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Abstract

Quantitative analysis of human brain ac-
tivity based on language representations,
such as the semantic categories of words,
have been actively studied in the field of
brain and neuroscience. Our study aims to
generate natural language descriptions for
human brain activation phenomena caused
by visual stimulus by employing deep
learning methods, which have gained in-
terest as an effective approach to automat-
ically describe natural language expres-
sions for various type of multi-modal in-
formation, such as images. We employed
an image-captioning system based on a
deep learning framework as the basis for
our method by learning the relationship
between the brain activity data and the
features of an intermediate expression of
the deep neural network owing to lack of
training brain data. We conducted three
experiments and were able to generate nat-
ural language sentences which enabled us
to quantitatively interpret brain activity.

1 Introduction

In the field of brain and neuroscience, analyzing
semantic activities occurring in the human brain is
an area of active study. Meanwhile, in the field
of computational linguistics, the recent evolution
of deep learning methods has allowed methods of
generating captions for images to be actively stud-
ied. Combining these backgrounds, we propose a
method to quantitatively interpret the states of the
human brain with natural language descriptions,
referring to prior methods developed in the fields
of both brain and neuroscience and computational
linguistics. Because it is difficult to prepare a
large-scale brain activity dataset to train a deep

neural model of generating captions for brain ac-
tivity from scratch, therefore, to handle this prob-
lem, we instead reuse a model trained to generate
captions for images as the basis for our method.
We apply brain activity data, instead of images,
to the image caption-generation frameworks pro-
posed by Vinyals et al.(2015) and Xu et al.(2015)
to generate natural language descriptions express-
ing the contents of the brain activity. In this way,
we aim to achieve a quantitative analysis of brain
activities through language representation.

2 Related Studies

2.1 Language representation estimated from
brain activity

In recent years, in the field of brain and neuro-
science, the quantitative analysis of what a human
recalls using brain activity data observed via func-
tional magnetic resonance imaging (fMRI) while
he or she watches motion pictures has been ac-
tively studied (Mitchell et al., 2008; Nishimoto et
al., 2011; Pereira et al., 2013; Huth et al., 2012;
Stansbury et al., 2013; Horikawa et al., 2013).
Huth et al. (2012) created a map for semantic
representation at the cerebral cortex by revealing
the corresponding relationships between brain ac-
tivities and the words of WordNet (Miller, 1995),
thus representing objects and actions in motion
pictures. Stansbury et al. (2013) employed Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) to
assign semantic labels to still pictures using nat-
ural language descriptions synchronized with the
pictures and discussed the resulting relationship
between the visual stimulus evoked by the still pic-
tures and brain activity. Based on these relation-
ships, they have built a model that classifies brain
activity into semantic categories, revealing the ar-
eas of the brain that deal with particular categories.
Cukur et al. (2013) estimated how a human being
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semantically changes his or her recognition of ob-
jects from the brain activity data in cases where he
or she pays attention to objects in a motion pic-
ture. As mentioned above, Statistical models ana-
lyzing semantic representation in human brain ac-
tivity have attracted considerable attention as ap-
propriate models to explain higher order cognitive
representations based on human sensory or con-
textual information.

Furthermore, Nishida et al.(2015) demonstrated
that skip-gram, employed in the framework of
word2vec proposed by Mikolov (2013), is a more
appropriate model than the conventional statisti-
cal models used for the quantitative analysis of se-
mantic representation in human brain activity un-
der the same experimental settings as the prior
studies. Moreover, they showed that there is a
correlation between the distributed semantics, ob-
tained by employing skip-gram to build distributed
semantic vectors in the framework of word2vec
with the Japanese Wikipedia corpus, and brain ac-
tivity observed through blood oxygen level depen-
dent (BOLD) contrast imaging via fMRI.

Prior studies have attempted to quantitatively
analyze the relationship between semantic cate-
gories and human brain activity from the perspec-
tive of language representation, especially, the se-
mantic categories of words. In this study, we aim
to take a step further toward quantitatively analyz-
ing this relationship by expressing brain activity
with natural language descriptions.

2.2 Caption generation from images
Many previous studies on image caption genera-
tion have been based on two principal approaches.
The first approach is to retrieve existing captions
from a large database for a given image by ranking
the captions (Kuznetsova et al., 2012; Kuznetsova
et al., 2014; Vendrov et al., 2016; Yagcioglu et
al., 2015). The second approach is to fill sen-
tence templates based on the features extracted
from a given image, such as objects and spatial
relationships (Elliott and Keller, 2013; Elliott and
Vries, 2015; Kulkarni et al., 2013; Mitchell et al.,
2012). Although these approaches can produce ac-
curate descriptions, they are neither flexible nor
natural descriptions such as the ones written by
humans. Recently, multiple methods proposed
for generating captions for images have been de-
veloped based on the encoder-decoder (enc-dec)
framework (Cho et al., 2014; Cho et al., 2015),
which is typically used for media transforma-

tion (Chorowski, 2015), e.g., machine transla-
tion (Sutskever et al., 2014; Cho et al., 2014; Kiros
et al., 2014; Bahdanau et al., 2015), to generate
captions for images (Donahue et al., 2015; Kiros
et al., 2015; Mao et al., 2014; Vinyals et al., 2015).

In the enc-dec framework, by combining two
deep neural network models functioning as an en-
coder and a decoder, the enc-dec model first en-
codes input information into an intermediate ex-
pression and then decodes it into an expression in
a different modality than that of the input informa-
tion. Vinyals et al. (2015) achieved caption gen-
eration for images by building a enc-dec network
employing GoogLeNet (Ioffe and Szegedy, 2015),
which works effectively to extract the features
of images, as the encoder, and Long Short-Term
Memory Language Model (LSTM-LM) (Hochre-
iter and Schmidhuber, 1997; Sutskever et al.,
2014), which is a deep neural language model, as
the decoder. Xu et al. (2015) proposed a model
using the Attention Mechanism (Cho et al., 2015)
and demonstrated that the model achieved high
precision when generating captions. Attention
Mechanism is a system that automatically learns
to pay attention to different parts of the input for
each element of the output (Bahdanau et al., 2015;
Cho et al., 2015; Yao et al., 2015).

In our study, we provide an enc-dec network
with brain activity data as input, instead of an im-
age, and attempt to generate natural language de-
scriptions for this data.

3 Proposed Method

First, the process to generate captions for images
using deep neural networks, employed in Vinyals
et al.(2015) and Xu et al.(2015), works as follows:

Step 1. Encoder: Extraction of features using VGGNet
The encoder VGGNet (Simonyan and Zisserman,
2015), a pre-trained deep convolutional network, ex-
tracts the features from the input image. In the case
with Attention Mechanism, the output of the encoder
is 512×14×14 dimensional data from the intermediate
convolutional layer of VGGNet. In the case without
Attention Mechanism, the output is 4,096 dimensional
data from the last fully-connected layer of VGGNet.

Step 2. Process for intermediate expression
In the case with Attention Mechanism, the weighted
sum of the set of the intermediate expressions calcu-
lated in Step 1 is computed as the input for the decoder.
The weighted coefficients are learned by means of a
multi-layered perceptron based on the hidden states of
the decoder at the previous time step and 512 interme-
diate expressions. In the case without Attention Mech-
anism, the output of the encoder from Step 1 is just the
input of the decoder in Step 3.
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Step 3. Decoder: Word estimation by LSTM-LM
The LSTM-LM decoder predicts the next word from
the intermediate expression produced in Step 2 and the
hidden states of LSTM at the previous time step.

Step 4. Caption generation by iterative word estimation
A caption is generated by estimating the words one-by-
one repeating Steps 2 and 3 until either the length of
the sentence exceeds the predefined maximum or the
terminal symbol of a sentence is output.

This study aims to generate natural language
sentences that describe the events a human be-
ing calls to mind from the human brain activ-
ity input data observed by fMRI via the above
caption-generation process. Figures 1 and 2 show
overviews of our methods with and without Atten-
tion Mechanism, respectively. In essence, we train
a simple model, a 3-layered perceptron (multi-
layered perceptron; MLP) or ridge regression
model, to learn the corresponding relationships
between the cerebral nerve activity data stimulated
by the input images and the features of the same
image extracted by VGGNet, namely, the interme-
diate expression as for the image caption genera-
tor. The model replaces VGGNet as the encoder
when brain activity data are used as input infor-
mation instead of images. Then, the rest of the
process to generate captions is the same as that of
the above image caption generator. The process of
the proposed method is as follows:

Step 1. Encode brain activity to an intermediate expression
The model, which is pre-trained to learn the mapping
from the brain activity data stimulated by an image to
the features extracted from the same image by VG-
GNet, maps the input brain data to an intermediate ex-
pression.

Step 2 ∼ 4. The rest of the process is the same as above.

4 Experiments

In this study, we conducted three experiments, un-
der the conditions shown in Table 2, using the
model of caption generation for images and the
model to learn the corresponding relationships be-
tween the brain activity data and the features ob-
tained from VGGNet. The model for Exp.1 is
illustrated in Figure 1, and the models for both
Exps.2 and 3 are illustrated in Figure 2.

4.1 Experimental settings

We employed Chainer1 as the deep-learning
framework. We used Microsoft COCO2, which
contains 414,113 pairs of data with still pictures

1http://chainer.org/
2http://mscoco.org/

and natural language descriptions of their con-
tents, as the training data for the building caption-
generation model. In this study, we have so far
been able to train the network with 168,000 pairs
of the total dataset in the below experiments.

Table 2: The experimental setting.
Exp. Image to Caption Brain to Intermediate

Exp.1 Attention Mechanism 3-layered MLP
Exp.2 Without (Neural Network)
Exp.3 Attention Mechanism Ridge regression

We employed the brain activity data of a sub-
ject being stimulated by motion pictures (Nishi-
moto et al., 2011) as the data for training and eval-
uation. In the experiments, we used BOLD sig-
nals observed every 2s via fMRI while the sub-
ject was watching motion pictures as the brain ac-
tivity data, and the still pictures extracted from
the motion pictures were synchronized with the
brain data. The brain activity data were ob-
served throughout the brain and were recorded
in 100(x)×100(y)×32(z) voxels. We employed
30,662 voxels corresponding to only the cerebral
cortex region, which is the area of the whole brain,
in the above observed voxels as input brain data
(see, Figure 3). In the Exp.1, the multi-layered
perceptron learns the corresponding relationships
between the input 30,662 dimensional brain data
and the 14×14×512=100,352 dimensional data of
the intermediate layer of VGGNet. In Exps.2 and
3, the 4,096 dimensional feature vector output by
VGGNet is the target that needs to be correlated
with the brain activity data. We have only 3,600
training brain activity data which are too small to
train deep neural networks, so we have applied a
pre-trained deep neural image caption generator to
the task for describing brain activity caused by vi-
sual stimulation.

4.2 Exp.1: With Attention Mechanism and
3-layered MLP

First, we confirmed that our caption-generation
model with the Attention Mechanism was well
trained and had learned “attention” by generat-
ing captions and visualizing the attention for two
pictures randomly selected from the COCO test
dataset, as shown in Figure 4. Figure 5 shows
two sets of still pictures and the generated descrip-
tions for the brain activity data selected from the
test dataset. Table 3 shows the perplexity of the
generated captions for the COCO images and the
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Figure 1: Overview of our approach (Exp.1: With Attention Mechanism and 3-Layered MLP).

Figure 2: Overview of our approach (Exps.2 and 3: Without Attention Mechanism and with 3-Layered
MLP or Ridge regression).

Table 2: Details of the experimental settings.
Exp.1: Image to Caption Exps.2 and 3: Image to Caption Exp.1: Brain to Intermediates Exp.2: Brain to Intermediate Exp.3: Brain to Intermediate 3

with Attention without Attention 3-Layered MLP 3-Layered MLP Ridge regression
Dataset Microsoft COCO brain activity data

learning rate : 1.0 (× 0.999) learning rate : 0.01
Hyper-parameters gradient norm threshold : 5 gradient norm threshold : 5 L2-norm : 0.5

L2-norm : 0.005 L2-norm : 0.005
Learned parameters Attention & LSTM LSTM weight in 3-Layered MLP parameters in Ridge reg.

initialized in [-0.1,0.1] initialized in [-0.1,0.1] initialized in [-0.2,0.2] initialized to 0
Units per layer 196 units 1,000 units 30,662 - 1,000 - 100,352 30,662 - 1,000 - 4,096 -

Vocabulary Frequent 3,469 words (512-dim vector) -
Algorithm stochastic gradient descent stochastic gradient descent ridge regression

Loss function cross entropy mean squared error

Figure 3: 30,662 voxels observed as the cerebral cortex region.
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mean square error in the training process of the 3-
layered MLP; the decreasing values of both quan-
tities indicates the training progress.

The generated sentences for Exp.1 are not
grammatically correct – they primarily comprise
unsuitable meaningless prepositions and do not
explain the contexts of the images. As for the eval-
uation of learning the model, the mean square er-
ror did not decrease sufficiently. This is proba-
bly caused by the fact that the output dimensions
(100,352) are too large compared with the input
dimensions (30,662) to learn the corresponding re-
lationships between the brain activity data and the
set of intermediate expressions.

Figure 4: Caption generation with Attention
Mechanism: target picture (left), generated cap-
tion (center), and attention (right).

Figure 5: Exp.1:Presented stimuli and the descrip-
tions generated from the evoked brain activity.

Table 3: Exp.1: Training evaluation.
Num. of data Perplexity Iteration MSE

14000 88.67 1 118.32
42000 66.24 5 116.44
84000 60.40 10 114.31

126000 60.10 15 112.36
168000 60.32 16 112.01

4.3 Exp.2: Without Attention Mechanism
and with 3-Layered MLP

Using the same procedure as Exp.1, we confirmed
that our caption-generation model without Atten-
tion Mechanism was well trained by generating
captions for two pictures.

Figure 6 shows two sets of still pictures and the
generated descriptions for the brain activity data.
Table 4 shows the perplexity of the generated im-
age captions and the mean square error of MLP.

Relative to the result of Exp.1, the meaningless
prepositions disappear and the generated words
seem to depict the image, that is, our model ac-
quires more appropriate expressions, both syntac-
tically and semantically. This is probably because
MLP could learn the relationship better by reduc-
ing the output dimension from 100,352 to 4,096;
we can confirm this by looking at the decrease in
the mean square error.

Figure 6: Exp.2:Presented stimuli and the descrip-
tions generated from the evoked brain activity.

Table 4: Exp.2: Training evaluation.
Num. of data Perplexity Iteration MSE

14000 96.50 1 28.95
42000 47.87 5 22.70
84000 47.22 10 17.19
126000 47.37 15 13.37
168000 46.30 20 10.76

4.4 Exp.3: Without Attention Mechanism
and with Ridge regression

Figure 7 shows two sets of pictures and descrip-
tions for the brain activity data selected from the
test data. The perplexity of the generated captions
for the images is the same as in Exp.2, and the
mean square error using ridge regression is 8.675.

The generated sentences are syntactically estab-
lished, that is, prepositions, e.g., “in” and “on,”
and articles, e.g., “an,” are precisely used. Com-
pared with the results of Exps.1 and 2, we can see
that the grammar of the descriptions has consid-
erably improved. Except for the subjects in the
descriptions, the contents of the images are cor-
rectly described. In particular, in the descriptions
of the second image, an appropriate description of
the image is generated, as we see that the person
and umbrella are both recognized and their rela-
tionship is correctly described. In addition, Exp.3
had the lowest mean square error.
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In these three experiments, we confirmed that
the methods without Attention Mechanism per-
form better than that with Attention Mechanism
and that ridge regression produces better results
than 3-layered perceptron. Therefore, we can con-
clude that a simple method that can avoid over-
fitting the data is more appropriate for noisy and
small data, such as brain activity data. However,
in Exp.2, if we trained the network with more
datasets, this result might be changed because we
have observed that the mean square error of MLP
has been decreasing.

Figure 7: Exp.3:Presented stimuli and the descrip-
tions generated from the evoked brain activity.

5 Conclusions

We proposed a method to generate descriptions of
brain activity data by employing a framework to
generate captions for still pictures using deep neu-
ral networks and by learning the corresponding re-
lationships between the brain activity data and the
features of the images extracted by VGGNet. We
conducted three experiments to confirm our pro-
posed method. We found that the model without
Attention Mechanism using ridge regression per-
formed the best in our experimental settings. In
the future, we aim to increase the accuracy of our
method to generate captions by revising the pa-
rameter settings, using additional training data and
introducing evaluation measures, such as BLEU
and METEOR. Moreover, we will further consider
ways to learn the relationship between brain activ-
ity data and the intermediate expression and will
introduce Bayesian optimization to optimize the
parameter settings.
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