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Abstract

Topical PageRank (TPR) uses latent topic
distribution inferred by Latent Dirichlet
Allocation (LDA) to perform ranking of
noun phrases extracted from documents.
The ranking procedure consists of running
PageRank K times, where K is the num-
ber of topics used in the LDA model. In
this paper, we propose a modification of
TPR, called Salience Rank. Salience Rank
only needs to run PageRank once and ex-
tracts comparable or better keyphrases on
benchmark datasets. In addition to quality
and efficiency benefits, our method has the
flexibility to extract keyphrases with vary-
ing tradeoffs between topic specificity and
corpus specificity.

1 Introduction

Automatic keyphrase extraction consists of find-
ing a set of terms in a document that provides a
concise summary of the text content (Hasan and
Ng, 2014). In this paper we consider unsuper-
vised keyphrase extraction, where no human la-
beled corpus of documents is used for training
a classifier (Grineva et al., 2009; Pasquier, 2010;
Liu et al., 2009b; Zhao et al., 2011; Liu et al.,
2009a). This is a scenario often arising in practical
applications as human annotation and tagging is
both time and resource consuming. Unsupervised
keyphrase extraction is typically casted as a rank-
ing problem – first, candidate phrases are extracted
from documents, typically noun phrases identi-
fied by part-of-speech tagging; then these candi-
dates are ranked. The performance of unsuper-
vised keyphrase extraction algorithms is evaluated
by comparing the most highly ranked keyphrases
with keyphrases assigned by annotators.

∗ Work done as an intern at Amazon.

This paper proposes Salience Rank, a modifica-
tion of Topical PageRank algorithm by Liu et al.
(2010). Our method is close in spirit to Single
Topical PageRank by Sterckx et al. (2015) and
includes it as a special case. The advantages of
Salience Rank are twofold:
Performance: The algorithm extracts high-
quality keyphrases that are comparable to, and
sometimes better than, the ones extracted by Top-
ical PageRank. Salience Rank is more efficient
than Topical PageRank as it runs PageRank once,
rather than multiple times.
Configurability: The algorithm is based on the
concept of “word salience” (hence its name),
which is described in Section 3 and can be used
to balance topic specificity and corpus specificity
of the extracted keyphrases. Depending on the use
case, the output of the Salience Rank algorithm
can be tuned accordingly.

2 Review of Related Models

Below we introduce some notation and discuss ap-
proaches that are most related to ours.

Let W = {w1, w2, . . . , wN} be the set of all
the words present in a corpus of documents. Let
G = (W,E) denote a word graph, whose vertices
represent words and an edge e(wi, wj) ∈ E in-
dicates the relatedness between words wi and wj

in a document (measured, e.g., by co-occurrence
or number of co-occurrences between the two
words). The outdegree of vertex wi is given by
Out(wi) =

∑
i:wi→wj

e(wi, wj).

2.1 Topical PageRank
The main idea behind Topical PageRank (TPR)
(Liu et al., 2010) is to incorporate topical infor-
mation by performing Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) on a corpus of docu-
ments. TPR constructs a word graph G = (W,E)
based on the word co-occurrences within docu-
ments. It uses LDA to find the latent topics of the

530

https://doi.org/10.18653/v1/P17-2084
https://doi.org/10.18653/v1/P17-2084


document, reweighs the word graph according to
each latent topic, and runs PageRank (Page et al.,
1998) once per topic.

In LDA each word w of a document d is as-
sumed to be generated by first sampling a topic
t ∈ T (where T is a set ofK topics) from d’s topic
distribution θd and then sampling a word from the
distribution over words φt of topic t. Both θd and
φt are drawn from conjugate Dirichlet priors α and
β, respectively. Thus, the probability of word w,
given document d and the priors α and β, is

p(w | d, α, β) =
∑

t∈T
p(w | t, β) p(t | d, α) . (1)

After running LDA, TPR ranks each word wi ∈
W of G by

Rt(wi) = λ
∑

j:wj→wi

e(wi, wj)

Out(wj)
Rt(wj) + (1−λ)p(t |wi) ,

(2)

for t ∈ T , where p(t |w) is estimated via LDA.
TPR assigns a topic specific preference value

p(t |w) to each w ∈ W as the jump probability
at each vertex depending on the underlying topic.
Intuitively, p(t |w) indicates how much the word
w focuses on topic t.1

At the next step of TPR, the word scores (2) are
accumulated into keyphrase scores. In particular,
for each topic t, a candidate keyphrase is ranked
by the sum of the word scores

Rt(phrase) =
∑

wi∈phrase

Rt(wi) . (3)

By combining the topic specific keyphrase scores
Rt(phrase) with the probability p(t | d) derived
from the LDA we can compute the final keyphrase
scores across all K topics:

R(phrase) =
∑

t∈T
Rt(phrase) p(t | d) . (4)

2.2 Single Topical PageRank
Single Topical PageRank (STPR) was recently
proposed by Sterckx et al. (2015). It aims
to reduce the runtime complexity of TPR and
at the same time maintain its predictive perfor-
mance. Similar to Salience Rank, it runs PageR-
ank once. STPR is based on the idea of “top-
ical word importance” TWI (w), which is de-
fined as the cosine similarity between the vector of

1Liu et al. (2010) proposed two other quantities to bias
the random walk, p(w | t) and p(w | t)p(t |w), and showed
that p(t |w) achieves the best empirical result. We therefore
adopt the use of p(t |w) here.

word-topic probabilities [p(w | t1), . . . , p(w | tK)]
and the vector of document-topic probabilities
[p(t1 | d), . . . , p(tK | d)], for each word w given
the document d. STPR then uses PageRank to rank
each word wi ∈ W by replacing p(t |wi) in (2)
with TWI (wi)∑

wk∈W TWI (wk)
.

STPR can be seen as a special case of Salience
Rank, where topic specificity of a word is consid-
ered when constructing the random walk, but cor-
pus specificity is neglected. In practice, however,
balancing these two concepts is important. It may
explain why Salience Rank outperforms STPR in
our experiments.

3 Salience Rank

In order to achieve performance and configurabil-
ity, the Salience Rank (SR) algorithm combines
the K latent topics estimated by LDA into a word
metric, called word salience, and uses it as a pref-
erence value for each wi ∈ W . Thus, SR needs
to perform only a single run of PageRank on the
word graph G in order to obtain a ranking of the
words in each document.

3.1 Word Salience
In the following we provide quantitative measures
for topic specificity and corpus specificity, and de-
fine word salience.

Definition 3.1 The topic specificity of a word w is

TS (w) =
∑

t∈T
p(t |w) log p(t |w)

p(t)

= KL (p(t |w) ‖ p(t)) .
(5)

The definition of topic specificity of a word w
is equivalent to Chuang et al. (2012)’s proposal
of the distinctiveness of a word w, which is in
turn equivalent to the Kullback-Leibler (KL) di-
vergence from the marginal probability p(t), i.e.,
the likelihood that any randomly selected word is
generated by topic t, to the conditional probability
p(t |w), i.e., the likelihood that an observed word
w is generated by a latent topic t. Intuitively, topic
specificity measures how much a word is shared
across topics: The less w is shared across topics,
the higher its topic specificity TS (w).

As TS (w) is non-negative and unbounded, we
can empirically normalize it to [0, 1] by

TS (w)−minuTS (u)

maxuTS (u)−minuTS (u)
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with the minimum and maximum topic specificity
values in the corpus. In what follows, we always
use normalized topic specificity values, unless ex-
plicitly stated otherwise.

We apply a straightforward definition for corpus
specificity.

Definition 3.2 The corpus specificity of a word w
is

CS (w) = p(w | corpus) . (6)

The corpus specificity CS (w) of a word w can be
estimated by counting word frequencies in the cor-
pus of interest. Finally, a word’s salience is de-
fined as a linear combination of its topic specificity
and corpus specificity.

Definition 3.3 The salience of a word w is

S(w) = (1− α)CS (w) + αTS (w) , (7)

where α ∈ [0, 1] is a parameter controlling the
tradeoff between the corpus specificity and the
topic specificity of w.

On one hand, we aim to extract keyphrases that
are relevant to one or more topics while, on the
other hand, the extracted keyphrases as a whole
should have a good coverage of the topics in the
document. Depending on the downstream appli-
cations, it is often useful to be able to control the
balance between these two competing principles.
In other words, sometimes keyphrases with high
topic specificity (i.e., phrases that are representa-
tive exclusively for certain topics) are more appro-
priate, while other times keyphrases with high cor-
pus specificity (i.e., phrases that are representative
of the corpus as a whole) are more appropriate. In-
tuitively, it is advantageous for a keyphrase extrac-
tion algorithm to have an internal “switch” tun-
ing the extent to which extracted keyphrases are
skewed towards particular topics and, conversely,
the extent to which keyphrases generalize across
different topics.

It needs to be emphasized that the choice of
quantitative measures for topic specificity and cor-
pus specificity used above is just one among many
possibilities. For example, for topic specificity,
one can make use of the topical word impor-
tance by Sterckx et al. (2015), or the several
other alternatives mentioned in Section 2.1 pro-
posed by Liu et al. (2010). For corpus speci-
ficity, alternatives besides vanilla term frequen-
cies, such as augmented frequency (to discount

longer documents) and logarithmically scaled fre-
quency, quickly come into mind.

Taking word salience into account, we modify
(2) as follow:

R(wi) = λ
∑

j:wj→wi

e(wj , wi)

Out(wj)
R(wj) + (1− λ)S(wi) .

(8)

The substantial efficiency boost of SR comparing
to TPR lies in the fact that in (2) K PageRanks are
required to calculate Rt(wi), t = 1 . . .K before
obtaining R(wi), while in (8) R(wi) is obtained
with a single PageRank.

3.2 Algorithm Description

First, SR performs LDA to estimate the latent top-
ics p(t) presented in the corpus and the probabil-
ity p(t |w), which are used to calculate the topic
specificity and the salience of each word w.

Similarly to TPR, SR is performed on the word
co-occurrence graph G = (W,E). We use undi-
rected graphs: When sliding a window of size s
through the document, a link between two vertices
is added if these two words appear within the win-
dow. It was our observation that the edge direction
does not affect the keyphrase extraction perfor-
mance much. The same observation was noted by
Mihalcea and Tarau (2004) and Liu et al. (2010).

We then run the updated version of PageRank
derived in (8) and compute the scores of the can-
didate keyphrases similarly to the way TPR does
using (4). For a fair comparison, noun phrases
with the pattern (adjective)*(noun)+ are
chosen as candidate keyphrases, which represents
zero or more adjectives followed by one or more
nouns. It is the same pattern suggested by Liu et al.
(2010) in the original TPR paper. SR combines the
K PageRank runs in TPR into a single one using
salience as a preference value in the word graph.

4 Results

Our experiments are conducted on two widely
used datasets in the keyphrase extraction litera-
ture, 500N-KPCrowd (Marujo et al., 2013) and In-
spec (Hulth, 2003). The 500N-KPCrowd dataset
consists of 500 news articles, 50 stories for
each of 10 categories, manually annotated with
keyphrases by 20 Amazon Mechanical Turk work-
ers. The Inspec dataset is a collection of 2000
paper abstracts of Computer Science & Informa-
tion Technology journal with manually assigned
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dataset algorithm precision recall F measure

500N-KPCrowd
TPR 0.254 0.222 0.229 (±0.010)
STPR 0.252 0.221 0.228 (±0.011)
SR 0.253 0.222 0.229 (±0.010)

Inspec
TPR 0.225 0.255 0.227 (±0.007)
STPR 0.222 0.254 0.224 (±0.007)
SR 0.265 0.298 0.266 (±0.007)

Table 1: Comparison of the algorithms on 500N-KPCrowd and Inspec. On both datasets, TPR, STPR and
SR were run with 50 LDA topics. In all experiments we used a damping factor λ = 0.85 in PageRank,
as in the original PageRank algorithm, and a window size s = 2 to construct the word graphs. Changing
the window size s from 2 to 20 does not influence the results much, as also observed in Liu et al. (2010).
The convergence of PageRank is achieved when the l2 norm of the vector containing R(wi) changes
smaller than 10−6. The tradeoff parameter α in SR is fixed at 0.4. The 95% confidence interval for the F
measure is shown in the last column.

# topics precision recall F measure
5 0.249 0.218 0.225 (±0.011)

50 0.253 0.222 0.229 (±0.010)
250 0.247 0.216 0.223 (±0.011)
500 0.247 0.216 0.223 (±0.011)

Table 2: Effect of the number of LDA topics when
the top 50 keyphrases were used for evaluating SR
on 500N-KPCrowd. The 95% confidence interval
for the F measure is shown in the last column.

keyphrases by the authors. Following the eval-
uation process described in Mihalcea and Tarau
(2004), we use only the uncontrolled set of anno-
tated keyphrases for our analysis. Since our ap-
proach is completely unsupervised, we combine
the training, testing, and validation datasets. Top
50 and 10 keyphrases were used for evaluation on
500N-KPCrowd and Inspec, respectively.2

We compare the performance of Salience Rank
(SR), Topical PageRank (TPR), and Single Top-
ical PageRank (STPR) in terms of precision, re-
call and F measure on 500N-KPCrowd and Inspec.
The results are summarized in Table 1. Details on
parametrization are given in the caption. In terms
of the F measure, SR achieves the best results on
both datasets. It ties TPR and outperforms STPR
on 500N-KPCrowd, and outperforms both TPR
and STPR on Inspec. The source code is avail-
able at https://github.com/methanet/
saliencerank.git.

We further experiment with varying the num-

2There are two common ways to set the number of output
keyphrases: using a fixed value a priori as we do (Turney,
1999) or deciding a value with heuristics at runtime (Mihal-
cea and Tarau, 2004).

α precision recall F measure
1.0 0.247 0.216 0.223 (±0.011)
0.7 0.248 0.216 0.223 (±0.011)
0.4 0.248 0.217 0.224 (±0.011)
0.1 0.254 0.222 0.229 (±0.010)
0.0 0.248 0.217 0.224 (±0.011)

Table 3: Effect of the α parameter in SR on 500N-
KPCrowd. SR was run with 50 LDA topics and
the top 50 keyphrases were used for the evaluation.
The 95% confidence interval for the F measure is
shown in the last column.

ber of topics K used for fitting the LDA model
in SR. Table 2 shows how the F measures change
on 500N-KPCrowd as the number of topics varies.
Overall, the impact of topic size is mild, with
K = 50 being the optimal value. The impact ofK
on TPR can be found in Liu et al. (2010). In our
approach, the random walk derived in (8) depends
on the word salience, which in turn depends onK;
In TPR, not only the individual random walk (2)
depends on K, but the final aggregation of rank-
ings of keyphrases also depends on K.

We also experiment with varying the tradeoff
parameter α of SR. With 500N-KPCrowd, Table 3
illustrates that different α can have a considerable
impact on various performance measures. To com-
plement the quantitative results in Table 3, Table 4
presents a concrete example, showing that vary-
ing α can lead to qualitative changes in the top
ranked keyphrases. In particular, when α = 0
the corpus specificity of the keyphrases SR ex-
tracts is high. This is demonstrated by the fact that
words such as “theory” and “function” are among
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Input: Individual rationality, or doing what is best for oneself, is a standard model used to ex-
plain and predict human behavior, and von Neumann-Morgenstern game theory is the classi-
cal mathematical formalization of this theory in multiple-agent settings. Individual rationality,
however, is an inadequate model for the synthesis of artificial social systems where cooper-
ation is essential, since it does not permit the accommodation of group interests other than
as aggregations of individual interests. Satisficing game theory is based upon a well-defined
notion of being good enough, and does accommodate group as well as individual interests
through the use of conditional preference relationships, whereby a decision maker is able to
adjust its preferences as a function of the preferences, and not just the options, of others. This
new theory is offered as an alternative paradigm to construct artificial societies that are capable
of complex behavior that goes beyond exclusive self interest.

Unique top keyphrases with α = 0 :α = 0 :α = 0 : Unique top keyphrases with α = 1 :α = 1 :α = 1 :
classical mathematical formalization individual interests
preferences group interests
theory artificial social systems
options individual rationality
function conditional preference relationships
multiple agent settings standard model

Table 4: An example of running SR on an Inspec abstract with a minimum and maximum value of α.
Unique keyphrases among the top 10 are shown.

the top keyphrases SR selects, which are highly
common words in scientific papers. On the other
hand, when α = 1 these keyphrases are not pre-
sented among the top. This toy example illustrates
the relevance of balancing topic and corpus speci-
ficity in practice: When presenting the keyphrases
to a layman, high corpus specificity is suitable as
it conveys more high-level information; when pre-
senting to an expert in the area, high topic speci-
ficity is suitable as it dives deeper into topic spe-
cific details.

5 Conclusions & Remarks

In this paper, we propose a new keyphrase extrac-
tion method, called Salience Rank. It improves
upon the Topical PageRank algorithm by Liu et al.
(2010) and the Single Topical PageRank algorithm
by Sterckx et al. (2015). The key advantages of
this new method are twofold: (i) While maintain-
ing and sometimes improving the quality of ex-
tracted keyphrases, it only runs PageRank once
instead of K times as in Topical PageRank, there-
fore leads to lower runtime; (ii) By constructing
the underlying word graph with newly proposed
word salience, it allows the user to balance topic
and corpus specificity of the extracted keyphrases.

These three methods rely only on the input cor-

pus. They can be benefited by external resources
like Wikipedia and WordNet, as indicated by, e.g.,
Medelyan et al. (2009), Grineva et al. (2009),
Martinez-Romo et al. (2016).

In the keyphrase extraction literature, LDA is
the most commonly used topic modeling method.
Other methods, such as probabilistic latent seman-
tic indexing (Hofmann, 1999), nonnegative matrix
factorization (Sra and Inderjit, 2006), are viable
alternatives. However, it is hard to tell in general
if the keyphrase quality improves with these alter-
natives. We suspect that strongly depends on the
domain of the dataset and a choice may be made
depending on other practical considerations.

We have fixed the tradeoff parameter α through-
out the experiments for a straightforward compar-
ison to other methods. In practice, one should
search the optimal value of α for the task at hand.
An open question is how to theoretically quan-
tify the relationship between α and various per-
formance measures, such as the F measure.
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