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Abstract

The large and growing amounts of online
scholarly data present both challenges and
opportunities to enhance knowledge dis-
covery. One such challenge is to auto-
matically extract a small set of keyphrases
from a document that can accurately de-
scribe the document’s content and can fa-
cilitate fast information processing. In
this paper, we propose PositionRank, an
unsupervised model for keyphrase extrac-
tion from scholarly documents that incor-
porates information from all positions of a
word’s occurrences into a biased PageR-
ank. Our model obtains remarkable im-
provements in performance over PageR-
ank models that do not take into account
word positions as well as over strong base-
lines for this task. Specifically, on several
datasets of research papers, PositionRank
achieves improvements as high as 29.09%.

1 Introduction

The current Scholarly Web contains many millions
of scientific documents. For example, Google
Scholar is estimated to have more than 100 million
documents. On one hand, these rapidly-growing
scholarly document collections offer benefits for
knowledge discovery, and on the other hand, find-
ing useful information has become very challeng-
ing. Keyphrases associated with a document typi-
cally provide a high-level topic description of the
document and can allow for efficient information
processing. In addition, keyphrases are shown
to be rich sources of information in many natu-
ral language processing and information retrieval
tasks such as scientific paper summarization, clas-
sification, recommendation, clustering, and search
(Abu-Jbara and Radev, 2011; Qazvinian et al.,

2010; Jones and Staveley, 1999; Zha, 2002; Zhang
et al., 2004; Hammouda et al., 2005). Due to their
importance, many approaches to keyphrase extrac-
tion have been proposed in the literature along two
lines of research: supervised and unsupervised
(Hasan and Ng, 2014, 2010).

In the supervised line of research, keyphrase
extraction is formulated as a binary classification
problem, where candidate phrases are classified as
either positive (i.e., keyphrases) or negative (i.e.,
non-keyphrases) (Frank et al., 1999; Hulth, 2003).
Various feature sets and classification algorithms
yield different extraction systems. For example,
Frank et al. (1999) developed a system that ex-
tracts two features for each candidate phrase, i.e.,
the tf-idf of the phrase and its distance from the be-
ginning of the target document, and uses them as
input to Naı̈ve Bayes classifiers. Although super-
vised approaches typically perform better than un-
supervised approaches (Kim et al., 2013), the re-
quirement for large human-annotated corpora for
each field of study has led to significant attention
towards the design of unsupervised approaches.

In the unsupervised line of research, keyphrase
extraction is formulated as a ranking problem with
graph-based ranking techniques being considered
state-of-the-art (Hasan and Ng, 2014). These
graph-based techniques construct a word graph
from each target document, such that nodes cor-
respond to words and edges correspond to word
association patterns. Nodes are then ranked us-
ing graph centrality measures such as PageRank
(Mihalcea and Tarau, 2004; Liu et al., 2010) or
HITS (Litvak and Last, 2008), and the top ranked
phrases are returned as keyphrases. Since their
introduction, many graph-based extensions have
been proposed, which aim at modeling various
types of information. For example, Wan and Xiao
(2008) proposed a model that incorporates a local
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Factorizing Personalized Markov Chains for Next-Basket Recommendation
by Steffen Rendle, Christoph Freudenthaler and Lars Schmidt-Thieme
Recommender systems are an important component of many websites. Two of the most popular ap-
proaches are based on matrix factorization (MF) and Markov chains (MC). MF methods learn the
general taste of a user by factorizing the matrix over observed user-item preferences. [...] we present
a method bringing both approaches together. Our method is based on personalized transition graphs
over underlying Markov chains. [...] our factorized personalized MC (FPMC) model subsumes both
a common Markov chain and the normal matrix factorization model. [...] we introduce an adaption
of the Bayesian Personalized Ranking (BPR) framework for sequential basket data. [...]

Author-input keyphrases: Basket Recommendation, Markov Chain, Matrix Factorization

Figure 1: The title and abstract of a WWW paper by Rendle et al. (2010) and the author-input keyphrases
for the paper. Red bold phrases represent the gold-standard keyphrases for the document.

neighborhood of the target document correspond-
ing to its textually-similar documents, computed
using the cosine similarity between the tf-idf vec-
tors of documents. Liu et al. (2010) assumed a
mixture of topics over documents and proposed
to use topic models to decompose these topics in
order to select keyphrases from all major topics.
Keyphrases are then ranked by aggregating the
topic-specific scores obtained from several topic-
biased PageRanks. We posit that other information
can be leveraged that has the potential to improve
unsupervised keyphrase extraction.

For example, in a scholarly domain, keyphrases
generally occur on positions very close to the be-
ginning of a document and occur frequently. Fig-
ure 1 shows an anecdotal example illustrating this
behavior using the 2010 best paper award win-
ner in the World Wide Web conference. The au-
thor input keyphrases are marked with red bold in
the figure. Notice in this example the high fre-
quency of the keyphrase “Markov chain” that oc-
curs very early in the document (even from its ti-
tle). Hence, can we design an effective unsuper-
vised approach to keyphrase extraction by jointly
exploiting words’ position information and their
frequency in documents? We specifically address
this question using research papers as a case study.
The result of this extraction task will aid indexing
of documents in digital libraries, and hence, will
lead to improved organization, search, retrieval,
and recommendation of scientific documents. The
importance of keyphrase extraction from research
papers is also emphasized by the SemEval Shared
Tasks on this topic from 20171 and 2010 (Kim
et al., 2010). Our contributions are as follows:

1http://alt.qcri.org/semeval2017/task10/

• We propose an unsupervised graph-based
model, called PositionRank, that incorporates
information from all positions of a word’s oc-
currences into a biased PageRank to score
keywords that are later used to score and rank
keyphrases in research papers.

• We show that PositionRank that aggregates
information from all positions of a word’s oc-
currences performs better than a model that
uses only the first position of a word.

• We experimentally evaluate PositionRank on
three datasets of research papers and show
statistically significant improvements over
PageRank-based models that do not take into
account word positions, as well as over strong
baselines for keyphrase extraction.

The rest of the paper is organized as follows. We
summarize related work in the next section. Po-
sitionRank is described in Section 3. We then
present the datasets of research papers, and our
experiments and results in Section 4. Finally, we
conclude the paper in Section 5.

2 Related Work

Many supervised and unsupervised approaches to
keyphrase extraction have been proposed in the lit-
erature (Hasan and Ng, 2014).

Supervised approaches use annotated docu-
ments with “correct” keyphrases to train clas-
sifiers for discriminating keyphrases from non-
keyphrases for a document. KEA (Frank et al.,
1999) and GenEx (Turney, 2000) are two repre-
sentative supervised approaches with the most im-
portant features being the frequency and the po-
sition of a phrase in a target document. Hulth
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(2003) used a combination of lexical and syn-
tactic features such as the collection frequency
and the part-of-speech tag of a phrase in conjunc-
tion with a bagging technique. Nguyen and Kan
(2007) extended KEA to include features such as
the distribution of candidate phrases in different
sections of a research paper, and the acronym sta-
tus of a phrase. In a different work, Medelyan et
al. (2009) extended KEA to integrate information
from Wikipedia. Lopez and Romary (2010) used
bagged decision trees learned from a combination
of features including structural features (e.g., the
presence of a phrase in particular sections of a
document) and lexical features (e.g., the presence
of a candidate phrase in WordNet or Wikipedia).
Chuang et al. (2012) proposed a model that in-
corporates a set of statistical and linguistic fea-
tures (e.g., tf-idf, BM25, part-of-speech filters) for
identifying descriptive terms in a text. Caragea et
al. (2014a) designed features based on informa-
tion available in a document network (such as a
citation network) and used them with traditional
features in a supervised framework.

In unsupervised approaches, various measures
such as tf-idf and topic proportions are used to
score words, which are later aggregated to ob-
tain scores for phrases (Barker and Cornacchia,
2000; Zhang et al., 2007; Liu et al., 2009). The
ranking based on tf-idf has been shown to work
well in practice (Hasan and Ng, 2014, 2010), de-
spite its simplicity. Graph-based ranking meth-
ods and centrality measures are considered state-
of-the-art for unsupervised keyphrase extraction.
Mihalcea and Tarau (2004) proposed TextRank for
scoring keyphrases by applying PageRank on a
word graph built from adjacent words within a
document. Wan and Xiao (2008) extended Tex-
tRank to SingleRank by adding weighted edges
between words that co-occur in a window of vari-
able size w ≥ 2. Textually-similar neighboring
documents are included in ExpandRank (Wan and
Xiao, 2008) to compute more accurate word co-
occurrence information. Gollapalli and Caragea
(2014) extended ExpandRank to integrate infor-
mation from citation networks where papers cite
one another.

Lahiri et al. (2014) extracted keyphrases from
documents using various centrality measures such
as node degree, clustering coefficient and close-
ness. Martinez-Romo et al. (2016) used informa-
tion from WordNet to enrich the semantic relation-
ships between the words in the graph.

Several unsupervised approaches leverage word
clustering techniques such as first grouping can-
didate words into topics and then, extracting one
representative keyphrase from each topic (Liu
et al., 2009; Bougouin et al., 2013). Liu et al.
(2010) extended topic-biased PageRank (Haveli-
wala, 2003) to kephrase extraction. In particular,
they decomposed a document into multiple topics,
using topic models, and applied a separate topic-
biased PageRank for each topic. The PageRank
scores from each topic were then combined into
a single score, using as weights the topic propor-
tions returned by topic models for the document.

The best performing keyphrase extraction sys-
tem in SemEval 2010 (El-Beltagy and Rafea,
2010) used statistical observations such as term
frequencies to filter out phrases that are unlikely
to be keyphrases. More precisely, thresholding
on the frequency of phrases is applied, where the
thresholds are estimated from the data. The candi-
date phrases are then ranked using the tf-idf model
in conjunction with a boosting factor which aims
at reducing the bias towards single word terms.
Danesh et al. (2015) computed an initial weight
for each phrase based on a combination of sta-
tistical heuristics such as the tf-idf score and the
first position of a phrase in a document. Phrases
and their initial weights are then incorporated into
a graph-based algorithm which produces the final
ranking of keyphrase candidates. Le et al. (2016)
showed that the extraction of keyphrases from a
document can benefit from considering candidate
phrases with part of speech tags other than nouns
or adjectives. Adar and Datta (2015) extracted
keyphrases by mining abbreviations from scien-
tific literature and built a semantically hierarchi-
cal keyphrase database. Word embedding vectors
were also employed to measure the relatedness be-
tween words in graph based models (Wang et al.,
2014). Many of the above approaches, both su-
pervised and unsupervised, are compared and an-
alyzed in the ACL survey on keyphrase extraction
by Hasan and Ng (2014).

In contrast to the above approaches, we pro-
pose PositionRank, aimed at capturing both highly
frequent words or phrases and their position in a
document. Despite that the relative position of a
word in a document is shown to be a very effective
feature in supervised keyphrase extraction (Hulth,
2003; Zhang et al., 2007), to our knowledge, the
position information has not been used before in
unsupervised methods. The strong contribution of
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this paper is the design of a position-biased PageR-
ank model that successfully incorporates all posi-
tions of a word’s occurrences, which is different
from supervised models that use only the first po-
sition of a word. Our model assigns higher proba-
bilities to words found early on in a document in-
stead of using a uniform distribution over words.

3 Proposed Model

In this section, we describe PositionRank, our
fully unsupervised, graph-based model, that si-
multaneously incorporates the position of words
and their frequency in a document to compute a
biased PageRank score for each candidate word.
Graph-based ranking algorithms such as PageR-
ank (Page et al., 1998) measure the importance
of a vertex within a graph by taking into account
global information computed recursively from the
entire graph. For each word, we compute a weight
by aggregating information from all positions of
the word’s occurrences. This weight is then incor-
porated into a biased PageRank algorithm in order
to assign a different “preference” to each word.

3.1 PositionRank

The PositionRank algorithm involves three essen-
tial steps: (1) the graph construction at word level;
(2) the design of Position-Biased PageRank; and
(3) the formation of candidate phrases. These
steps are detailed below.

3.1.1 Graph Construction
Let d be a target document for extracting
keyphrases. We first apply the part-of-speech filter
using the NLP Stanford toolkit and then select as
candidate words only nouns and adjectives, simi-
lar to previous works (Mihalcea and Tarau, 2004;
Wan and Xiao, 2008). We build a word graph
G = (V,E) for d such that each unique word
that passes the part-of-speech filter corresponds
to a node in G. Two nodes vi and vj are con-
nected by an edge (vi, vj) ∈ E if the words cor-
responding to these nodes co-occur within a win-
dow of w contiguous tokens in the content of d.
The weight of an edge (vi, vj) ∈ E is computed
based on the co-occurrence count of the two words
within a window ofw successive tokens in d. Note
that the graph can be constructed both directed and
undirected. However, Mihalcea and Tarau (2004)
showed that the type of graph used to represent
the text does not significantly influence the per-

formance of keyphrase extraction. Hence, in this
work, we build undirected graphs.

3.1.2 Position-Biased PageRank
Formally, letG be an undirected graph constructed
as above and let M be its adjacency matrix. An
element mij ∈ M is set to the weight of edge
(vi, vj) if there exist an edge between nodes vi
and vj , and is set to 0 otherwise. The PageRank
score of a node vi is recursively computed by sum-
ming the normalized scores of nodes vj , which are
linked to vi (as explained below).

Let S denote the vector of PageRank scores, for
all vi ∈ V . The initial values of S are set to 1

|V | .
The PageRank score of each node at step t+1, can
then be computed recursively using:

S(t+ 1) = M̃ · S(t) (1)

where M̃ is the normalized form of matrixM with
m̃ij ∈ M̃ defined as:

m̃ij =

{
mij/

∑|V |
j=1mij if

∑|V |
j=1mij 6= 0

0 otherwise

The PageRank computation can be seen as a
Markov Chain process in which nodes represent
states and the links between them are the transi-
tions. By recursively applying Eq. (1), we ob-
tain the principal eigenvector, which represents the
stationary probability distribution of each state, in
our case of each node (Manning et al., 2008).

To ensure that the PageRank (or the random
walk) does not get stuck into cycles of the graph, a
damping factor α is added to allow the “teleport”
operation to another node in the graph. Hence, the
computation of S becomes:

S = α · M̃ · S + (1− α) · p̃ (2)

where S is the principal eigenvector and p̃ is a vec-
tor of length |V | with all elements 1

|V | . The vector
p̃ indicates that, being in a node vi, the random
walk can jump to any other node in the graph with
equal probability.

By biasing p̃, the random walk would prefer
nodes that have higher probability in the graph
(Haveliwala, 2003).

The idea of PositionRank is to assign larger
weights (or probabilities) to words that are found
early in a document and are frequent. Specifically,
we want to assign a higher probability to a word
found on the 2nd position as compared to a word
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found on the 50th position in the same document.
We weigh each candidate word with its inverse po-
sition in the document before any filters are ap-
plied. If the same word appears multiple times in
the target document, then we sum all its position
weights. For example, if a word is found on the
following positions: 2nd, 5th and 10th, its weight
is: 1

2 + 1
5 + 1

10 = 4
5 = 0.8. Summing up the posi-

tion weights for a given word aims to grant more
confidence to frequently occurring words by tak-
ing into account the position weight of each occur-
rence. Then, the vector p̃ is set to the normalized
weights for each candidate word as follows:

p̃ =
[

p1
p1+p2+...+p|V |

, p2
p1+p2+...+p|V |

, ...,
p|V |

p1+p2+...+p|V |

]

The PageRank score of a vertex vi, i.e., S(vi),
can be obtained in an algebraic way by recursively
computing the following equation:

S(vi) = (1− α) · p̃i + α ·
∑

vj∈Adj(vi)

wji

O(vj)
S(vj)

where O(vj) =
∑

vk∈Adj(vj)
wjk and p̃i is the

weight found in the vector p̃ for vertex vi.
In our experiments, the words’ PageRank scores

are recursively computed until the difference be-
tween two consecutive iterations is less than 0.001
or a number of 100 iterations is reached.

3.1.3 Forming Candidate Phrases
Candidate words that have contiguous positions
in a document are concatenated into phrases.
We consider noun phrases that match the regu-
lar expression (adjective)*(noun)+, of length up to
three, (i.e., unigrams, bigrams, and trigrams).

Finally, phrases are scored by using the sum
of scores of individual words that comprise the
phrase (Wan and Xiao, 2008). The top-scoring
phrases are output as predictions (i.e., the pre-
dicted keyphrases for the document).

4 Experiments and Results

4.1 Datasets and Evaluation Metrics

In order to evaluate the performance of Posi-
tionRank, we carried out experiments on three
datasets. The first and second datasets were
made available by Gollapalli and Caragea (2014).2

These datasets are compiled from the CiteSeerX
digital library (Giles et al., 1998) and consist of

2http://www.cse.unt.edu/∼ccaragea/keyphrases.html

research papers from the ACM Conference on
Knowledge Discovery and Data Mining (KDD)
and the World Wide Web Conference (WWW).
The third dataset was made available by Nguyen
and Kan (2007) and consist of research papers
from various disciplines. In experiments, we
use the title and abstract of each paper to ex-
tract keyphrases. The author-input keyphrases are
used as gold-standard for evaluation. All three
datasets are summarized in Table 1, which shows
the number of papers in each dataset, the total
number of keyphrases (Kp), the average number
of keyphrases per document (AvgKp), and a brief
insight into the length and number of available
keyphrases.

Evaluation Metrics. We use mean reciprocal
rank (MRR) curves to illustrate our experimental
findings. MRR gives the averaged ranking of the
first correct prediction and is defined as:

MRR = 1
|D|

∑
d∈D

1
rd

where D is the collection of documents and rd
is the rank at which the first correct keyphrase
of document d was found. We also summarize
the results in terms of Precision, Recall, and F1-
score in a table to contrast PositionRank with pre-
vious models since these metrics are widely used
in previous works (Hulth, 2003; Wan and Xiao,
2008; Mihalcea and Tarau, 2004; Hasan and Ng,
2014). To compute “performance@k” (such as
MRR@k), we examine the top-k predictions (with
k ranging from 1 to 10). We use average k to refer
to the average number of keyphrases for a particu-
lar dataset as listed in Table 1. For example, aver-
age k = 5 for the WWW dataset. For comparison
purposes, we used Porter Stemmer to reduce both
predicted and gold keyphrases to a base form.

4.2 Results and Discussion

Our experiments are organized around several
questions, which are discussed below.

How sensitive is PositionRank to its parame-
ters? One parameter of our model that can influ-
ence its performance is the window size w, which
determines how edges are added between candi-
date words in the graph. We experimented with
values of w ranging from 2 to 10 in steps of 1 and
chose several configurations for illustration. Fig-
ure 2 shows the MRR curves of PositionRank for
different values of w, on all three datasets. As can
be seen from the figure, the performance of our
model does not change significantly as w changes.
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Dataset #Docs Kp AvgKp unigrams bigrams trigrams n-grams (n ≥ 4)
KDD 834 3093 3.70 810 1770 471 42
WWW 1350 6405 4.74 2254 3139 931 81
Nguyen 211 882 4.18 260 457 132 33

Table 1: A summary of our datasets.

Figure 2: MRR curves for PositionRank that uses different values for the window size.

In addition to the window size, our model has
one more parameter, i.e., the damping factor α.
In order to understand its influence on the per-
formance of PositionRank, we experimented with
several values of α, e.g., 0.75, 0.8, 0.85, 0.9, and
did not find significant differences in the perfor-
mance of PositionRank (results not shown due to
highly overlapping curves). Hence, in Equation 2,
we set α = 0.85 as in (Haveliwala, 2003).

What is the impact of aggregating information
from all positions of a word over using a word’s
first position only? In this experiment, we ana-
lyze the influence that position-weighted frequent
words in a document would have on the perfor-
mance of PositionRank. Specifically, we compare
the performance of the model that aggregates in-
formation from all positions of a word’s occur-
rences, referred as PositionRank - full model with
that of the model that uses only the first position
of a word, referred as PositionRank - fp. In the ex-
ample from the previous section, a word occurring
on positions 2nd, 5th, and 10th will have a weight
of 1

2 + 1
5 + 1

10 = 4
5 = 0.8 in the full model, and a

weight of 1
2 = 0.5 in the first position (fp) model.

Note that the weights of words are normalized be-
fore they are used in the biased PageRank.

Figure 3 shows the results of this experiment in
terms of MRR for the top k predicted keyphrases,
with k from 1 to 10, for all datasets, KDD, WWW,
and Nguyen. As we can see from the figure, the
performance of PositionRank - full model consis-
tently outperforms its counterpart that uses the first
position only, on all datasets. We can conclude

from this experiment that aggregating information
from all occurrences of a word acts as an impor-
tant component in PositionRank. Hence, we use
PositionRank - full model for further comparisons.

How well does position information aid in un-
supervised keyphrase extraction from research
papers? In this experiment, we compare our
position-biased PageRank model (PositionRank)
with two PageRank-based models, TextRank and
SingleRank, that do not make use of the position
information. In TextRank, an undirected graph is
built for each target paper, so that nodes corre-
spond to words and edges are drawn between two
words that occur next to each other in text, i.e., the
window sizew is 2. SingleRank extends TextRank
by adding edges between two words that co-occur
in a window of w ≥ 2 contiguous words in text.

Figure 4 shows the MRR curves comparing Po-
sitionRank with TextRank and SingleRank. As
can be seen from the figure, PositionRank sub-
stantially outperforms both TextRank and Sin-
gleRank on all three datasets, illustrating that the
words’ positions contain significant hints that aid
the keyphrase extraction task. PositionRank can
successfully harness this information in an unsu-
pervised setting to obtain good improvements in
the extraction performance. For example, Posi-
tionRank that uses information from all positions
of a word’s occurrences yields improvements in
MRR@average k of 17.46% for KDD, 20.18% for
WWW, and 17.03% for Nguyen over SingleRank.

How does PositionRank compare with other
existing state-of-the-art methods? In Figure 5, we
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Figure 3: The comparison of PositionRank that aggregates information from all positions of a word’s
occurrences (full model) with the PositionRank that uses only the first position of a word (fp).

Figure 4: MRR curves for PositionRank and two unbiased PageRank-based models that do not consider
position information.

compare PositionRank with several strong base-
lines: TF-IDF, ExpandRank, and TopicalPageR-
ank (TPR) (Hasan and Ng, 2014; Wan and Xiao,
2008; Liu et al., 2010). We selected these base-
lines based on the ACL survey on keyphrase ex-
traction by Hasan and Ng (2014). In TF-IDF,
we calculate the tf score of each candidate word
in the target document, whereas the idf compo-
nent is estimated from all three datasets. In Ex-
pandRank, we build an undirected graph from
each paper and its local textual neighborhood and
calculate the candidate words’ importance scores
using PageRank. We performed experiments with
various numbers of textually-similar neighbors
and present the best results for each dataset. In
TPR, we build an undirected graph using infor-
mation from the target paper. We then perform
topic decomposition of the target document us-
ing topic models to infer the topic distribution
of a document and to compute the probability of
words in these topics. Last, we calculate the candi-
date words’ importance scores by aggregating the
scores from several topic-biased PageRanks (one
PageRank per topic). We used the implementation
of topic models from Mallet.3 To train the topic

3http://mallet.cs.umass.edu/

model, we used a subset of about 45, 000 paper ab-
stracts extracted from the CiteSeerx scholarly big
dataset introduced by Caragea et al. (2014b). For
all models, the score of a phrase is obtained by
summing the score of the constituent words in the
phrase.

From Figure 5, we can see that PositionRank
achieves a significant increase in MRR over the
baselines, on all datasets. For example, the high-
est relative improvement in MRR@average k for
this experiment is as high as 29.09% achieved on
the Nguyen collection. Among all models com-
pared in Figure 5, ExpandRank is clearly the best
performing baseline, while TPR achieves the low-
est MRR values, on all datasets.

4.3 Overall Performance

As already mentioned, prior works on keyphrase
extraction report results also in terms of precision
(P), recall (R), and F1-score (F1) (Hulth, 2003;
Hasan and Ng, 2010; Liu et al., 2010; Wan and
Xiao, 2008). Consistent with these works, in Ta-
ble 2, we show the results of the comparison of
PositionRank with all baselines, in terms of P, R
and F1 for top k = 2, 4, 6, 8 predicted keyphrases,
on all three datasets. As can be seen from the ta-
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Figure 5: MRR curves for PositionRank and baselines on the three datasets.

Dataset Unsupervised Top2 Top4 Top6 Top8
method P% R% F1% P% R% F1% P% R% F1% P% R% F1%

KDD PositionRank 11.1 5.6 7.3 10.8 11.1 10.6 9.8 15.3 11.6 9.2 18.9 12.1
PositionRank-fp 10.3 5.3 6.8 10.2 10.4 10.0 9.1 13.8 10.9 8.6 17.2 11.3
TF-IDF 10.5 5.2 6.8 9.6 9.7 9.4 9.2 13.8 10.7 8.7 17.4 11.3
TextRank 8.1 4.0 5.3 8.3 8.5 8.1 8.1 12.3 9.4 7.6 15.3 9.8
SingleRank 9.1 4.6 6.0 9.3 9.4 9.0 8.7 13.1 10.1 8.1 16.4 10.6
ExpandRank 10.3 5.5 6.9 10.4 10.7 10.1 9.2 14.5 10.9 8.4 17.5 11.0
TPR 9.3 4.8 6.2 9.1 9.3 8.9 8.8 13.4 10.3 8.0 16.2 10.4

WWW PositionRank 11.3 5.3 7.0 11.3 10.5 10.5 10.8 14.9 12.1 9.9 18.1 12.3
PositionRank-fp 9.6 4.5 6.0 10.3 9.6 9.6 10.1 13.8 11.2 9.4 17.2 11.7
TF-IDF 9.5 4.5 5.9 10.0 9.3 9.3 9.6 13.3 10.7 9.1 16.8 11.4
TextRank 7.7 3.7 4.8 8.6 7.9 8.0 8.1 12.3 9.8 8.2 15.2 10.2
SingleRank 9.1 4.2 5.6 9.6 8.9 8.9 9.3 13.0 10.5 8.8 16.3 11.0
ExpandRank 10.4 5.3 6.7 10.4 10.6 10.1 9.5 14.7 11.2 8.6 17.7 11.2
TPR 8.8 4.2 5.5 9.6 8.9 8.9 9.5 13.2 10.7 9.0 16.5 11.2

Nguyen PositionRank 10.5 5.8 7.3 10.6 11.4 10.7 11.0 17.2 13.0 10.2 21.1 13.5
PositionRank-fp 10.0 5.4 6.8 10.4 11.1 10.5 11.2 17.4 13.2 10.1 21.2 13.3
TF-IDF 7.3 4.0 5.0 9.5 10.3 9.6 9.1 14.4 10.9 8.9 18.9 11.8
TextRank 6.3 3.6 4.5 7.4 7.4 7.2 7.8 11.9 9.1 7.2 14.8 9.4
SingleRank 9.0 5.2 6.4 9.5 9.9 9.4 9.2 14.5 11.0 8.9 18.3 11.6
ExpandRank 9.5 5.3 6.6 9.5 10.2 9.5 9.1 14.4 10.8 8.7 18.3 11.4
TPR 8.7 4.9 6.1 9.1 9.5 9.0 8.8 13.8 10.5 8.8 18.0 11.5

Table 2: PositionRank against baselines in terms of Precision, Recall and F1-score. Best results are
shown in bold blue.

ble, PositionRank outperforms all baselines, on all
datasets. For example, on WWW at top 6 pre-
dicted keyphrases, PositionRank achieves an F1-
score of 12.1% as compared to 11.2% achieved
by ExpandRank and 10.7% achieved by both TF-
IDF and TPR. From the table, we can also see
that ExpandRank is generally the best performing
baseline on all datasets. However, it is interesting
to note that, unlike PositionRank that uses infor-
mation only from the target paper, ExpandRank
adds external information from a textually-similar
neighborhood of the target paper, and hence, is
computationally more expensive.

PositionRank-first position only (fp) typically
performs worse than PositionRank-full model, but
it still outperforms the baseline methods for most
top k predicted keyphrases, on all datasets. For
example, on Nguyen at top 4, PositionRank-fp
achieves an F1-score of 10.5% compared to the

best baseline (TF-IDF in this case), which reaches
only a score of 9.6%.

A striking observation is that PositionRank out-
performs TPR on all datasets. Compared with
our model, TPR is a very complex model, which
uses topic models to learn topics of words and
infer the topic proportion of documents. Addi-
tionally, TPR has more parameters (e.g., the num-
ber of topics) that need to be tuned separately for
each dataset. PositionRank is much less complex,
it does not require an additional dataset (e.g., to
train a topic model) and its performance is better
than that of TPR. TF-IDF and ExpandRank are the
best performing baselines, on all datasets, KDD,
WWW, and Nguyen. For example, on KDD at
k = 4, TF-IDF and ExpandRank yield an F1-score
of 9.4% and 10.1%, respectively, compared with
8.4%, 9.0% and 8.9% achieved by TextRank, Sin-
gleRank and TPR, respectively.
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Geographically0.274 Focused0.134 Collaborative0.142 Crawling0.165
by Weizheng Gao, Hyun Chul Lee and Yingbo Miao A collaborative0.142 crawler0.165 is a
group0.025 of crawling0.165 nodes0.033, in which each crawling0.165 node0.033 is responsible0.012

for a specific0.010 portion0.010 of the web0.015. We study the problem0.007 of collecting0.011

geographically0.274 aware0.006 pages0.018 using collaborative0.142 crawling0.165 strategies0.017. We
first propose several collaborative0.142 crawling0.165 strategies0.017 for the geographically0.274
focused0.134 crawling0.165, whose goal0.004 is to collect web0.015 pages0.018 about specified0.010

geographic0.274 locations0.003 by considering features0.005 like URL0.006 address0.005 of page0.018 [...]
More precisely, features0.005 like URL0.006 address0.005 of page0.018 and extended0.004 anchor0.004

text0.004 of link0.004 are shown to yield the best overall performance0.003 for the geographically0.274
focused0.134 crawling0.165.

Author-input keyphrases: collaborative crawling, geographically focused crawling, geographic entities

Figure 6: The title and abstract of a WWW paper by Gao et al. (2006) and the author-input keyphrases
for the paper. Bold dark red phrases represent predicted keyphrases for the document.

With a paired t-test on our results, we found that
the improvements in MRR, precision, recall, and
F1-score for PositionRank are statistically signifi-
cant (p-values < 0.05).

4.4 Anecdotal Evidence

We show anecdotal evidence using a paper by Gao
et al. (2006) that is part of the Nguyen dataset.
Figure 6 shows the title and abstract of this pa-
per together with the author-input keyphrases. We
marked in bold dark red the candidate phrases
that are predicted as keyphrases by our proposed
model (PositionRank), in black the words that
are selected as candidate phrases and in gray the
words that are filtered out based on their part-of-
speech tags or the stopwords list being used. We
show the probability (or weight) of each candidate
word in its upper right corner. These weights are
computed based on both the word’s position and
its frequency in the text. Note that our model uses
these weights to bias the PageRank algorithm to
prefer specific nodes in the graph.

As we can see from the figure, component
words of author’s keyphrases such as: “collab-
orative,” “crawling,” “focused,” and “geographi-
cally” are assigned the highest scores while can-
didates such as “performance,” “anchor,” or “fea-
tures” are assigned very low weights, making them
less likely to be chosen as keyphrases.

5 Conclusion and Future Work

We proposed a novel unsupervised graph-based al-
gorithm, called PositionRank, which incorporates
both the position of words and their frequency

in a document into a biased PageRank. To our
knowledge, we are the first to integrate the po-
sition information in novel ways in unsupervised
keyphrase extraction. Specifically, unlike super-
vised approaches that use only the first position
information, we showed that modeling the entire
distribution of positions for a word outperforms
models that use only the first position.

Our experiments on three datasets of research
papers show that our proposed model achieves bet-
ter results than strong baselines, with relative im-
provements in performance as high as 29.09%. In
the future, it would be interesting to explore the
performance of PositionRank on other types of
documents, e.g., web pages and emails.
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