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Abstract

We present TranscRater, an open-source
tool for automatic speech recognition
(ASR) quality estimation (QE). The tool
allows users to perform ASR evaluation
bypassing the need of reference tran-
scripts and confidence information, which
is common to current assessment proto-
cols. TranscRater includes: i) methods
to extract a variety of quality indicators
from (signal, transcription) pairs and ii)
machine learning algorithms which make
possible to build ASR QE models exploit-
ing the extracted features. Confirming the
positive results of previous evaluations,
new experiments with TranscRater indi-
cate its effectiveness both in WER predic-
tion and transcription ranking tasks.

1 Introduction

How to determine the quality of an automatic tran-
scription without reference transcripts and with-
out confidence information? This is the key prob-
lem addressed by research on ASR quality estima-
tion (Negri et al., 2014; C. de Souza et al., 2015;
Jalalvand et al., 2015b), and the task for which
TranscRater, the tool described in this paper, has
been designed.

The work on ASR quality estimation (ASR QE)
has several motivations. First, the steady increase
of applications involving automatic speech recog-
nition (e.g. video/TV programs subtitling, voice
search engines, voice question answering, spoken
dialog systems, meeting and broadcast news tran-
scriptions) calls for an accurate method to esti-
mate ASR output quality at run-time. Often, in-
deed, the nature of such applications (consider for
instance spoken dialog systems) requires quick re-

sponse capabilities that are incompatible with tra-
ditional reference-based protocols.

Second, even when real-time processing is not
a priority, standard evaluation based on computing
word-error rate (WER) against gold references is
not always a viable solution. In many situations
(as in the case of languages for which even the
ASR training data is scarce), the bottleneck repre-
sented by the limited availability of reference tran-
scripts and the costs of their manual creation calls
for a method to predict ASR output quality that
is reference-independent.

Third, even when designed to bypass the need
of references, current quality prediction methods
heavily depend on confidence information about
the inner workings of the ASR system that pro-
duced the transcriptions (Evermann and Wood-
land, 2000; Wessel et al., 2001). Such informa-
tion, describing how the system is certain about
the quality of its own hypotheses, often reflects
a biased perspective influenced by individual de-
coder features. More importantly, it is not always
accessible and, in this frequent case, the sole ele-
ments available for quality prediction are the sig-
nal and its transcription (consider, for instance, the
increasing amount of captioned Youtube videos
generated by a “black-box” ASR system1). These
issues call for a method to predict ASR output
quality that is also confidence-independent.

TranscRater (Transcription Rater) provides a
unified ASR QE framework designed to meet the
three aforementioned requirements. Its develop-
ment was inspired by software previously released
for the machine translation (MT) (Specia et al.,
2013; Shah et al., 2014; Servan et al., 2015) equiv-
alent of ASR QE, in which MT quality has to be
estimated at run-time and without reference trans-

1More than 157 millions in 10 languages, as announced
by Google already in 2012 (source: http://goo.gl/
5Wlkjl).
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lations (Mehdad et al., 2012; Camargo de Souza
et al., 2013; C. de Souza et al., 2014). Indeed, the
two tasks deal with similar issues. In both cases,
we have an input “source” (a written sentence and
a recorded signal) and an output text (a translation
and a transcription) that has to be assessed with-
out any pre-created term of comparison. They can
also be approached with similar supervised clas-
sification (C. de Souza et al., 2015) or regression
strategies (Negri et al., 2014; C. de Souza et al.,
2015). Finally, they have similar applications like:

• Deciding if an input source has been correctly
processed;

• Ranking the output of multiple independent
systems (Jalalvand et al., 2015b);

• Estimating the human effort required to man-
ually revise an output segment;

• Performing data selection for system im-
provement based on active learning.

To support these applications, TranscRater pro-
vides an extensible ASR QE framework consist-
ing of a variety of feature extractors and ma-
chine learning algorithms. The implemented fea-
ture extraction methods allow capturing predictive
quality indicators both from the input signal and
from the output transcription. This basic set of
“black box” indicators has been successfully eval-
uated in a number of experiments, both on regres-
sion and on classification tasks, showing that ASR
QE predictions can closely approximate the qual-
ity scores obtained with standard reference-based
methods. The existing feature extractors can be
easily extended to integrate new features, either
capturing additional system-independent aspects,
or relying on confidence information about the
ASR system that produced the transcriptions, if
available. Experimental results demonstrate that,
also in the “glass-box” scenario in which the ASR
system is known, the available features are able
to improve the performance obtained with confi-
dence information.

The integration of different machine learning
algorithms makes TranscRater a powerful frame-
work to quickly set up an ASR QE model given
some training data, tune it by choosing among the
possible feature configurations and process new,
unseen test data to predict their quality. As a stand-
alone environment, with few documented external

dependencies, TranscRater provides the first off-
the-shelf solution to approach ASR QE and extend
its application to new scenarios.

2 ASR QE

The basic ASR QE task consists in training a
model from (signal, transcription, label) triplets,
and using it to return quality predictions for a test
set of unseen (signal, transcription) instances. In
this supervised learning setting, the training la-
bels can be either numeric scores (Negri et al.,
2014) or class identifiers (binary or multi-class)
(C. de Souza et al., 2015). Class assignments
can be manually done according to some criteria,
or inferred by thresholding numeric scores. Nu-
meric quality indicators can be easily obtained by
measuring the similarity (or the distance) between
the transcription and its manually-created refer-
ence. For instance, the models described in pre-
vious works on ASR QE learn from training data
labelled with real values obtained by computing
the transcription word error rate (WER2).

According to the type of training labels, the
problem can be approached either as a regression
or as a classification task. As a consequence,
also the evaluation metrics will change. Preci-
sion/recall/F1 (or other metrics, such as balanced
accuracy, in case of very unbalanced distributions)
will be used for classification while, similar to
MT QE, the mean absolute error (MAE) or sim-
ilar metrics will be used for regression.

A variant of the basic ASR QE task is to con-
sider it as a QE-based ranking problem (Jalalvand
et al., 2015b), in which each utterance is captured
by multiple microphones or transcribed by multi-
ple ASR systems. In this case, the capability to
rank transcriptions from the best to the worst can
be evaluated in terms of normalized discounted cu-
mulative gain (NDCG) or similar metrics.

3 The TranscRater tool

TranscRater combines in a single open-source
framework: i) a set of features capturing differ-
ent aspects of transcription quality and ii) different
learning algorithms suitable to address the chal-
lenges posed by different application scenarios.

TranscRater internally consists of two main

2WER is the minimum edit distance between the tran-
scription and the reference. Edit distance is calculated as the
number of edits (word insertions, deletions, substitutions) di-
vided by the number of words in the reference.
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modules: feature extraction and machine learn-
ing. At training stage, the tool receives as in-
put a set of signal recordings, their transcriptions
and the corresponding reference transcripts. The
speech signals are provided as separate files in the
RIFF Microsoft PCM format with 16K sampling
rate. Their transcriptions and the corresponding
references are provided in single separate text files
(one transcription per row). References are used
to compute the WER label of each training in-
stance, thus connecting the problem to the task
formulation provided in §2. The features extracted
from each training instance are passed to the learn-
ing module, together with the corresponding label.
The label is a WER score which, depending on the
type of problem addressed, can be used either to
directly train a regressor or to infer a ranking for
multiple hypotheses. In either case, the learning
module will train the corresponding model with
the proper learning algorithm, and tune it using k-
fold cross-validation.

At test stage, the model is used to predict the
label of new, unseen (signal, transcription) in-
stances. For each test point, the output is either a
WER prediction or a rank, whose reliability can be
respectively evaluated in terms of MAE or NDCG
(as discussed in §2). Output predictions are pro-
vided in a single file (one WER prediction per row
for regression and one rank prediction per row for
ranking). MAE or NDCG scores are provided as
the standard output of the test functions.

Internally, TranscRater stores the extracted fea-
tures in the SVM-light3 format. This makes pos-
sible to use the tool as a feature extractor and to
embed it in applications different from the ones
described in this paper. The features to be used,
the type of learning algorithm, the input files and
the links to resources and libraries can be easily
set through a configuration file.

3.1 Feature sets
The feature extraction module of TranscRater al-
lows the user to extract 72 features that can be cat-
egorized in the following four groups:

• Signal (SIG) features, designed to capture
the difficulty of transcribing the input sig-
nal given the general recording conditions in
which it was acquired;

• Lexical (LEX) features, designed to capture
3http://svmlight.joachims.org/

the difficulty to transcribe the input signal
given the pronunciation difficulty and the am-
biguity of the terms it contains;

• Language model (LM) features, designed to
capture the plausibility of the transcription
from the fluency point of view;

• Part-of-speech (POS) features, designed to
capture the plausibility of the transcription
from the syntax point of view.

SIG (44). Signal features are extracted using
the OpenSmile4 toolkit (Eyben et al., 2013). Each
speech signal is broken down into 25ms length
frames with 10ms overlap. For each frame, we
compute 13 Mel Frequency Cepstral Coefficients
(MFCC), their delta, acceleration and log-energy
as well as the prosody features like fundamental
frequency (F0), voicing probability, loudness con-
tours and pitch. The final SIG feature vector for
the entire input signal is obtained by averaging the
values of each feature computed on all the frames.

LEX (7). Lexicon-based features are extracted
using a lexical feature dictionary (optionally pro-
vided by the user). In this dictionary each indi-
vidual word is assigned to a feature vector con-
taining the frequency of fricatives, liquids, nasals,
stops and vowels in its pronunciation. Other ele-
ments of the vector are the number of homophones
(words with the same pronunciation) and quasi-
homophones (words with similar pronunciation).

LM (12). Language model features include
the mean of word probabilities, the sum of the
log probabilities and the perplexity score for each
transcription. In previous experiments (Jalalvand
et al., 2015b; Jalalvand and Falavigna, 2015) we
showed that, instead of only one LM, using a
combination of neural network and n-gram LMs
trained on task-specific and generic data can sig-
nificantly improve the accuracy of quality predic-
tion. For this reason, TranscRater allows using up
to four different language models: two RNNLM
(Mikolov et al., 2010) trained on generic and spe-
cific data and two n-gramLM trained on generic
and specific data. To work with neural network
LMs, the tool makes use of RNNLM,5 while for
n-gram LMs it uses SRILM6 (Stolcke et al., 2000).

4http://www.audeering.com/research/
opensmile\#download

5http://www.fit.vutbr.cz/˜imikolov/
rnnlm/rnnlm-0.3e.tgz

6http://www.speech.sri.com/projects/
srilm/download.html
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POS (9). Part-of-speech features are extracted
using the TreeTagger.7 For each word in the tran-
scription, they consider the score assigned to the
predicted POS of the word itself, the previous and
the following one. This sliding window is used
to compute the average value for the entire tran-
scription and obtain the sentence-level POS fea-
ture vector. The intuition is that a low confidence
of the POS tagger in labeling a sentence is an indi-
cator of possible syntax issues and, in turn, of poor
transcription quality. POS features also include
the number and the percentage of content words
(numbers, nouns, verbs, adjectives, adverbs).

These feature groups were successfully tested in
various conditions including clean/noisy data, sin-
gle/multiple microphones and ASR systems (Jalal-
vand et al., 2015b; Jalalvand et al., 2015a). In such
conditions, they proved to be a reliable predictor
when confidence information about the ASR sys-
tem inner workings is not accessible.

3.2 Learning algorithms
For regression-based tasks (WER prediction),
TranscRater includes an interface to the Scikit-
learn package (Pedregosa et al., 2011), a Python
machine learning library that contains a large set
of classification and regression algorithms. Based
on the empirical results reported in (Negri et al.,
2014; C. de Souza et al., 2015; Jalalvand et al.,
2015b), which indicate that Extremely Random-
ized Trees (XRT (Geurts et al., 2006)) is a very
competitive algorithm in several WER prediction
tasks, the current version of the tool exploits XRT.
However, adapting the interface to apply other al-
gorithms is an easy task and one of the future
extension directions. The main hyper-parameters
of the model, such as the number of tree bags,
the number of trees per bag, the number of fea-
tures per tree and the number of instances in the
leaves, are tuned using grid search with k-fold
cross-validation on the training set to minimize
the mean absolute error (MAE) between the true
WERs and the predicted ones.

As mentioned before, TranscRater provides the
possibility to evaluate multiple transcriptions (e.g.
obtained from different microphones or ASR sys-
tems) and rank them based on their quality. This
can be done either indirectly, by exploiting the pre-
dicted WER labels in a “ranking by regression”

7http://www.cis.uni-muenchen.
de/˜schmid/tools/TreeTagger/data/
tree-tagger-linux-3.2.tar.gz

approach (RR) or directly, by exploiting machine-
learned ranking methods (MLR). To train and test
MLR models, TranscRater exploits RankLib8, a li-
brary of learning-to-rank algorithms. The current
version of the tool includes an interface to the Ran-
dom Forest algorithm (RF (Breiman, 2001)), the
same used in (Jalalvand et al., 2015b).

MLR predicts ranks through pairwise compari-
son between the transcriptions. The main param-
eters such as the number of bags, the number of
trees per bag and the number of leaves per tree are
tuned on training set using k-fold cross-validation
to maximize the NDCG measure.

3.3 Implementation

TranscRater is written in Python and is made of
several parts linked together using bash scripts.
In order to run the toolkit on Linux, the follow-
ing libraries are required: i) Java 8 (JDK-1.8); ii)
Python 2.7 (or above) and iii) Scikit-learn (ver-
sion 0.15.2). Moreover, the user has to download
and compile the following libraries: OpenSmile,
RNNLM, SRILM and TreeTagger for the feature
extraction module as well as RankLib for using
machine-learned ranking option.

4 Benchmarking

The features and algorithms contained in Tran-
scRater have been successfully used in previous
works (Negri et al., 2014; C. de Souza et al., 2015;
Jalalvand et al., 2015b; Jalalvand et al., 2015a).
To further investigate their effectiveness, in this
section we provide new results, both in WER pre-
diction (MAE) and transcription ranking (NDCG),
together with some efficiency analysis (Time in
seconds9). To this aim, we use data from the
3rd CHiME challenge,10 which were collected for
multiple distant microphone speech recognition in
noisy environments (Barker et al., 2015). CHiME-
3 data consists of sentences of the Wall Street
Journal corpus, uttered by four speakers in four
noisy environments, and recorded by five micro-
phones placed on the frame of a tablet PC (a sixth
one, placed on the back, mainly records back-
ground noise). Training and test respectively con-
tain 1,640 and 1,320 sentences. Transcriptions are

8https://people.cs.umass.edu/˜vdang/
data/RankLib-v2.1.tar.gz

9Experiments were run with a PC with 8 Intel Xeon pro-
cessors 3.4 GHz and 8 GB RAM.

10http://spandh.dcs.shef.ac.uk/chime_
challenge/chime2015/data.html
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produced by a baseline ASR system, provided by
the task organizers, which uses the deep neural
network recipe of Kaldi (Povey et al., 2011).

In WER prediction, different models built with
TranscRater are compared with a baseline com-
monly used for regression tasks, which labels all
the test instances with the average WER value
computed on the training set. In ranking mode,
baseline results are computed by averaging the
NDCG scores obtained in one hundred iterations
in which test instances are randomly ranked.

Features Train&Test
Time

Total
Time MAE↓

Baseline — — 28.7
SIG 00m18s 09m32s 27.3
LEX+LM+POS 00m19s 01m19s 22.2
SIG+LEX+LM+POS 00m26s 10m22s 23.5

Table 1: Time and MAE results in regression mode.

Table 1 shows the results of models trained with
different feature groups for WER prediction with
a single microphone. In terms of time, in this as
in the following experiments, the total time (fea-
ture extraction + training + test) is mostly de-
termined by feature extraction and the bottleneck
is clearly represented by the extraction of signal
(SIG) features. In terms of MAE, SIG features are
also those achieving the worst result. Although
they significantly improve over the baseline, they
are outperformed by LEX+LM+POS and, even in
combination with them, they do not help. How-
ever, as suggested by previous works like (Ne-
gri et al., 2014) in which some of the SIG fea-
tures are among the most predictive ones, the use-
fulness of signal features highly depends on data
and, in specific conditions, they definitely improve
results. Their ineffectiveness in the experiments
of this paper likely depends on the lack of word-
level time boundaries, which prevented us to com-
pute more discriminative features like word log-
energies, noise log-energies and signal-to-noise
ratio (the best indicator of the acoustic quality of
an input utterance).

Features Train&Test
Time

Total
Time NDCG↑

Baseline — — 73.6
SIG 02m03s 15m11s 73.5
LEX+LM+POS 01m10s 03m13s 80.4
SIG+LEX+LM+POS 05m53s 19m23s 79.4
Table 2: Time and NDCG results in ranking by regression.

Table 2 shows the results achieved by the same
feature groups when ranking by regression (RR)
the transcriptions from five microphones. In terms

of computation time, the higher costs of SIG fea-
tures are still evident (the significant increase for
all groups is due to the higher number of audio
files to be processed). Also in this case, SIG
features do not help, neither alone nor in combi-
nation with the other groups. Indeed, the high-
est results are achieved by the combination of
LEX+LM+POS. Their large NDCG improvement
over the baseline (+6.8), combined with the sig-
nificantly lower computation time, seems to make
this combination particularly suitable for the rank-
ing by regression strategy.

Features Train&Test
Time

Total
Time NDCG↑

Baseline — — 73.6
SIG 01m14s 13m00s 78.1
LEX+LM+POS 00m59s 03m05s 81.3
SIG+LEX+LM+POS 01m41s 15m10s 83.1
Table 3: Time and NDCG with machine-learned ranking.

Table 3 shows the results achieved, in the
same multi-microphone scenario, by the machine-
learned ranking approach (MLR). In terms of
time, MLR is slightly more efficient than RR, at
least on this dataset. Though surprising (MLR
performs lots of pairwise comparisons, which are
in principle more demanding), such difference is
not very informative as it might depend on hyper-
parameter settings (e.g. the number of iterations
for XRT, manually set to 20), whose optimization
was out of the scope of our analysis. In terms of
NDCG, the results are higher compared to RR but
the differences between feature groups are con-
firmed. Interestingly, with MLR even the SIG fea-
tures in isolation significantly improve over the
baseline (+4.5 points). The NDCG improvement
with the combined feature groups is up to 9.5
points, confirming the effectiveness of the com-
bined features shown in previous works.

5 Conclusion

We presented TranscRater, an open-source tool
for ASR quality estimation. TranscRater pro-
vides an extensible framework including feature
extractors, machine learning algorithms (for WER
prediction and transcription ranking), optimiza-
tion and evaluation functions. Its source code
can be downloaded from https://github.
com/hlt-mt/TranscRater. Its license is
FreeBSD, a lax permissive non-copyleft license,
compatible with the GNU GPL and with any use,
including commercial.
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