
Usr: Yes please , for 8 people at 18:30 on Thursday.
… 
Usr: I am also looking for some entertainment close to the restaurant.
Sys: Is there any type of attraction you would like me to search?
Usr: Why do not you try an architectural attraction.
Sys: All Saints Church looks good , would you like to head there?
… 
Usr: I also need to book a taxi between the restaurant and the church.
Sys: What time would you like the taxi from Dojo Noodle Bar?
Usr: 20:30, please. 

Restaurant: (price, cheap), (area, centre), (people, 8), (time, 
18:30), (day, Thursday), (name, Dojo Noodle Bar)

Multi-Domain Dialogue State Tracking

Attraction: (type, architecture), (area, centre)
Taxi: (leaveAt, 20:30), (destination, All Saints Church), 
(departure, Dojo Noodle Bar)

Hotel: Train:

Dialogue History

Figure 1: An example of multi-domain dialogue state
tracking in a conversation. The solid arrows on the left
are the single-turn mapping, and the dot arrows on the
right are multi-turn mapping. The state tracker needs to
track slot values mentioned by the user for all the slots
in all the domains.

appropriate dialogue management, where user in-
tention determines the next system action and/or
the content to query from the databases.

Traditionally, state tracking approaches are
based on the assumption that ontology is defined
in advance, where all slots and their values are
known. Having a predefined ontology can sim-
plify DST into a classification problem and im-
prove performance (Henderson et al., 2014b;
Mrkšić et al., 2017; Zhong et al., 2018). However,
there are two major drawbacks to this approach:
1) A full ontology is hard to obtain in advance (Xu
and Hu, 2018). In the industry, databases are usu-
ally exposed through an external API only, which
is owned and maintained by others. It is not feasi-
ble to gain access to enumerate all the possible val-
ues for each slot. 2) Even if a full ontology exists,
the number of possible slot values could be large
and variable. For example, a restaurant name or
a train departure time can contain a large number
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of possible values. Therefore, many of the previ-
ous works that are based on neural classification
models may not be applicable in real scenario.

Budzianowski et al. (2018) recently intro-
duced a multi-domain dialogue dataset (Multi-
WOZ), which adds new challenges in DST due
to its mixed-domain conversations. As shown in
Fig. 1, a user can start a conversation by asking
to reserve a restaurant, then requests information
regarding an attraction nearby, and finally asks to
book a taxi. In this case, the DST model has to de-
termine the corresponding domain, slot and value
at each turn of dialogue, which contains a large
number of combinations in the ontology, i.e., 30
(domain, slot) pairs and over 4,500 possible slot
values in total. Another challenge in the multi-
domain setting comes from the need to perform
multi-turn mapping. Single-turn mapping refers to
the scenario where the (domain, slot, value) triplet
can be inferred from a single turn, while in multi-
turn mapping, it should be inferred from multiple
turns which happen in different domains. For in-
stance, the (area, centre) pair from the attraction
domain in Fig. 1 can be predicted from the area in-
formation in the restaurant domain, which is men-
tioned in the preceding turns.

To tackle these challenges, we emphasize that
DST models should share tracking knowledge
across domains. There are many slots among
different domains that share all or some of their
values. For example, the area slot can exist in
many domains, e.g., restaurant, attraction, and
taxi. Moreover, the name slot in the restaurant do-
main can share the same value with the departure
slot in the taxi domain. Additionally, to enable
the DST model to track slots in unseen domains,
transferring knowledge across multiple domains is
imperative. We expect DST models can learn to
track some slots in zero-shot domains by learning
to track the same slots in other domains.

In this paper, we propose a transferable dialogue
state generator (TRADE) for multi-domain task-
oriented dialogue state tracking. The simplicity of
our approach and the boost of the performance is
the main advantage of TRADE. Contributions in
this work are summarized as 1:

• To overcome the multi-turn mapping problem,
TRADE leverages its context-enhanced slot
gate and copy mechanism to properly track slot
1The code is released at github.com/

jasonwu0731/trade-dst

values mentioned anywhere in dialogue history.

• By sharing its parameters across domains,
and without requiring a predefined ontology,
TRADE can share knowledge between domains
to track unseen slot values, achieving state-of-
the-art performance on multi-domain DST.

• TRADE enables zero-shot DST by leveraging
the domains it has already seen during train-
ing. If a few training samples from unseen do-
mains are available, TRADE can adapt to new
few-shot domains without forgetting the previ-
ous domains.

2 TRADE Model

The proposed model in Fig. 2 comprises three
components: an utterance encoder, a slot gate,
and a state generator. Instead of predicting the
probability of every predefined ontology term,
our model directly generates slot values. Simi-
lar to Johnson et al. (2017) for multilingual neu-
ral machine translation, we share all the model
parameters, and the state generator starts with a
different start-of-sentence token for each (domain,
slot) pair.

The utterance encoder encodes dialogue utter-
ances into a sequence of fixed-length vectors. To
determine whether any of the (domain, slot) pairs
are mentioned, the context-enhanced slot gate is
used with the state generator. The state gener-
ator decodes multiple output tokens for all (do-
main, slot) pairs independently to predict their cor-
responding values. The context-enhanced slot gate
predicts whether each of the pairs is actually trig-
gered by the dialogue via a three-way classifier.

Let us define X = {(U1, R1), . . . , (UT , RT )}
as the set of user utterance and system re-
sponse pairs in T turns of dialogue, and B =
{B1, . . . , BT } as the dialogue states for each
turn. Each Bt is a tuple (domain:Dn, slot:Sm,
value:Y value

j ), where D = {D1, . . . , DN} are the
N different domains, and S = {S1, . . . , SM} are
theM different slots. Assume that there are J pos-
sible (domain, slot) pairs, and Y value

j is the true
word sequence for j-th (domain ,slot) pair.

2.1 Utterance Encoder

Note that the utterance encoder can be any exist-
ing encoding model. We use bi-directional gated
recurrent units (GRU) (Chung et al., 2014) to

github.com/jasonwu0731/trade-dst
github.com/jasonwu0731/trade-dst
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NONE
DONTCARE

PTR
Context Vector

Ex: hotel

Ashley
Slot Gate

Utterances
…....

Bot: Which area are you looking for the hotel?
User: There is one at east town called Ashley Hotel. 

Domains
Hotel, Train, 
Attraction, 

Restaurant, Taxi

Slots
Price, Area, Day, 
Departure, name, 

LeaveAt, food, etc.

Utterance 
Encoder

Ex: name

State 
Generator

Ashley

(a)

(c)

(b)

Hotel?

Figure 2: The architecture of the proposed TRADE model, which includes (a) an utterance encoder, (b) a state
generator, and (c) a slot gate, all of which are shared among domains. The state generator will decode J times
independently for all the possible (domain, slot) pairs. At the first decoding step, state generator will take the j-th
(domain, slot) embeddings as input to generate its corresponding slot values and slot gate. The slot gate predicts
whether the j-th (domain, slot) pair is triggered by the dialogue.

encode the dialogue history. The input to the
utterance encoder is denoted as history Xt =
[Ut−l, Rt−l, . . . , Ut, Rt] ∈ R|Xt|×demb , which is
the concatenation of all words in the dialogue his-
tory. l is the number of selected dialogue turns
and demb indicates the embedding size. The en-
coded dialogue history is represented as Ht =
[henc

1 , . . . , henc
|Xt|] ∈ R|Xt|×dhdd , where dhdd is the

hidden size. As mentioned in Section 1, due to the
multi-turn mapping problem, the model should in-
fer the states across a sequence of turns. There-
fore, we use the recent dialogue history of length l
as the utterance encoder input, rather than the cur-
rent utterance only.

2.2 State Generator
To generate slot values using text from the in-
put source, a copy mechanism is required. There
are three common ways to perform copying, i.e.,
index-based copy (Vinyals et al., 2015), hard-
gated copy (Gulcehre et al., 2016; Madotto et al.,
2018; Wu et al., 2019) and soft-gated copy (See
et al., 2017; McCann et al., 2018). The index-
based mechanism is not suitable for DST task be-
cause the exact word(s) of the true slot value are
not always found in the utterance. The hard-gate
copy mechanism usually needs additional supervi-

sion on the gating function. As such, we employ
soft-gated pointer-generator copying to combine a
distribution over the vocabulary and a distribution
over the dialogue history into a single output dis-
tribution.

We use a GRU as the decoder of the state gen-
erator to predict the value for each (domain, slot)
pair, as shown in Fig. 2. The state generator de-
codes J pairs independently. We simply supply
the summed embedding of the domain and slot as
the first input to the decoder. At decoding step
k for the j-th (domain, slot) pair, the generator
GRU takes a word embedding wjk as its input
and returns a hidden state hdec

jk . The state gener-
ator first maps the hidden state hdec

jk into the vo-
cabulary space P vocab

jk using the trainable embed-
ding E ∈ R|V |×dhdd , where |V | is the vocabulary
size. At the same time, the hdec

jk is used to com-

pute the history attention P history
jk over the encoded

dialogue history Ht:

P vocab
jk = Softmax(E · (hdec

jk )>) ∈ R|V |,
P

history
jk = Softmax(Ht · (hdec

jk )>) ∈ R|Xt|.
(1)

The final output distribution P final
jk is the weighted-
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sum of two distributions,

P final
jk = p

gen
jk × P

vocab
jk

+ (1− pgen
jk )× P history

jk ∈ R|V |.
(2)

The scalar pgen
jk is trainable to combine the two dis-

tributions, which is computed by

p
gen
jk = Sigmoid(W1 · [hdec

jk ;wjk; cjk]) ∈ R1,

cjk = P
history
jk ·Ht ∈ Rdhdd

(3)

where W1 is a trainable matrix and cjk is the con-
text vector. Note that due to Eq (2), our model
is able to generate words even if they are not pre-
defined in the vocabulary.

2.3 Slot Gate

Unlike single-domain DST problems, where only
a few slots that need to be tracked, e.g., four slots
in WOZ (Wen et al., 2017), and eight slots in
DSTC2 (Henderson et al., 2014a), there are a large
number of (domain, slot) pairs in multi-domain
DST problems. Therefore, the ability to predict
the domain and slot at current turn t becomes more
challenging.

Our context-enhanced slot gate G is a simple
three-way classifier that maps a context vector
taken from the encoder hidden states Ht to a prob-
ability distribution over ptr, none, and dontcare
classes. For each (domain, slot) pair, if the slot
gate predicts none or dontcare, we ignore the val-
ues generated by the decoder and fill the pair as
“not-mentioned” or “does not care”. Otherwise,
we take the generated words from our state gener-
ator as its value. With a linear layer parameterized
by Wg ∈ R3×dhdd , the slot gate for the j-th (do-
main, slot) pair is defined as

Gj = Softmax(Wg · (cj0)>) ∈ R3, (4)

where cj0 is the context vector computed in Eq (3)
using the first decoder hidden state.

2.4 Optimization

During training, we optimize for both the slot gate
and the state generator. For the former, the cross-
entropy lossLg is computed between the predicted
slot gate Gj and the true one-hot label ygate

j ,

Lg =
J∑

j=1

− log(Gj · (ygate
j )>). (5)

For the latter, another cross-entropy loss Lv be-
tween P final

jk and the true words Y label
j is used. We

define Lv as

Lv =
J∑

j=1

|Yj |∑
k=1

− log(P final
jk · (yvalue

jk )>). (6)

Lv is the sum of losses from all the (domain, slot)
pairs and their decoding time steps. We optimize
the weighted-sum of these two loss functions us-
ing hyper-parameters α and β,

L = αLg + βLv. (7)

3 Unseen Domain DST

In this section, we focus on the ability of TRADE
to generalize to an unseen domain by consider-
ing zero-shot transferring and few-shot domain ex-
panding. In the zero-shot setting, we assume we
have no training data in the new domain, while in
the few-shot case, we assume just 1% of the origi-
nal training data in the unseen domain is available
(around 20 to 30 dialogues). One of the motiva-
tions to perform unseen domain DST is because
collecting a large-scale task-oriented dataset for
a new domain is expensive and time-consuming
(Budzianowski et al., 2018), and there are a large
amount of domains in realistic scenarios.

3.1 Zero-shot DST

Ideally, based on the slots already learned, a DST
model is able to directly track those slots that
are present in a new domain. For example, if
the model is able to track the departure slot in
the train domain, then that ability may transfer to
the taxi domain, which uses similar slots. Note
that generative DST models take the dialogue con-
text/history X , the domain D, and the slot S as
input and then generate the corresponding val-
ues Y value. Let (X,Dsource, Ssource, Y

value
source) be the

set of samples seen during the training phase and
(X,Dtarget, Starget, Y

value
target ) the samples which the

model was not trained to track. A zero-shot DST
model should be able to generate the correct values
of Y value

target given the context X , domain Dtarget, and
slot Starget, without using any training samples.
The same context X may appear in both source
and target domains but the pairs (Dtarget, Starget)
are unseen. This setting is extremely challeng-
ing if no slot in Starget appears in Ssource, since the
model has never been trained to track such a slot.
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3.2 Expanding DST for Few-shot Domain

In this section, we assume that only a small
number of samples from the new domain
(X,Dtarget, Starget, Y

value
target ) are available, and the

purpose is to evaluate the ability of our DST model
to transfer its learned knowledge to the new do-
main without forgetting previously learned do-
mains. There are two advantages to perform-
ing few-shot domain expansion: 1) being able to
quickly adapt to new domains and obtain decent
performance with only a small amount of training
data; 2) not requiring retraining with all the data
from previously learned domains, since the data
may no longer be available and retraining is often
very time-consuming.

Firstly, we consider a straightforward naive
baseline, i.e., fine-tuning with no constraints.
Then, we employ two specific continual learn-
ing techniques: elastic weight consolidation
(EWC) (Kirkpatrick et al., 2017) and gradient
episodic memory (GEM) (Lopez-Paz et al., 2017)
to fine-tune our model. We define ΘS as the
model’s parameters trained in the source domain,
and Θ indicates the current optimized parameters
according to the target domain data.

EWC uses the diagonal of the Fisher informa-
tion matrix F as a regularizer for adapting to the
target domain data. This matrix is approximated
using samples from the source domain. The EWC
loss is defined as

Lewc(Θ) = L(Θ) +
∑
i

λ

2
Fi(Θi −ΘS,i)

2, (8)

where λ is a hyper-parameter. Different from
EWC, GEM keeps a small number of samples K
from the source domains, and, while the model
learns the new target domain, a constraint is ap-
plied on the gradient to prevent the loss on the
stored samples from increasing. The training pro-
cess is defined as:

MinimizeΘ L(Θ)

Subject to L(Θ,K) ≤ L(ΘS ,K),
(9)

where L(Θ,K) is the loss value of the K stored
samples. Lopez-Paz et al. (2017) show how to
solve the optimization problem in Eq (9) with
quadratic programming if the loss of the stored
samples increases.

Hotel Train Attraction Restaurant Taxi

Slots

price,
type,

parking,
stay,
day,

people,
area,
stars,

internet,
name

destination,
departure,

day,
arrive by,
leave at,
people

area,
name,
type

food,
price,
area,

name,
time,
day,

people

destination,
departure,
arrive by,
leave by

Train 3381 3103 2717 3813 1654
Valid 416 484 401 438 207
Test 394 494 395 437 195

Table 1: The dataset information of MultiWOZ. In to-
tal, there are 30 (domain, slot) pairs from the selected
five domains. The numbers in the last three rows indi-
cate the number of dialogues for train, validation and
test sets.

4 Experiments

4.1 Dataset
Multi-domain Wizard-of-Oz (Budzianowski et al.,
2018) (MultiWOZ) is the largest existing human-
human conversational corpus spanning over
seven domains, containing 8438 multi-turn dia-
logues, with each dialogue averaging 13.68 turns.
Different from existing standard datasets like
WOZ (Wen et al., 2017) and DSTC2 (Henderson
et al., 2014a), which contain less than 10 slots and
only a few hundred values, MultiWOZ has 30 (do-
main, slot) pairs and over 4,500 possible values.
We use the DST labels from the original training,
validation and testing dataset. Only five domains
(restaurant, hotel, attraction, taxi, train) are used
in our experiment because the other two domains
(hospital, police) have very few dialogues (10%
compared to others) and only appear in the train-
ing set. The slots in each domain and the corre-
sponding data size are reported in Table 1.

4.2 Training Details
Multi-domain Joint Training The model is
trained end-to-end using the Adam optimizer
(Kingma and Ba, 2015) with a batch size of 32.
The learning rate annealing is in the range of
[0.001, 0.0001] with a dropout ratio of 0.2. Both
α and β in Eq (7) are set to one. All the em-
beddings are initialized by concatenating Glove
embeddings (Pennington et al., 2014) and charac-
ter embeddings (Hashimoto et al., 2016), where
the dimension is 400 for each vocabulary word.
A greedy search decoding strategy is used for
our state generator since the generated slot val-
ues are usually short in length. In addition, to in-
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crease model generalization and simulate an out-
of-vocabulary setting, a word dropout is utilized
with the utterance encoder by randomly masking
a small amount of input tokens, similar to Bow-
man et al. (2016).

Domain Expanding For training, we follow the
same procedure as in the joint training section, and
we run a small grid search for all the methods us-
ing the validation set. For EWC, we set different
values of λ for all the domains, and the optimal
value is selected using the validation set. Finally,
in GEM, we set the memory sizes K to 1% of the
source domains.

4.3 Results
Two evaluation metrics, joint goal accuracy and
slot accuracy, are used to evaluate the perfor-
mance on multi-domain DST. The joint goal accu-
racy compares the predicted dialogue states to the
ground truth Bt at each dialogue turn t, and the
output is considered correct if and only if all the
predicted values exactly match the ground truth
values in Bt. The slot accuracy, on the other hand,
individually compares each (domain, slot, value)
triplet to its ground truth label.

Multi-domain Training We make a comparison
with the following existing models: MDBT (Ra-
madan et al., 2018), GLAD (Zhong et al.,
2018), GCE (Nouri and Hosseini-Asl, 2018), and
SpanPtr (Xu and Hu, 2018), and we briefly de-
scribe these baselines models below:

• MDBT 2: Multiple bi-LSTMs are used to en-
code system and user utterances. The seman-
tic similarity between utterances and every pre-
defined ontology term is computed separately.
Each ontology term is triggered if the predicted
score is greater than a threshold.

• GLAD 3: This model uses self-attentive RNNs
to learn a global tracker that shares parameters
among slots and a local tracker that tracks each
slot. The model takes previous system actions
and the current user utterance as input, and com-
putes semantic similarity with predefined ontol-
ogy terms.

• GCE: This is the current state-of-the-art model
on the single-domain WOZ dataset (Wen et al.,
2github.com/osmanio2/

multi-domain-belief-tracking
3github.com/salesforce/glad

MultiWOZ MultiWOZ
(Only Restaurant)

Joint Slot Joint Slot
MDBT 15.57 89.53 17.98 54.99
GLAD 35.57 95.44 53.23 96.54

GCE 36.27 98.42 60.93 95.85
SpanPtr 30.28 93.85 49.12 87.89
TRADE 48.62 96.92 65.35 93.28

Table 2: The multi-domain DST evaluation on Mul-
tiWOZ and its single restaurant domain. TRADE
has the highest joint accuracy, which surpasses current
state-of-the-art GCE model.

2017). It is a simplified and speed up version of
GLAD without slot-specific RNNs.

• SpanPtr: Most related to our work, this is
the first model that applies pointer networks
(Vinyals et al., 2015) to the single-domain DST
problem, which generates both start and end
pointers to perform index-based copying.

To have a fair comparison, we modify the orig-
inal implementation of the MDBT and GLAD
models by: 1) adding name, destination, and de-
parture slots for evaluation if they were discarded
or replaced by placeholders; and 2) removing the
hand-crafted rules of tracking the booking slots
such as stay and people slots if there are any; and
3) creating a full ontology for their model to cover
all (domain, slot, value) pairs that were not in the
original ontology generated by the data provider.

As shown in Table 2, TRADE achieves the
highest performance, 48.62% on joint goal accu-
racy and 96.92% on slot accuracy, on MultiWOZ.
For comparison with the performance on single-
domain, the results on the restaurant domain of
MultiWOZ are reported as well. The performance
difference between SpanPtr and our model mainly
comes from the limitation of index-based copying.
For examples, if the true label for the price range
slot is cheap, the relevant user utterance describ-
ing the restaurant may actually be, for example,
economical, inexpensive, or cheaply. Note that the
MDBT, GLAD, and GCE models each need a pre-
defined domain ontology to perform binary clas-
sification for each ontology term, which hinders
their DST tracking performance, as mentioned in
Section 1.

We visualize the cosine similarity matrix for all
possible slot embeddings in Fig. 3. Most of the

github.com/osmanio2/multi-domain-belief-tracking
github.com/osmanio2/multi-domain-belief-tracking
github.com/salesforce/glad
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Joint Slot Joint Slot Joint Slot Joint Slot Joint Slot
Evaluation on 4 Domains Except Hotel Except Train Except Attraction Except Restaurant Except Taxi

Base Model (BM)
training on 4 domains

58.98 96.75 55.26 96.76 55.02 97.03 54.69 96.64 49.87 96.77

Fine-tuning BM
on 1% new domain

Naive 36.08 93.48 23.25 90.32 40.05 95.54 32.85 91.69 46.10 96.34
EWC 40.82 94.16 28.02 91.49 45.37 84.94 34.45 92.53 46.88 96.44
GEM 53.54 96.27 50.69 96.42 50.51 96.66 45.91 95.58 46.43 96.45

Evaluation on New Domain Hotel Train Attraction Restaurant Taxi
Training 1% New Domain 19.53 77.33 44.24 85.66 35.88 68.60 32.72 82.39 60.38 72.82

Fine-tuning BM
on 1% new domain

Naive 19.13 75.22 59.83 90.63 29.39 60.73 42.42 86.82 63.81 79.81
EWC 19.35 76.25 58.10 90.33 32.28 62.43 40.93 85.80 63.61 79.65
GEM 19.73 77.92 54.31 89.55 34.73 64.37 39.24 86.05 63.16 79.27

Table 3: We run domain expansion experiments by excluding one domain and fine-tuning on that domain. The
first row is the base model trained on the four domains. The second row is the results on the four domains after
fine-tuning on 1% new domain data using three different strategies. One can find out that GEM outperforms Naive
and EWC fine-tuning in terms of catastrophic forgetting on the four domains. Then, we evaluate the results on new
domain for two cases: training from scratch and fine-tuning from the base model. Results show that fine-tuning
from the base model usually achieves better results on the new domain compared to training from scratch.
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Figure 3: Embeddings cosine similarity visualization.
The rows and columns are all the possible slots in Mul-
tiWOZ. Slots that share similar values or have corre-
lated values learn similar embeddings. For example
destination vs. departure (which share similar values)
or price range vs. stars exhibit high correlation.

slot embeddings are not close to each other, which
is expected because the model only depends on
these features as start-of-sentence embeddings to
distinguish different slots. Note that some slots
are relatively close because either the values they
track may share similar semantic meanings or the
slots are correlated. For example, destination
and departure track names of cities, while people
and stay track numbers. On the other hand, price
range and star in hotel domain are correlated be-
cause high-star hotels are usually expensive.

Zero-shot We run zero-shot experiments by ex-
cluding one domain from the training set. As

Trained Single Zero-Shot
Joint Slot Joint Slot

Hotel 55.52 92.66 13.70 65.32
Train 77.71 95.30 22.37 49.31

Attraction 71.64 88.97 19.87 55.53
Restaurant 65.35 93.28 11.52 53.43

Taxi 76.13 89.53 60.58 73.92

Table 4: Zero-shot experiments on an unseen domain.
In taxi domain, our model achieves 60.58% joint goal
accuracy without training on any samples from taxi do-
main. Trained Single column is the results achieved by
training on 100% single-domain data as a reference.

shown in Table 4, the taxi domain achieves the
highest zero-shot performance, 60.58% on joint
goal accuracy, which is close to the result achieved
by training on all the taxi domain data (76.13%).
Although performances on the other zero-shot
domains are not especially promising, they still
achieve around 50 to 65% slot accuracy without
using any in-domain samples. The reason why the
zero-shot performance on the taxi domain is high
is because all four slots share similar values with
the corresponding slots in the train domain.

Domain Expanding In this setting, the TRADE
model is pre-trained on four domains and a held-
out domain is reserved for domain expansion to
perform fine-tuning. After fine-tuning on the new
domain, we evaluate the performance of TRADE
on 1) the four pre-trained domains and 2) the new
domain. We experiment with different fine-tuning
strategies. The base model row in Table 3 indi-
cates the results evaluated on the four domains us-
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ing their in-domain training data, and the Train-
ing 1% New Domain row indicates the results
achieved by training from scratch using 1% of
the new domain data. In general, GEM outper-
forms naive and EWC fine-tuning in terms of over-
coming catastrophic forgetting. We also find that
pre-training followed by fine-tuning outperforms
training from scratch on the single domain.

Fine-tuning TRADE with GEM maintains
higher performance on the original four domains.
Take the hotel domain as an example, the per-
formance on the four domains after fine-tuning
with GEM only drops from 58.98% to 53.54%
(-5.44%) on joint accuracy, whereas naive fine-
tuning deteriorates the tracking ability, dropping
joint goal accuracy to 36.08% (-22.9%).

Expanding TRADE from four domains to a new
domain achieves better performance than training
from scratch on the new domain. This observa-
tion underscores the advantages of transfer learn-
ing with the proposed TRADE model. For ex-
ample, our TRADE model achieves 59.83% joint
accuracy after fine-tuning using only 1% of Train
domain data, outperforming the training Train do-
main from scratch, which achieves 44.24% using
the same amount of new-domain data.

Finally, when considering hotel and attraction
as new domain, fine-tuning with GEM outper-
forms the naive fine-tuning approach on the new
domain. To elaborate, GEM obtains 34.73% joint
accuracy on the attraction domain, but naive fine-
tuning on that domain can only achieve 29.39%.
This implies that in some cases learning to keep
the tracking ability (learned parameters) of the
learned domains helps to achieve better perfor-
mance for the new domain.

5 Error Analysis

An error analysis of multi-domain training is
shown in Fig. 4. Not surprisingly, name slots in
the restaurant, attraction, and hotel domains have
the highest error rates, 8.50%, 8.17%, and 7.86%,
respectively. It is because this slot usually has a
large number of possible values that is hard to rec-
ognize. On the other hand, number-related slots
such as arrive by, people, and stay usually have
the lowest error rates. We also find that the type
slot of hotel domain has a high error rate, even if
it is an easy task with only two possible values in
the ontology. The reason is that labels of the (ho-
tel, type) pair are sometimes missing in the dataset,
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Figure 4: Slots error rate on test set of multi-domain
training. The name slot in restaurant domain has the
highest error rate, 8.50%, and the arrive by slot in taxi
domain has the lowest error rate, 1.33%
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Figure 5: Zero-shot DST error analysis on (a) hotel and
(b) restaurant domains. The x-axis represents the num-
ber of each slot which has correct non-empty values.
In hotel domain, the knowledge to track people, area,
price range, and day slots are successfully transferred
from other domains seen in training.

which makes our prediction incorrect even if it is
supposed to be predicted.

In Fig. 5, the zero-shot analysis of two se-
lected domains, hotel and restaurant, which con-
tain more slots to be tracked, are shown. To bet-
ter understand the behavior of knowledge trans-
ferring, here we only consider labels that are not
empty, i.e., we ignore data that is labeled as “none”
because predicting “none” is relatively easier for
the model. In both hotel and restaurant domains,
knowledge about people, area, price range, and
day slots are successfully transferred from the
other four domains. For unseen slots that only ap-
pear in one domain, it is very hard for our model
to track correctly. For example, parking, stars and
internet slots are only appeared in hotel domain,
and the food slot is unique to the restaurant do-
main.
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6 Related Work

Dialogue State Tracking Traditional dialogue
state tracking models combine semantics extracted
by language understanding modules to estimate
the current dialogue states (Williams and Young,
2007; Thomson and Young, 2010; Wang and
Lemon, 2013; Williams, 2014), or to jointly learn
speech understanding (Henderson et al., 2014b;
Zilka and Jurcicek, 2015; Wen et al., 2017). One
drawback is that they rely on hand-crafted fea-
tures and complex domain-specific lexicons (be-
sides the ontology), and are difficult to extend and
scale to new domains.

Mrkšić et al. (2017) use distributional repre-
sentation learning to leverage semantic informa-
tion from word embeddings to and resolve lex-
ical/morphological ambiguity. However, param-
eters are not shared across slots. On the other
hand, Nouri and Hosseini-Asl (2018) utilizes
global modules to share parameters between slots,
and Zhong et al. (2018) uses slot-specific local
modules to learn slot features, which has proved
to successfully improve tracking of rare slot val-
ues. Lei et al. (2018) use a Seq2Seq model to gen-
erate belief spans and the delexicalized response
at the same time. Ren et al. (2018) propose
StateNet that generates a dialogue history repre-
sentation and compares the distances between this
representation and value vectors in the candidate
set. Xu and Hu (2018) use the index-based pointer
network for different slots, and show the ability
to point to unknown values. However, many of
them require a predefined domain ontology, and
the models were only evaluated on single-domain
setting (DSTC2).

For multi-domain DST, Rastogi et al. (2017)
propose a multi-domain approach using two-layer
bi-GRU. Although it does not need an ad-hoc state
update mechanism, it relies on delexicalization to
extract the features. Ramadan et al. (2018) pro-
pose a model to jointly track domain and the di-
alogue states using multiple bi-LSTM. They uti-
lize semantic similarity between utterances and
the ontology terms and allow the information to
be shared across domains. For a more general
overview, readers may refer to the neural dialogue
review paper from Gao et al. (2018).

Zero/Few-Shot and Continual Learning Dif-
ferent components of dialogue systems have pre-
viously been used for zero-shot application, e.g.,

intention classifiers (Chen et al., 2016), slot-
filling (Bapna et al., 2017), and dialogue pol-
icy (Gašić and Young, 2014). For language
generation, Johnson et al. (2017) propose sin-
gle encoder-decoder models for zero-shot machine
translation, and Zhao and Eskenazi (2018) pro-
pose cross-domain zero-shot dialogue generation
using action matching. Moreover, few-shot learn-
ing in natural language applications has been ap-
plied in semantic parsing (Huang et al., 2018), ma-
chine translation (Gu et al., 2018), and text clas-
sification (Yu et al., 2018) with meta-learning ap-
proaches (Schmidhuber, 1987; Finn et al., 2017).
These tasks usually have multiple tasks to per-
form fast adaptation, instead in our case the num-
ber of existing domains are limited. Lastly, sev-
eral approaches have been proposed for contin-
ual learning in the machine learning commu-
nity (Kirkpatrick et al., 2017; Lopez-Paz et al.,
2017; Rusu et al., 2016; Fernando et al., 2017;
Lee et al., 2017), especially in image recognition
tasks (Aljundi et al., 2017; Rannen et al., 2017).
The applications within NLP has been compara-
tively limited, e.g., Shu et al. (2016, 2017b) for
opinion mining, Shu et al. (2017a) for document
classification, and Lee (2017) for hybrid code net-
works (Williams et al., 2017).

7 Conclusion

We introduce a transferable dialogue state gen-
erator for multi-domain dialogue state tracking,
which learns to track states without any predefined
domain ontology. TRADE shares all of its param-
eters across multiple domains and achieves state-
of-the-art joint goal accuracy and slot accuracy on
the MultiWOZ dataset for five different domains.
Moreover, domain sharing enables TRADE to per-
form zero-shot DST for unseen domains and to
quickly adapt to few-shot domains without forget-
ting the learned ones. In future work, transferring
knowledge from other resources can be applied to
further improve zero-shot performance, and col-
lecting a dataset with a large number of domains is
able to facilitate the application and study of meta-
learning techniques within multi-domain DST.
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