@inproceedings{suzuki-etal-2018-empirical,
title = "An Empirical Study of Building a Strong Baseline for Constituency Parsing",
author = "Suzuki, Jun and
Takase, Sho and
Kamigaito, Hidetaka and
Morishita, Makoto and
Nagata, Masaaki",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2097",
doi = "10.18653/v1/P18-2097",
pages = "612--618",
abstract = "This paper investigates the construction of a strong baseline based on general purpose sequence-to-sequence models for constituency parsing. We incorporate several techniques that were mainly developed in natural language generation tasks, e.g., machine translation and summarization, and demonstrate that the sequence-to-sequence model achieves the current top-notch parsers{'} performance (almost) without requiring any explicit task-specific knowledge or architecture of constituent parsing.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suzuki-etal-2018-empirical">
<titleInfo>
<title>An Empirical Study of Building a Strong Baseline for Constituency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sho</namePart>
<namePart type="family">Takase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hidetaka</namePart>
<namePart type="family">Kamigaito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper investigates the construction of a strong baseline based on general purpose sequence-to-sequence models for constituency parsing. We incorporate several techniques that were mainly developed in natural language generation tasks, e.g., machine translation and summarization, and demonstrate that the sequence-to-sequence model achieves the current top-notch parsers’ performance (almost) without requiring any explicit task-specific knowledge or architecture of constituent parsing.</abstract>
<identifier type="citekey">suzuki-etal-2018-empirical</identifier>
<identifier type="doi">10.18653/v1/P18-2097</identifier>
<location>
<url>https://aclanthology.org/P18-2097</url>
</location>
<part>
<date>2018-jul</date>
<extent unit="page">
<start>612</start>
<end>618</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Empirical Study of Building a Strong Baseline for Constituency Parsing
%A Suzuki, Jun
%A Takase, Sho
%A Kamigaito, Hidetaka
%A Morishita, Makoto
%A Nagata, Masaaki
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 jul
%I Association for Computational Linguistics
%C Melbourne, Australia
%F suzuki-etal-2018-empirical
%X This paper investigates the construction of a strong baseline based on general purpose sequence-to-sequence models for constituency parsing. We incorporate several techniques that were mainly developed in natural language generation tasks, e.g., machine translation and summarization, and demonstrate that the sequence-to-sequence model achieves the current top-notch parsers’ performance (almost) without requiring any explicit task-specific knowledge or architecture of constituent parsing.
%R 10.18653/v1/P18-2097
%U https://aclanthology.org/P18-2097
%U https://doi.org/10.18653/v1/P18-2097
%P 612-618
Markdown (Informal)
[An Empirical Study of Building a Strong Baseline for Constituency Parsing](https://aclanthology.org/P18-2097) (Suzuki et al., ACL 2018)
ACL