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Abstract

Singleton (or non-coreferential) mentions
are a problem for coreference resolution
systems, and identifying singletons be-
fore mentions are linked improves res-
olution performance. Here, a singleton
detection system based on word embed-
dings and neural networks is presented,
which achieves state-of-the-art perfor-
mance (79.6% accuracy) on the CoNLL-
2012 shared task development set. Ex-
trinsic evaluation with the Stanford and
Berkeley coreference resolution systems
shows significant improvement for the
first, but not for the latter. The results show
the potential of using neural networks and
word embeddings for improving both sin-
gleton detection and coreference resolu-
tion.

1 Background

Coreference resolution is the task of identifying
and linking all expressions in language which re-
fer to the same entity. It is an essential part of both
human language understanding and natural lan-
guage processing. In NLP, coreference resolution
is often approached as a two-part problem: finding
all referential expressions (a.k.a. ‘mentions’) in a
text, and clustering those mentions that refer to the
same entity.

So, in Example (1), the first part consists of
finding My internet, It, and it. The second part
then consists of clustering My internet and it to-
gether (as indicated by the indices), and not clus-
tering It with anything (as indicated by the x).

(1) [My internet]1 wasn’t working properly.
[It]x seems that [it]1 is fixed now, however.

This example also serves to showcase the diffi-
culty of the clustering step, since it is challeng-
ing to decide between clustering My internet with
it, clustering My internet with It, or clustering all
three mentions together. However, note that in this
sentence It is non-referential, i.e. it does not refer
to any real world entity. This means that this men-
tion could already be filtered out after the first step,
making the clustering a lot easier.

In this paper, we improve mention filtering for
coreference resolution by building a system based
on word embeddings and neural networks, and
evaluate performance both as a stand-alone task
and extrinsically with coreference resolution sys-
tems.

1.1 Previous Work

Mention filtering is not a new task, and there exists
a large body of previous work, ranging from the
rule-based non-referential it filtering of Paice and
Husk (1987) to the machine learning approach to
singleton detection by de Marneffe et al. (2015).

Different mention filtering tasks have been
tried: filtering out non-referential it (Boyd et
al., 2005; Bergsma and Yarowsky, 2011), non-
anaphoric NPs (Uryupina, 2003), non-antecedent
NPs (Uryupina, 2009), discourse-new mentions
(Ng and Cardie, 2002), and singletons, i.e. non-
coreferential mentions (de Marneffe et al., 2015).
All these tasks can be done quite accurately, but
since they are only useful as part of an end-to-end
coreference resolution system, it is more interest-
ing to look at what is most effective for improving
coreference resolution performance.

There is much to gain with improved mention
filtering. For example, the authors of one state-
of-the-art coreference resolution system estimate
that non-referential mentions are the direct cause
of 14.8% of their system’s error (Lee et al., 2013).
The importance of mention detection and filtering
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is further exemplified by the fact that several re-
cent systems focus on integrating the processing
of mentions and the clustering of mentions into a
single model or system (Ma et al., 2014; Peng et
al., 2015; Wiseman et al., 2015).

Other lessons regarding mention filtering and
coreference resolution performance come from Ng
and Cardie (2002) and Byron and Gegg-Harrison
(2004). They find that the mentions filtered out
by their systems are also the mentions which are
least problematic in the clustering phase. As a re-
sult, the gain in clustering precision is smaller than
expected, and does not compensate for the recall
loss. They also find that high precision in mention
filtering is more important than high recall.

The state-of-the-art in mention filtering is the
system described by de Marneffe et al. (2015),
who work on singleton detection. De Marneffe
et al. used a logistic regression classifier with
both discourse-theoretically inspired semantic fea-
tures and more superficial features (animacy, NE-
type, POS, etc.) to perform singleton detection.
They achieve 56% recall and 90% precision on the
CoNLL-2012 shared task data, which translates to
a coreference resolution performance increase of
0.5-2.0 percentage point in CoNLL F1-score.

1.2 The Current Approach

In this paper, a novel singleton detection system
which makes use of word embeddings and neural
networks is presented. There are three main mo-
tivations for choosing this approach, partly based
on lessons drawn from previous work.

The first is that the coreference resolution sys-
tems we evaluate with here do not make use of
embeddings. Thus, using embeddings as an ad-
ditional data source can aid in filtering out those
singletons which are problematic for the cluster-
ing system. Word embeddings are chosen because
we expect that the syntactic and semantic infor-
mation contained in them should help the single-
ton detection system to generalize over the train-
ing data better. For example, knowing that ‘snow-
ing’ is similar to ‘raining’ makes it easier to clas-
sify ‘It’ in ‘It is snowing’ as singleton, when only
‘It is raining’ occurs in the training data.

Second, previous work indicated that precision
in filtering is more important than recall. There-
fore, a singleton detection system should not only
be able to filter out singletons with high accuracy,
but should also be able to vary the precision/recall

trade-off. Here, the output is a class probability,
which fulfils this requirement.

Third, both Bergsma and Yarowsky (2011) and
de Marneffe et al. (2015) find that the context
words around the mention are an important feature
for mention filtering. Context tokens can easily be
included in the current set-up, and by using word
embeddings generalization on these context words
should be improved.

2 Methods

The singleton detection system presented here
consists of two main parts: a recursive autoen-
coder and a multilayer perceptron. The recur-
sive autoencoder is used to create fixed-length rep-
resentations for multi-word mentions, based on
word embeddings. The multi-layer perceptron is
used to perform the actual singleton detection.

2.1 Data

We use the OntoNotes corpus (Weischedel et al.,
2011; Weischedel et al., 2013), since it was also
used in the CoNLL-2011 and 2012 shared tasks on
coreference resolution (Pradhan et al., 2011; Prad-
han et al., 2012), and is used by de Marneffe et al.
(2015). A downside of the OntoNotes corpus is
that singletons are not annotated. As such, an ex-
tra mention selection step is necessary to recover
the singleton mentions from the data.

We solve this problem by simply taking the
mentions as they are selected by the Stanford
coreference resolution system (Lee et al., 2013),
and use this as the full set of mentions. These
are similar to the Berkeley coreference resolu-
tion system’s mentions (Durrett and Klein, 2013),
since they mention they base their mention de-
tection rules on those of Lee et al. This makes
them suitable here. In addition, de Marneffe et al.
(2015) use the Stanford system’s mentions as basis
for their singleton detection experiments, so using
these mentions aids comparability as well.

2.2 Recursive Autoencoder

A recursive autoencoder (RAE) is applied to the
vector representations of mentions, reducing them
to a single word-embedding-length sized vector.
This is done to compress the variable length men-
tions to a fixed-size representation, which is re-
quired by the multi-layer perceptron.

The RAE used here is similar to the one used
by Socher et al. (2011), with the following de-
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sign choices: a sigmoid activation function is used,
training is done using stochastic gradient descent,
and the weights are untied. A left-branching bi-
nary tree structure is used, since only the final
mention representation is of interest. Euclidean
distance is used as an error measure, with each
vector’s error weighted by the number of words
it represents.

2.3 Multi-layer Perceptron

The multi-layer perceptron consists of an input
layer, one hidden layer, and a binary classification
layer. As input, three types of features are used:
the mention itself, context words around the men-
tion, and other mentions in the context.

The implementation of the MLP is straightfor-
ward. The input order is randomized, to prevent
spurious order effects. Stochastic gradient descent
is used for training. Experiments with various set-
tings for the parameters governing learning rate,
number of training epochs, stopping criteria, hid-
den layer size, context size and weight regulariza-
tion are conducted, and their values and optimiza-
tion are discussed in Section 3.1.

2.4 Integrating Singleton Detection into
Coreference Resolution Systems

Two coreference resolution systems are used for
the evaluation of singleton detection performance:
the Berkeley system (Durrett and Klein, 2013) and
the Stanford system (Lee et al., 2013).

The Stanford system is a deterministic rule-
based system, in which different rules are applied
sequentially. It was the highest scoring corefer-
ence resolution system of the CoNLL-2011 shared
task. The most natural way of integrating a single-
ton detection model in this system is by filtering
out mentions directly after the mention detection
phase.

The Berkeley system, on the other hand, is a
learning-based model, which relies on template-
based surface-level features. It is currently one
of the best-performing coreference resolution sys-
tems for English. Because the system is a retrain-
able learner, the most obvious way to use single-
ton detection probabilities is as a feature, rather
than a filter. For both systems, varying ways of
integrating the singleton detection information are
presented in Section 3.3.

3 Evaluation & Results

3.1 Preprocessing and Optimization
The recursive autoencoder was trained on the
CoNLL-2011 and 2012 training sets, with a learn-
ing rate of 0.005. Training was stopped when the
lowest validation error was not achieved in the last
25% of epochs. The trained model was then used
to generate representations for all mentions in the
development and test sets.

Using these mention representations, the pa-
rameters of the MLP were optimized on the
CoNLL-2012 development set. The stopping cri-
terion was the same as for the RAE, and the learn-
ing rate was fixed at 0.001, in order to isolate
the influence of other parameters. During opti-
mization, the following default parameter values
were used: 50-dimensional embeddings, 150 hid-
den nodes, 5 context words (both sides), 2 con-
text mentions (both sides), and a 0.5 threshold for
classifying a mention as singleton. A competitive
baseline was established by tagging each pronoun
as coreferential and all other mentions as single-
ton. We test for significant improvement over the
default values using pair-wise approximate ran-
domization tests (Yeh, 2000).

For the hidden layer size, no value from the
set {50, 100, 300, 600, 800} was significantly bet-
ter than the default of 150. In order to keep the
input/hidden layer proportion fixed, a 5:1 propor-
tion was used during the rest of the optimization
and evaluation process.

For the number of context words, the values
{0, 1, 2, 3, 4, 10, 15, 20} were tested, yielding only
small differences. However, the best-performing
model, using only 1 context word on either side of
the mention, was significantly better than the de-
fault of 5 context words.

For the number of context mentions, the default
value of 2 turned out to be optimal, as it worked
significantly better than most values from the set
{0, 1, 3, 4, 5, 6}.

Of all parameters, the choice for a set of word
embeddings was the most influential. Different
sets of GloVe embeddings were tested, varying in
dimensionality and number of tokens trained on.
The default set was 50D/6B, i.e. 50-dimensional
embeddings trained on 6 billion tokens of training
data. The sets {100D/6B, 200D/6B, 300D/6B,
300D/42B, 300D/840B} were evaluated. All
out-performed the default set, and the 300D/42B
set performed the best.
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Test set Acc.
Singleton Detection
P R F1

11-dev 76.37 75.72 90.32 82.38
11-test 77.47 77.26 88.42 82.46
12-dev 79.57 79.77 85.83 82.69
12-test 80.08 81.57 83.78 82.66

12-dev-dM15 79.0 81.1 80.8 80.9
12-dev-BL 68.19 66.90 87.21 75.72

Table 1: Singleton detection performance using
the best-scoring model. The CoNLL-2012 train-
ing set was used as training data. ‘dM15’ marks
the results by de Marneffe et al. (2015) ‘BL’ marks
the baseline performance.

3.2 Singleton Detection Results

The final singleton detection model was evaluated
on the CoNLL-2011 development and test set, and
the CoNLL-2012 test set, in order to evaluate gen-
eralization. Results are reported in Table 1. Gen-
erally, performance holds up well across data sets,
although the results on the 2011 sets are slightly
lower than on the 2012 datasets.

At 76-80% accuracy, the multi-layer perceptron
is clearly better than the baseline. Performance is
also compared to that of the state-of-the-art, by de
Marneffe et al. (2015), who only report scores on
the CoNLL-2012 development set. The accuracy
of my system is 0.6 percentage points higher.

Because word embeddings are the only source
of information used by the system, its performance
may be vulnerable to the presence of ‘unknown
words’, i.e. words for which there is no embed-
ding. Looking at the 2012 development set, we
see that classification accuracy for mentions con-
taining one or more unknown words is 76.55%,
as compared to 79.63% for mentions without un-
known words. The difference is smaller when
looking at the context: accuracy for mentions with
one or more unknown words in their context is
78.73%, whereas it is 79.79% for mentions with
fully known contexts.

3.3 Coreference Resolution Results

Table 2 shows the performance of the Stanford
system. Multiple variables governing singleton
filtering were explored. ‘NE’ indicates whether
named entities were excluded from filtering or
not. ‘Pairs’ indicates whether individual mentions
are filtered out, or only links between pairs of

mentions. ‘Threshold’ indicates the threshold un-
der which mentions are classified singleton. The
threshold value of 0.15 is chosen so that the single-
ton classification has a precision of approximately
90%

We cannot compare directly to the system of de
Marneffe et al. (2015), because they used an older,
faulty version of the CoNLL-scorer. For the Stan-
ford system, we therefore compare to a precursor
of their system, by Recasens et al. (2013), whose
singleton detection system is integrated with the
Stanford system. For the Berkeley system, this
is not possible. In both cases, we also com-
pare to the system without any singleton detection.
Differences were tested for significance using a
paired-bootstrap re-sampling test (Koehn, 2004)
over documents, 10000 times.

The performance of the different filtering meth-
ods is as expected. For more widely applica-
ble filters, precision goes up more, but recall also
drops more. For more selective filters, the drop
in recall is smaller, but so is the gain in preci-
sion. The best balance here is yielded by the
‘Incl./Yes/0.15’-model, the most restrictive model,
except for that it includes named entities in fil-
tering. This model yields a small improvement
of 0.7 percentage points over the baseline. This
is slightly more than the Recasens et al. (2013)
system, and also slightly larger than the 0.5 per-
centage point gain reported by de Marneffe et al.
(2015)

NE Pairs Threshold CoNLL-F1

Incl. No 0.5 50.41*
Incl. No 0.15 56.73
Incl. Yes 0.5 55.46*
Incl. Yes 0.15 57.17*
Excl. No 0.5 53.64*
Excl. No 0.15 56.71
Excl. Yes 0.5 55.96*
Excl. Yes 0.15 56.92*

Recasens et al. (2013) 56.90*

No Singleton Detection 56.44

Table 2: Performance of the Stanford system on
the 2012 development set. Significant differences
(p < 0.05) from the baseline are marked *.

Table 3 shows the performance of the Berke-
ley system. Here, singleton detection probabili-
ties are incorporated as a feature. Again, there are
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multiple variations: ‘Prob’ indicates each mention
was assigned its predicted probability as a fea-
ture. ‘Mentions’ indicates each mention was as-
signed a boolean feature indicating whether it was
likely singleton (P < 0.15), and a feature indicat-
ing whether it was likely coreferential (P > 0.8).
‘Pairs’ indicates the same as ‘Mentions’, but for
pairs of mentions, where both have P < 0.15 or
P > 0.8. ‘Both’ indicates that both ‘Mentions’-
and ‘Pairs’-features are added.

Here, the performance differences are much
smaller, yielding only a non-significant 0.3 per-
centage point increase over the baseline. All mod-
els show an increase in precision, and a drop in
recall. In contrast, de Marneffe et al. (2015) report
a larger performance increase of almost 2 percent-
age points for the Berkeley system.

Model CoNLL-F1

Prob 61.83
Prob + Mentions 61.81
Prob + Pairs 62.02
Prob + Both 62.02

No Singleton Detection 61.71

Table 3: Performance of the Berkeley system on
the 2012 development set. As a baseline system,
the system using the ‘FINAL’ feature set was used.
Significant differences (p < 0.05) from the base-
line are marked *.

4 Discussion

The singleton detection model was optimized with
regard to four variables: hidden layer size, num-
ber of context tokens, number of context mentions,
and set of word embeddings.

For hidden layer size, no clear effect was found.
Regarding the set of word embeddings, we found
that higher-dimensional embeddings provide bet-
ter performance, which is in accordance with what
Pennington et al. (2014) found. They, and Col-
lobert et al. (2011), also found that embeddings
trained on more text performed better on a range
of tasks, but we do not see that clearly, here.

As far as the number of context mentions is
concerned, the effect is small, and 2 mentions on
either side seems an optimal number. Since the
closest mentions are likely the most relevant, this
makes sense. Also, since the dataset contains both
short pronoun mentions and longer NP mentions,

the optimal number is likely a compromise; for
pronouns like it, one would expect mentions in the
left-context to be most important, while this is not
the case for NP mentions.

The most counter-intuitive result of parameter
optimization is the fact that just 1 context token
on either side of the mention proved to be optimal.
This contrasts with previous work: de Marneffe
et al. (2015) use 2 words around the mention, and
semantic information from a larger window, and
Bergsma and Yarowsky (2011) use up to 5 words
before and 20 words after it. Looking at the men-
tion detection literature in general, we see that this
pattern holds up: in non-referential it detection,
larger context windows are used than in works that
deal with complete NPs.

Clearly, since large NP mentions already con-
tain more information internally, they require
smaller context windows. Likely, the same dy-
namic is at play here. The OntoNotes dataset con-
tains a majority of NP mentions, and has relatively
long mentions, since it only annotates the largest
NP of a set of nested head-sharing NPs.

The other main observation to be made on the
results is the discrepancy in the effect of single-
ton information on the Berkeley coreference reso-
lution system in this work and that by de Marneffe
et al. (2015). Although singleton detection per-
formance and the performance with the Stanford
system are similar, there is almost no performance
gain with the Berkeley system here.

Using the Berkeley coreference analyser (Kum-
merfeld and Klein, 2013), the types of errors made
by the resolution systems can be analysed. For the
Stanford system, we find the same error type pat-
terns as de Marneffe et al. (2015), which matches
well with the similar performance gain. For the
Berkeley system, the increases in missing entity
and missing mention errors are higher, and we do
not find the large decrease in divided entity errors
that de Marneffe et al. (2015) found. It is difficult
to point out the underlying cause for this, due to
the learning-based nature of the Berkeley system.
Somehow, there is a qualitative difference between
the probabilities produced by the two singleton de-
tection systems.

Regarding the question of how to integrate sin-
gleton information in coreference resolution sys-
tems, the picture is clear. Both here and in de
Marneffe et al. (2015), the best way of using the
information is with a high-precision filter, and for
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pairs of mentions, rather than individual mentions.
The only difference is that excluding named enti-
ties from filtering was not beneficial here, which
might be due to the fact that word embeddings also
cover names, which improves handling of them by
the singleton detection model.

For future work, several avenues of exploration
are available. The first is to split singleton detec-
tion according to mention type (similar to Hoste
and Daelemans (2005) for coreference resolution).
Since the current model covers all types of men-
tions, it cannot exploit specific properties of these
mention types. Training separate systems, for ex-
ample for pronouns and NPs, might boost perfor-
mance.

Another improvement lies with the way men-
tions are represented. Here, a recursive autoen-
coder was used to generate fixed size representa-
tions for variable-length mentions. However, a lot
of information is lost in this compression step, and
perhaps it is not the best compression method. Al-
ternative neural network architectures, such as re-
current neural networks, convolutional neural net-
works, and long short-term memories might yield
better results.

In addition, an improved treatment of unknown
words could boost performance, since their pres-
ence hurts classification accuracy. Currently, an
average of all embeddings is used to represent un-
known words, but more advanced approaches are
possible, e.g. by using part-of-speech information.

To further investigate the interaction between
singleton detection and coreference resolution, it
would be insightful to look into combining the cur-
rent system with more recent coreference resolu-
tion systems (e.g. Wiseman et al., 2016; Clark
and Manning, 2015) which perform better than
the Stanford and Berkeley systems. On the one
hand, singleton detection information could yield
larger gains with these systems, as they might be
able to exploit the information better. For exam-
ple, improved clustering algorithms might bene-
fit more from a reduced number of mentions in
the search space. On the other hand, improve-
ments in these systems could overlap with the gain
from singleton detection information, lowering the
added value of a separate singleton detection sys-
tem.

All in all, it is shown that a word embedding and
neural network based singleton detection system
can perform as well as a learner based on hand-

crafted, linguistic-intuition-based features. With
a straightforward neural network architecture, and
off-the-shelf word embeddings, neither of which
is specifically geared towards this task, state-of-
the-art performance can be achieved. As an added
benefit, this approach can easily be extended to
any other language, if word embeddings are avail-
able.
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