@inproceedings{lin-etal-2018-global,
title = "Global Encoding for Abstractive Summarization",
author = "Lin, Junyang and
Sun, Xu and
Ma, Shuming and
Su, Qi",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2027",
doi = "10.18653/v1/P18-2027",
pages = "163--169",
abstract = "In neural abstractive summarization, the conventional sequence-to-sequence (seq2seq) model often suffers from repetition and semantic irrelevance. To tackle the problem, we propose a global encoding framework, which controls the information flow from the encoder to the decoder based on the global information of the source context. It consists of a convolutional gated unit to perform global encoding to improve the representations of the source-side information. Evaluations on the LCSTS and the English Gigaword both demonstrate that our model outperforms the baseline models, and the analysis shows that our model is capable of generating summary of higher quality and reducing repetition.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2018-global">
<titleInfo>
<title>Global Encoding for Abstractive Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junyang</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuming</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In neural abstractive summarization, the conventional sequence-to-sequence (seq2seq) model often suffers from repetition and semantic irrelevance. To tackle the problem, we propose a global encoding framework, which controls the information flow from the encoder to the decoder based on the global information of the source context. It consists of a convolutional gated unit to perform global encoding to improve the representations of the source-side information. Evaluations on the LCSTS and the English Gigaword both demonstrate that our model outperforms the baseline models, and the analysis shows that our model is capable of generating summary of higher quality and reducing repetition.</abstract>
<identifier type="citekey">lin-etal-2018-global</identifier>
<identifier type="doi">10.18653/v1/P18-2027</identifier>
<location>
<url>https://aclanthology.org/P18-2027</url>
</location>
<part>
<date>2018-jul</date>
<extent unit="page">
<start>163</start>
<end>169</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Global Encoding for Abstractive Summarization
%A Lin, Junyang
%A Sun, Xu
%A Ma, Shuming
%A Su, Qi
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 jul
%I Association for Computational Linguistics
%C Melbourne, Australia
%F lin-etal-2018-global
%X In neural abstractive summarization, the conventional sequence-to-sequence (seq2seq) model often suffers from repetition and semantic irrelevance. To tackle the problem, we propose a global encoding framework, which controls the information flow from the encoder to the decoder based on the global information of the source context. It consists of a convolutional gated unit to perform global encoding to improve the representations of the source-side information. Evaluations on the LCSTS and the English Gigaword both demonstrate that our model outperforms the baseline models, and the analysis shows that our model is capable of generating summary of higher quality and reducing repetition.
%R 10.18653/v1/P18-2027
%U https://aclanthology.org/P18-2027
%U https://doi.org/10.18653/v1/P18-2027
%P 163-169
Markdown (Informal)
[Global Encoding for Abstractive Summarization](https://aclanthology.org/P18-2027) (Lin et al., ACL 2018)
ACL
- Junyang Lin, Xu Sun, Shuming Ma, and Qi Su. 2018. Global Encoding for Abstractive Summarization. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 163–169, Melbourne, Australia. Association for Computational Linguistics.