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Abstract

Coreference resolution aims to identify in
a text all mentions that refer to the same
real-world entity. The state-of-the-art end-
to-end neural coreference model consid-
ers all text spans in a document as po-
tential mentions and learns to link an an-
tecedent for each possible mention. In this
paper, we propose to improve the end-to-
end coreference resolution system by (1)
using a biaffine attention model to get an-
tecedent scores for each possible mention,
and (2) jointly optimizing the mention de-
tection accuracy and the mention cluster-
ing log-likelihood given the mention clus-
ter labels. Our model achieves the state-
of-the-art performance on the CoNLL-
2012 Shared Task English test set.

1 Introduction

End-to-end coreference resolution is the task of
identifying and grouping mentions in a text such
that all mentions in a cluster refer to the same en-
tity. An example is given below (Björkelund and
Kuhn, 2014) where mentions for two entities are
labeled in two clusters:

[Drug Emporium Inc.]a1 said [Gary
Wilber]b1 was named CEO of [this drug-
store chain]a2. [He]b2 succeeds his fa-
ther, Philip T. Wilber, who founded
[the company]a3 and remains chairman.
Robert E. Lyons III, who headed the
[company]a4’s Philadelphia region, was
appointed president and chief operating
officer, succeeding [Gary Wilber]b3.

Many traditional coreference systems, either rule-
based (Haghighi and Klein, 2009; Lee et al., 2011)
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or learning-based (Bengtson and Roth, 2008; Fer-
nandes et al., 2012; Durrett and Klein, 2013;
Björkelund and Kuhn, 2014), usually solve the
problem in two separate stages: (1) a mention de-
tector to propose entity mentions from the text,
and (2) a coreference resolver to cluster proposed
mentions. At both stages, they rely heavily on
complicated, fine-grained, conjoined features via
heuristics. This pipeline approach can cause cas-
cading errors, and in addition, since both stages
rely on a syntactic parser and complicated hand-
craft features, it is difficult to generalize to new
data sets and languages.

Very recently, Lee et al. (2017) proposed the
first state-of-the-art end-to-end neural coreference
resolution system. They consider all text spans
as potential mentions and therefore eliminate the
need of carefully hand-engineered mention detec-
tion systems. In addition, thanks to the represen-
tation power of pre-trained word embeddings and
deep neural networks, the model only uses a min-
imal set of hand-engineered features (speaker ID,
document genre, span distance, span width).

The core of the end-to-end neural coreference
resolver is the scoring function to compute the
mention scores for all possible spans and the an-
tecedent scores for a pair of spans. Furthermore,
one major challenge of coreference resolution is
that most mentions in the document are singleton
or non-anaphoric, i.e., not coreferent with any pre-
vious mention (Wiseman et al., 2015). Since the
data set only have annotations for mention clus-
ters, the end-to-end coreference resolution system
needs to detect mentions, detect anaphoricity, and
perform coreference linking. Therefore, research
questions still remain on good designs of the scor-
ing architecture and the learning strategy for both
mention detection and antecedent scoring given
only the gold cluster labels.

To this end, we propose to use a biaffine atten-
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Figure 1: Model architecture. We consider all text spans up to 10-word length as possible mentions. For
brevity, we only show three candidate antecedent spans (“Drug Emporium Inc.”, “Gary Wilber”, “was
named CEO”) for the current span “this drugstore chain”.

tion model instead of pure feed forward networks
to compute antecedent scores. Furthermore, in-
stead of training only to maximize the marginal
likelihood of gold antecedent spans, we jointly
optimize the mention detection accuracy and the
mention clustering log-likelihood given the men-
tion cluster labels. We optimize mention detection
loss explicitly to extract mentions and also per-
form anaphoricity detection.

We evaluate our model on the CoNLL-2012 En-
glish data set and achieve new state-of-the-art per-
formances of 67.8% F1 score using a single model
and 69.2% F1 score using a 5-model ensemble.

2 Task Formulation

In end-to-end coreference resolution, the input is
a document D with T words, and the output is a
set of mention clusters each of which refers to the
same entity. A possible span is an N-gram within
a single sentence. We consider all possible spans
up to a predefined maximum width. To impose
an ordering, spans are sorted by the start position
START(i) and then by the end position END(i).
For each span i the system needs to assign an an-
tecedent ai from all preceding spans or a dummy
antecedent ε: ai ∈ {ε, 1, . . . , i−1}. If a span j is a
true antecedent of the span i, then we have ai = j
and 1 ≤ j ≤ i−1. The dummy antecedent ε repre-
sents two possibilities: (1) the span i is not an en-
tity mention, or (2) the span i is an entity mention
but not coreferent with any previous span. Finally,
the system groups mentions according to corefer-
ence links to form the mention clusters.

3 Model

Figure 1 illustrates our model. We adopt the
same span representation approach as in Lee et al.
(2017) using bidirectional LSTMs and a head-
finding attention. Thereafter, a feed forward net-
work produces scores for spans being entity men-
tions. For antecedent scoring, we propose a bi-
affine attention model (Dozat and Manning, 2017)
to produce distributions of possible antecedents.
Our training data only provides gold mention clus-
ter labels. To make best use of this information,
we propose to jointly optimize the mention scor-
ing and antecedent scoring in our loss function.
Span Representation Suppose the current sen-
tence of lengthL is [w1, w2, . . . , wL], we use wt to
denote the concatenation of fixed pretrained word
embeddings and CNN character embeddings (dos
Santos and Zadrozny, 2014) for word wt. Bidi-
rectional LSTMs (Hochreiter and Schmidhuber,
1997) recurrently encode each wt:

−→
h t = LSTMforward(

−→
h t−1,wt)

←−
h t = LSTMbackward(

←−
h t+1,wt)

ht = [
−→
h t,
←−
h t]

(1)

Then, the head-finding attention computes a score
distribution over different words in a span si:

αt = vᵀ
αFFNNα(ht)

si,t =
exp(αt)

END(i)∑
k=START(i)

exp(αk)

whead-att
i =

END(i)∑
t=START(i)

si,twt

(2)
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where FFNN is a feed forward network outputting
a vector.

Effective span representations encode both con-
textual information and internal structure of spans.
Therefore, we concatenate different vectors, in-
cluding a feature vector φ(i) for the span size, to
produce the span representation si for si:

si = [hSTART(i),hEND(i),w
head-att
i , φ(i)] (3)

Mention Scoring The span representation is input
to a feed forward network which measures if it is
an entity mention using a score m(i):

m(i) = vᵀ
mFFNNm(si) (4)

Since we consider all possible spans, the num-
ber of spans is O(T 2) and the number of span
pairs is O(T 4). Due to computation efficiency, we
prune candidate spans during both inference and
training. We keep λT spans with highest mention
scores.
Biaffine Attention Antecedent Scoring Consider
the current span si and its previous spans sj (1 ≤
j ≤ i − 1), we propose to use a biaffine attention
model to produce scores c(i, j):

ŝi = FFNNanaphora(si)

ŝj = FFNNantecedent(sj), 1 ≤ j ≤ i− 1

c(i, j) = ŝᵀj Ubiŝi + vᵀ
biŝi

(5)

FFNNanaphora and FFNNantecedent reduce span rep-
resentation dimensions and only keep informa-
tion relevant to coreference decisions. Compared
with the traditional FFNN approach in Lee et al.
(2017), biaffine attention directly models both the
compatibility of si and sj by ŝᵀj Ubiŝi and the prior
likelihood of si having an antecedent by vᵀ

biŝi.
Inference The final coreference score s(i, j) for
span si and span sj consists of three terms: (1)
if si is a mention, (2) if sj is a mention, (3) if sj
is an antecedent for si. Furthermore, for dummy
antecedent ε, we fix the final score to be 0:

s(i, j) =

{
m(i) +m(j) + c(i, j), j 6= ε

0, j = ε
(6)

During inference, the model only creates a link if
the highest antecedent score is positive.
Joint Mention Detection and Mention Cluster
During training, only mention cluster labels are
available rather than antecedent links. Therefore,
Lee et al. (2017) train the model end-to-end by

maximizing the following marginal log-likelihood
where GOLD(i) are gold antecedents for si:

Lcluster(i) = log

∑
j′∈GOLD(i) exp(s(i, j

′))∑
j=ε,0,...,i−1 exp(s(i, j))

(7)

However, the initial pruning is completely ran-
dom and the mention scoring model only receives
distant supervision if we only optimize the above
mention cluster performance. This makes learning
slow and ineffective especially for mention detec-
tion. Based on this observation, we propose to di-
rectly optimize mention detection:

Ldetect(i) = yi log ŷi + (1− yi) log(1− ŷi) (8)

where ŷi = sigmoid(m(i)), yi = 1 if and only if
si is in one of the gold mention clusters. Our final
loss combines mention detection and clustering:

Lloss = −λdetect

N∑
i=1

Ldetect(i)−
N ′∑
i′=1

Lcluster(i
′)

where N is the number of all possible spans, N ′ is
the number of unpruned spans, and λdetection con-
trols weights of two terms.

4 Experiments

Data Set and Evaluation We evaluate our model
on the CoNLL-2012 Shared Task English data
(Pradhan et al., 2012) which is based on the
OntoNotes corpus (Hovy et al., 2006). It con-
tains 2,802/343/348 train/development/test docu-
ments in different genres.

We use three standard metrics: MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFφ4 (Luo, 2005). We report Precision, Recall,
F1 for each metric and the average F1 as the final
CoNLL score.
Implementation Details For fair comparisons, we
follow the same hyperparameters as in Lee et al.
(2017). We consider all spans up to 10 words
and up to 250 antecedents. λ = 0.4 is used
for span pruning. We use fixed concatenations
of 300-dimension GloVe (Pennington et al., 2014)
embeddings and 50-dimension embeddings from
Turian et al. (2010). Character CNNs use 8-
dimension learned embeddings and 50 kernels for
each window size in {3,4,5}. LSTMs have hidden
size 200, and each FFNN has two hidden layers
with 150 units and ReLU (Nair and Hinton, 2010)
activations. We include (speaker ID, document
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MUC B3 CEAFφ4

P R F1 P R F1 P R F1 Avg. F1
Our work (5-model ensemble) 82.1 73.6 77.6 73.1 62.0 67.1 67.5 59.0 62.9 69.2

Lee et al. (2017) (5-model ensemble) 81.2 73.6 77.2 72.3 61.7 66.6 65.2 60.2 62.6 68.8
Our work (single model) 79.4 73.8 76.5 69.0 62.3 65.5 64.9 58.3 61.4 67.8

Lee et al. (2017) (single model) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Clark and Manning (2016b) 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3

Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Wiseman et al. (2015) 76.2 69.3 72.6 66.2 55.8 60.5 59.4 54.9 57.1 63.4
Fernandes et al. (2014) 75.9 65.8 70.5 77.7 65.8 71.2 43.2 55.0 48.4 63.4

Clark and Manning (2015) 76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0
Martschat and Strube (2015) 76.7 68.1 72.2 66.1 54.2 59.6 59.5 52.3 55.7 62.5

Durrett and Klein (2014) 72.6 69.9 71.2 61.2 56.4 58.7 56.2 54.2 55.2 61.7
Björkelund and Kuhn (2014) 74.3 67.5 70.7 62.7 55.0 58.6 59.4 52.3 55.6 61.6

Durrett and Klein (2013) 72.9 65.9 69.2 63.6 52.5 57.5 54.3 54.4 54.3 60.3

Table 1: Experimental results on the CoNLL-2012 Englisth test set. The F1 improvements are statistical
significant with p < 0.05 under the paired bootstrap resample test (Koehn, 2004) compared with Lee
et al. (2017).

Avg. F1
Our model (single) 67.8
without mention detection loss 67.5
without biaffine attention 67.4
Lee et al. (2017) 67.3

Table 2: Ablation study on the development set.

genre, span distance, span width) features as 20-
dimensional learned embeddings. Word and char-
acter embeddings use 0.5 dropout. All hidden lay-
ers and feature embeddings use 0.2 dropout. The
batch size is 1 document. Based on the results
on the development set, λdetection = 0.1 works
best from {0.05, 0.1, 0.5, 1.0}. Model is trained
with ADAM optimizer (Kingma and Ba, 2015)
and converges in around 200K updates, which is
faster than that of Lee et al. (2017).
Overall Performance In Table 1, we compare our
model with previous state-of-the-art systems. We
obtain the best results in all F1 metrics. Our single
model achieves 67.8% F1 and our 5-model ensem-
ble achieves 69.2% F1. In particular, compared
with Lee et al. (2017), our improvement mainly
results from the precision scores. This indicates
that the mention detection loss does produce bet-
ter mention scores and the biaffine attention more
effectively determines if two spans are coreferent.
Ablation Study To understand the effect of dif-
ferent proposed components, we perform ablation
study on the development set. As shown in Table
2, removing the mention detection loss term or the
biaffine attention decreases 0.3/0.4 final F1 score,
but still higher than the baseline. This shows

Figure 2: Mention detection subtask on develop-
ment set. We plot accuracy and frequency break-
down by span widths.

that both components have contributions and when
they work together the total gain is even higher.
Mention Detection Subtask To further under-
stand our model, we perform a mention detection
subtask where spans with mention scores higher
than 0 are considered as mentions. We show the
mention detection accuracy breakdown by span
widths in Figure 2. Our model indeed performs
better thanks to the mention detection loss. The
advantage is even clearer for longer spans which
consist of 5 or more words.

In addition, it is important to note that our
model can detect mentions that do not exist in
the training data. While Moosavi and Strube
(2017) observe that there is a large overlap be-
tween the gold mentions of the training and dev
(test) sets, we find that our model can correctly de-
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tect 1048 mentions which are not detected by Lee
et al. (2017), consisting of 386 mentions existing
in training data and 662 mentions not existing in
training data. From those 662 mentions, some ex-
amples are (1) a suicide murder (2) Hong Kong Is-
land (3) a US Airforce jet carrying robotic under-
sea vehicles (4) the investigation into who was be-
hind the apparent suicide attack. This shows that
our mention loss helps detection by generalizing
to new mentions in test data rather than memoriz-
ing the existing mentions in training data.

5 Related Work

As summarized by Ng (2010), learning-based
coreference models can be categorized into three
types: (1) Mention-pair models train binary clas-
sifiers to determine if a pair of mentions are coref-
erent (Soon et al., 2001; Ng and Cardie, 2002;
Bengtson and Roth, 2008). (2) Mention-ranking
models explicitly rank all previous candidate men-
tions for the current mention and select a sin-
gle highest scoring antecedent for each anaphoric
mention (Denis and Baldridge, 2007b; Wiseman
et al., 2015; Clark and Manning, 2016a; Lee et al.,
2017). (3) Entity-mention models learn classifiers
to determine whether the current mention is coref-
erent with a preceding, partially-formed mention
cluster (Clark and Manning, 2015; Wiseman et al.,
2016; Clark and Manning, 2016b).

In addition, we also note latent-antecedent mod-
els (Fernandes et al., 2012; Björkelund and Kuhn,
2014; Martschat and Strube, 2015). Fernandes
et al. (2012) introduce coreference trees to repre-
sent mention clusters and learn to extract the max-
imum scoring tree in the graph of mentions.

Recently, several neural coreference resolution
systems have achieved impressive gains (Wiseman
et al., 2015, 2016; Clark and Manning, 2016b,a).
They utilize distributed representations of mention
pairs or mention clusters to dramatically reduce
the number of hand-crafted features. For exam-
ple, Wiseman et al. (2015) propose the first neural
coreference resolution system by training a deep
feed-forward neural network for mention ranking.
However, these models still employ the two-stage
pipeline and require a syntactic parser or a sepa-
rate designed hand-engineered mention detector.

Finally, we also note the relevant work on
joint mention detection and coreference resolu-
tion. Daumé III and Marcu (2005) propose to
model both mention detection and coreference of

the Entity Detection and Tracking task simultane-
ously. Denis and Baldridge (2007a) propose to use
integer linear programming framework to model
anaphoricity and coreference as a joint task.

6 Conclusion

In this paper, we propose to use a biaffine attention
model to jointly optimize mention detection and
mention clustering in the end-to-end neural coref-
erence resolver. Our model achieves the state-of-
the-art performance on the CoNLL-2012 Shared
Task in English.
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