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Abstract

Understanding unstructured text is a ma-
jor goal within natural language process-
ing. Comprehension tests pose questions
based on short text passages to evaluate
such understanding. In this work, we in-
vestigate machine comprehension on the
challenging MCTest benchmark. Partly
because of its limited size, prior work
on MCTest has focused mainly on engi-
neering better features. We tackle the
dataset with a neural approach, harness-
ing simple neural networks arranged in a
parallel hierarchy. The parallel hierarchy
enables our model to compare the pas-
sage, question, and answer from a vari-
ety of trainable perspectives, as opposed
to using a manually designed, rigid fea-
ture set. Perspectives range from the word
level to sentence fragments to sequences
of sentences; the networks operate only on
word-embedding representations of text.
When trained with a methodology de-
signed to help cope with limited training
data, our Parallel-Hierarchical model sets
a new state of the art for MCTest, outper-
forming previous feature-engineered ap-
proaches slightly and previous neural ap-
proaches by a significant margin (over 15
percentage points).

1 Introduction

Humans learn in a variety of ways—by communi-
cation with each other and by study, the reading
of text. Comprehension of unstructured text by
machines, at a near-human level, is a major goal
for natural language processing. It has garnered

∗A. Trischler and Z. Ye contributed equally to this work.

significant attention from the machine learning re-
search community in recent years.

Machine comprehension (MC) is evaluated by
posing a set of questions based on a text pas-
sage (akin to the reading tests we all took in
school). Such tests are objectively gradable and
can be used to assess a range of abilities, from
basic understanding to causal reasoning to infer-
ence (Richardson et al., 2013). Given a text pas-
sage and a question about its content, a system is
tested on its ability to determine the correct an-
swer (Sachan et al., 2015). In this work, we focus
on MCTest, a complex but data-limited compre-
hension benchmark, whose multiple-choice ques-
tions require not only extraction but also infer-
ence and limited reasoning (Richardson et al.,
2013). Inference and reasoning are important hu-
man skills that apply broadly, beyond language.

We present a parallel-hierarchical approach to
machine comprehension designed to work well in
a data-limited setting. There are many use-cases in
which comprehension over limited data would be
handy: for example, user manuals, internal doc-
umentation, legal contracts, and so on. More-
over, work towards more efficient learning from
any quantity of data is important in its own right,
for bringing machines more in line with the way
humans learn. Typically, artificial neural networks
require numerous parameters to capture complex
patterns, and the more parameters, the more train-
ing data is required to tune them. Likewise, deep
models learn to extract their own features, but this
is a data-intensive process. Our model learns to
comprehend at a high level even when data is
sparse.

The key to our model is that it compares the
question and answer candidates to the text using
several distinct perspectives. We refer to a ques-
tion combined with one of its answer candidates
as a hypothesis (to be detailed below). The seman-
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tic perspective compares the hypothesis to sen-
tences in the text viewed as single, self-contained
thoughts; these are represented using a sum and
transformation of word embedding vectors, sim-
ilarly to Weston et al. (2014). The word-by-word
perspective focuses on similarity matches between
individual words from hypothesis and text, at var-
ious scales. As in the semantic perspective, we
consider matches over complete sentences. We
also use a sliding window acting on a subsentential
scale (inspired by the work of Hill et al. (2015)),
which implicitly considers the linear distance be-
tween matched words. Finally, this word-level
sliding window operates on two different views
of story sentences: the sequential view, where
words appear in their natural order, and the depen-
dency view, where words are reordered based on a
linearization of the sentence’s dependency graph.
Words are represented throughout by embedding
vectors (Bengio et al., 2000; Mikolov et al., 2013).
These distinct perspectives naturally form a hierar-
chy that we depict in Figure 1. Language is hierar-
chical, so it makes sense that comprehension relies
on hierarchical levels of understanding.

The perspectives of our model can be consid-
ered a type of feature. However, they are im-
plemented by parametric differentiable functions.
This is in contrast to most previous efforts on
MCTest, whose numerous hand-engineered fea-
tures cannot be trained. Our model, significantly,
can be trained end-to-end with backpropagation.
To facilitate learning with limited data, we also
develop a unique training scheme. We initialize
the model’s neural networks to perform specific
heuristic functions that yield decent (though not
impressive) performance on the dataset. Thus, the
training scheme gives the model a safe, reasonable
baseline from which to start learning. We call this
technique training wheels.

Computational models that comprehend (inso-
far as they perform well on MC datasets) have
been developed contemporaneously in several re-
search groups (Weston et al., 2014; Sukhbaatar et
al., 2015; Hill et al., 2015; Hermann et al., 2015;
Kumar et al., 2015). Models designed specifi-
cally for MCTest include those of Richardson et
al. (2013), and more recently Sachan et al. (2015),
Wang et al. (2015), and Yin et al. (2016). In exper-
iments, our Parallel-Hierarchical model achieves
state-of-the-art accuracy on MCTest, outperform-
ing these existing methods.

Below we describe related work, the mathemat-
ical details of our model, and our experiments,
then analyze our results.

2 The Problem

In this section, we borrow from Sachan et al.
(2015), who laid out the MC problem nicely. Ma-
chine comprehension requires machines to answer
questions based on unstructured text. This can
be viewed as selecting the best answer from a set
of candidates. In the multiple-choice case, can-
didate answers are predefined, but candidate an-
swers may also be undefined yet restricted (e.g., to
yes, no, or any noun phrase in the text) (Sachan et
al., 2015).

For each question q, let T be the unstructured
text and A = {ai} the set of candidate answers
to q. The machine comprehension task reduces to
selecting the answer that has the highest evidence
given T . As in Sachan et al. (2015), we combine
an answer and a question into a hypothesis, hi =
f(q, ai). To facilitate comparisons of the text with
the hypotheses, we also break down the passage
into sentences tj , T = {tj}. In our setting, q,
ai, and tj each represent a sequence of embedding
vectors, one for each word and punctuation mark
in the respective item.

3 Related Work

Machine comprehension is currently a hot topic
within the machine learning community. In this
section we will focus on the best-performing mod-
els applied specifically to MCTest, since it is some-
what unique among MC datasets (see Section 5).
Generally, models can be divided into two cate-
gories: those that use fixed, engineered features,
and neural models. The bulk of the work on
MCTest falls into the former category.

Manually engineered features often require sig-
nificant effort on the part of a designer, and/or
various auxiliary tools to extract them, and they
cannot be modified by training. On the other
hand, neural models can be trained end-to-end and
typically harness only a single feature: vector-
representations of words. Word embeddings are
fed into a complex and possibly deep neural net-
work which processes and compares text to ques-
tion and answer. Among deep models, mecha-
nisms of attention and working memory are com-
mon, as in Weston et al. (2014) and Hermann et al.
(2015).
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3.1 Feature-engineering models

Sachan et al. (2015) treated MCTest as a structured
prediction problem, searching for a latent answer-
entailing structure connecting question, answer,
and text. This structure corresponds to the best
latent alignment of a hypothesis with appropri-
ate snippets of the text. The process of (latently)
selecting text snippets is related to the attention
mechanisms typically used in deep networks de-
signed for MC and machine translation (Bahdanau
et al., 2014; Weston et al., 2014; Hill et al.,
2015; Hermann et al., 2015). The model uses
event and entity coreference links across sentences
along with a host of other features. These include
specifically trained word vectors for synonymy;
antonymy and class-inclusion relations from ex-
ternal database sources; dependencies and seman-
tic role labels. The model is trained using a latent
structural SVM extended to a multitask setting, so
that questions are first classified using a pretrained
top-level classifier. This enables the system to use
different processing strategies for different ques-
tion categories. The model also combines question
and answer into a well-formed statement using the
rules of Cucerzan and Agichtein (2005).

Our model is simpler than that of Sachan et
al. (2015) in terms of the features it takes in, the
training procedure (stochastic gradient descent vs.
alternating minimization), question classification
(we use none), and question-answer combination
(simple concatenation or mean vs. a set of rules).

Wang et al. (2015) augmented the baseline fea-
ture set from Richardson et al. (2013) with fea-
tures for syntax, frame semantics, coreference
chains, and word embeddings. They combined
features using a linear latent-variable classifier
trained to minimize a max-margin loss function.
As in Sachan et al. (2015), questions and answers
are combined using a set of manually written rules.
The method of Wang et al. (2015) achieved the
previous state of the art, but has significant com-
plexity in terms of the feature set.

Space does not permit a full description of all
models in this category, but we refer the reader
to the contributions of Smith et al. (2015) and
Narasimhan and Barzilay (2015) as well.

Despite its relative lack of features, the Parallel-
Hierarchical model improves upon the feature-
engineered state of the art for MCTest by a small
amount (about 1% absolute) as detailed in Sec-
tion 5.

3.2 Neural models

Neural models have, to date, performed relatively
poorly on MCTest. This is because the dataset is
sparse and complex.

Yin et al. (2016) investigated deep-learning
approaches concurrently with the present work.
They measured the performance of the Attentive
Reader (Hermann et al., 2015) and the Neural Rea-
soner (Peng et al., 2015), both deep, end-to-end
recurrent models with attention mechanisms, and
also developed an attention-based convolutional
network, the HABCNN. Their network operates
on a hierarchy similar to our own, providing fur-
ther evidence of the promise of hierarchical per-
spectives. Specifically, the HABCNN processes
text at the sentence level and the snippet level,
where the latter combines adjacent sentences (as
we do through an n-gram input). Embedding vec-
tors for the question and the answer candidates
are combined and encoded by a convolutional net-
work. This encoding modulates attention over sen-
tence and snippet encodings, followed by max-
pooling to determine the best matches between
question, answer, and text. As in the present work,
matching scores are given by cosine similarity.
The HABCNN also makes use of a question clas-
sifier.

Despite the conceptual overlap between the
HABCNN and our approach, the Parallel-
Hierarchical model performs significantly better
on MCTest (more than 15% absolute) as detailed
in Section 5. Other neural models tested in Yin et
al. (2016) fare even worse.

4 The Parallel-Hierarchical Model

Let us now define our machine comprehension
model in full. We first describe each of the per-
spectives separately, then describe how they are
combined. Below, we use subscripts to index el-
ements of sequences, like word vectors, and su-
perscripts to indicate whether elements come from
the text, question, or answer. In particular, we use
the subscripts k,m, n, p to index sequences from
the text, question, answer, and hypothesis, respec-
tively, and superscripts t, q, a, h. We depict the
model schematically in Figure 1.

4.1 Semantic Perspective

The semantic perspective is similar to the Mem-
ory Networks approach for embedding inputs into
memory space (Weston et al., 2014). Each sen-

434



Semantic Sentential

SW-sequential SW-dependency

MLP

Word-by-word

top N

tj
tj |tj+1

unigram
bigram

tj | tj+1tj-1 |trigram

MLP+Sum MLP

Embedding

q ai

Mi

Figure 1: Schematic of the Parallel-Hierarchical
model. SW stands for “sliding window.” MLP
represents a fully connected neural network.

tence of the text is a sequence of d-dimensional
word vectors: tj = {tk}, tk ∈ Rd. The semantic
vector st is computed by embedding the word vec-
tors into a D-dimensional space using a two-layer
network that implements weighted sum followed
by an affine tranformation and a nonlinearity; i.e.,

st = f

(
At
∑

k

ωktk + bt
A

)
. (1)

The matrix At ∈ RD×d, the bias vector bt
A ∈

RD, and for f we use the leaky ReLU function.
The scalar ωk is a trainable weight associated
with each word in the vocabulary. These scalar
weights implement a kind of exogenous or bottom-
up attention that depends only on the input stimu-
lus (Mayer et al., 2004). They can, for example,
learn to perform the function of stopword lists in
a soft, trainable way, to nullify the contribution of
unimportant filler words.

The semantic representation of a hypothesis is
formed analogously, except that we concatenate
the question word vectors qm and answer word
vectors an as a single sequence {hp} = {qm, an}.
For semantic vector sh of the hypothesis, we use
a unique transformation matrix Ah ∈ RD×d and
bias vector bh

A ∈ RD.
These transformations map a text sentence and

a hypothesis into a common space where they can
be compared. We compute the semantic match be-

tween text sentence and hypothesis using the co-
sine similarity,

M sem = cos(st, sh). (2)

4.2 Word-by-Word Perspective

The first step in building the word-by-word per-
spective is to transform word vectors from a
text sentence, question, and answer through re-
spective neural functions. For the text, t̃k =
f
(
Bttk + bt

B

)
, where Bt ∈ RD×d, bt

B ∈ RD

and f is again the leaky ReLU. We transform the
question and the answer to q̃m and ãn analogously
using distinct matrices and bias vectors. In con-
trast to the semantic perspective, we keep the ques-
tion and answer candidates separate in the word-
by-word perspective. This is because matches
to answer words are inherently more important
than matches to question words, and we want our
model to learn to use this property.

4.2.1 Sentential
Inspired by the work of Wang and Jiang (2015)
in paraphrase detection, we compute matches be-
tween hypotheses and text sentences at the word
level. This computation uses the cosine similarity
as before:

cqkm = cos(̃tk, q̃m), (3)

cakn = cos(̃tk, ãn). (4)

The word-by-word match between a text sen-
tence and question is determined by taking the
maximum over k (finding the text word that best
matches each question word) and then taking a
weighted mean over m (finding the average match
over the full question):

M q =
1
Z

∑
m

ωm max
k

cqkm. (5)

Here, ωm is the word weight for the question word
andZ normalizes these weights to sum to one over
the question. We define the match between a sen-
tence and answer candidate, Ma, analogously. Fi-
nally, we combine the matches to question and an-
swer according to

Mword = α1M
q + α2M

a + α3M
qMa. (6)

Here, the α are trainable parameters that control
the relative importance of the terms.
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4.2.2 Sequential Sliding Window

The sequential sliding window is related to the
original MCTest baseline by Richardson et al.
(2013). Our sliding window decays from its focus
word according to a Gaussian distribution, which
we extend by assigning a trainable weight to each
location in the window. This modification en-
ables the window to use information about the dis-
tance between word matches; the original base-
line (Richardson et al., 2013) used distance infor-
mation through a predefined function.

The sliding window scans over the words of
the text as one continuous sequence, without sen-
tence breaks. Each window is treated like a sen-
tence in the previous subsection, but we include a
location-based weight λ(k). This weight is based
on a word’s position in the window, which, given
a window, depends on its global position k. The
cosine similarity is adapted as

sq
km = λ(k) cos(̃tk, q̃m), (7)

for the question and analogously for the answer.
We initialize the location weights with a Gaus-
sian and fine-tune them during training. The final
matching score, denoted as M sws, is computed as
in (5) and (6) with sq

km replacing cqkm.

4.2.3 Dependency Sliding Window

The dependency sliding window operates identi-
cally to the linear sliding window, but on a differ-
ent view of the text passage. The output of this
component is M swd and is formed analogously to
M sws.

The dependency perspective uses the Stanford
Dependency Parser (Chen and Manning, 2014) as
an auxiliary tool. Thus, the dependency graph can
be considered a fixed feature. Moreover, lineariza-
tion of the dependency graph, because it relies
on an eigendecomposition, is not differentiable.
However, we handle the linearization in data pre-
processing so that the model sees only reordered
word-vector inputs.

Specifically, we run the Stanford Dependency
Parser on each text sentence to build a dependency
graph. This graph has nw vertices, one for each
word in the sentence. From the dependency graph
we form the Laplacian matrix L ∈ Rnw×nw and
determine its eigenvectors. The second eigenvec-
tor u2 of the Laplacian is known as the Fiedler

vector. It is the solution to the minimization

minimize
g

N∑
i,j=1

ηij(g(vi)− g(vj))2, (8)

where vi are the vertices of the graph and ηij is
the weight of the edge from vertex i to vertex
j (Golub and Van Loan, 2012). The Fiedler vector
maps a weighted graph onto a line such that con-
nected nodes stay close, modulated by the connec-
tion weights.1 This enables us to reorder the words
of a sentence based on their proximity in the de-
pendency graph. The reordering of the words is
given by the ordered index set

I = arg sort(u2). (9)

To give an example of how this works, con-
sider the following sentence from MCTest and its
dependency-based reordering:

Jenny, Mrs. Mustard ’s helper, called the
police.
the police, called Jenny helper, Mrs. ’s
Mustard.

Sliding-window-based matching on the original
sentence will answer the question Who called the
police? with Mrs. Mustard. The dependency re-
ordering enables the window to determine the cor-
rect answer, Jenny.

4.3 Combining Distributed Evidence

It is important in comprehension to synthesize in-
formation found throughout a document. MCTest
was explicitly designed to ensure that it could not
be solved by lexical techniques alone, but would
instead require some form of inference or limited
reasoning (Richardson et al., 2013). It therefore
includes questions where the evidence for an an-
swer spans several sentences.

To perform synthesis, our model also takes in n-
grams of sentences, i.e., sentence pairs and triples
strung together. The model treats these exactly
as it treats single sentences, applying all func-
tions detailed above. A later pooling operation
combines scores across all n-grams (including the
single-sentence input). This is described in the
next subsection.

1We experimented with assigning unique edge weights to
unique relation types in the dependency graph. However, this
had negligible effect. We hypothesize that this is because
dependency graphs are trees, which do not have cycles.

436



With n-grams, the model can combine infor-
mation distributed across contiguous sentences.
In some cases, however, the required evidence is
spread across distant sentences. To give our model
some capacity to deal with this scenario, we take
the top N sentences as scored by all the preced-
ing functions, and then repeat the scoring compu-
tations, viewing these top N as a single sentence.

The reasoning behind these approaches can be
explained well in a probabilistic setting. If we con-
sider our similarity scores to model the likelihood
of a text sentence given a hypothesis, p(tj | hi),
then the n-gram and top N approaches model a
joint probability p(tj1 , tj2 , . . . , tjk

| hi). We can-
not model the joint probability as a product of in-
dividual terms (score values) because distributed
pieces of evidence are likely not independent.

4.4 Combining Perspectives
We use a multilayer perceptron (MLP) to combine
M sem, Mword, M swd, and M sws, as well as the
scores for separate n-grams, as a final matching
score Mi for each answer candidate. This MLP
has multiple layers of staged input, because the
distinct scores have different dimensionality: there
is one M sem and one Mword for each story sen-
tence, and oneM swd and oneM sws for each appli-
cation of the sliding window. The MLP’s activa-
tion function is linear.

Our overall training objective is to minimize the
ranking loss

L(T, q, A) = max(0, µ+ max
i
Mi 6=i∗ −Mi∗),

(10)
where µ is a constant margin, i∗ indexes the cor-
rect answer. We take the maximum over i so that
we are ranking the correct answer over the best-
ranked incorrect answer (of which there are three).
This approach worked better than comparing the
correct answer to the incorrect answers individu-
ally as in Wang et al. (2015).

Our implementation of the Parallel-Hierarchical
model, built in Theano (Bergstra et al., 2010) us-
ing the Keras framework (Chollet, 2015), is avail-
able on Github.2

4.5 Training Wheels
Before training, we initialized the neural-network
components of our model to perform sensible
heuristic functions. Training did not converge on
the small MCTest without this vital approach.

2https://github.com/Maluuba/mctest-model

Empirically, we found that we could achieve
above 50% accuracy on MCTest using a simple
sum of word vectors followed by a dot product be-
tween the story-sentence sum and the hypothesis
sum. Therefore, we initialized the network for the
semantic perspective to perform this sum, by ini-
tializing Ax as the identity matrix and bx

A as the
zero vector, x ∈ {t, h}. Recall that the activation
function is aReLU so that positive outputs are un-
changed.

We also found basic word-matching scores to
be helpful, so we initialized the word-by-word
networks likewise. The network for perspective-
combination was initialized to perform a sum of
individual scores, using a zero bias-vector and a
weight matrix of ones, since we found that each
perspective contributed positively to the overall re-
sult.

This training wheels approach is related to
other techniques from the literature. For in-
stance, Socher et al. (2013) proposed the identity-
matrix initialization in the context of parsing,
and Le et al. (2015) proposed it in the context
of recurrent neural networks (to preserve the er-
ror signal through backpropagation). In residual
networks (He et al., 2015), shortcut connections
bypass certain layers in the network so that a sim-
pler function can be trained in conjunction with
the full model.

5 Experiments

5.1 The Dataset

MCTest is a collection of 660 elementary-level
children’s stories and associated questions, writ-
ten by human subjects. The stories are fictional,
ensuring that the answer must be found in the text
itself, and carefully limited to what a young child
can understand (Richardson et al., 2013).

The more challenging variant consists of 500
stories with four multiple-choice questions each.
Despite the elementary level, stories and questions
are more natural and more complex than those
found in synthetic MC datasets like bAbI (Weston
et al., 2014) and CNN (Hermann et al., 2015).

MCTest is challenging because it is both com-
plicated and small. As per Hill et al. (2015), “it
is very difficult to train statistical models only on
MCTest.” Its size limits the number of parame-
ters that can be trained, and prevents learning any
complex language modeling simultaneously with
the capacity to answer questions.
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5.2 Training and Model Details

In this section we describe important details of the
training procedure and model setup. For a com-
plete list of hyperparameter settings, our stopword
list, and other minutiæ, we refer interested readers
to our Github repository.

For word vectors we use Google’s publicly
available embeddings, trained with word2vec on
the 100-billion-word News corpus (Mikolov et al.,
2013). These vectors are kept fixed throughout
training, since we found that training them was
not helpful (likely because of MCTest’s size). The
vectors are 300-dimensional (d = 300).

We do not use a stopword list for the text pas-
sage, instead relying on the trainable word weights
to ascribe global importance ratings to words.
These weights are initialized with the inverse doc-
ument frequency (IDF) statistic computed over the
MCTest corpus.3 However, we do use a short stop-
word list for questions. This list nullifies query
words such as {who, what, when, where, how},
along with conjugations of the verbs to do and to
be.

Following earlier methods, we use a heuris-
tic to improve performance on negation ques-
tions (Sachan et al., 2015; Wang et al., 2015).
When a question contains the words which and
not, we negate the hypothesis ranking scores so
that the minimum becomes the maximum. This
heuristic leads to an improvement around 6% on
the validation set.

The most important technique for training the
model was the training wheels approach. With-
out this, training was not effective at all (see the
ablation study in Table 2). The identity initializa-
tion requires that the network weight matrices are
square (d = D).

We found dropout (Srivastava et al., 2014) to be
particularly effective at improving generalization
from the training to the test set, and used 0.5 as
the dropout probability. Dropout occurs after all
neural-network transformations, if those transfor-
mations are allowed to change with training. Our
best performing model held networks at the word-
by-word level fixed.

For combining distributed evidence, we used
up to trigrams over sentences and our best-
performing model reiterated over the top two sen-
tences (N = 2).

3We override the IDF initialization for words like not,
which are frequent but highly informative.

We used the Adam optimizer with the standard
settings (Kingma and Ba, 2014) and a learning
rate of 0.003. To determine the best hyperpa-
rameters we performed a search over 150 settings
based on validation-set accuracy. MCTest’s orig-
inal validation set is too small for reliable hy-
perparameter tuning, so, following Wang et al.
(2015), we merged the training and validation sets
of MCTest-160 and MCTest-500, then split them
randomly into a 250-story training set and a 200-
story validation set. This repartition of the data
did not affect overall performance per se; rather,
the larger validation set made it easier to choose
hyperparameters because validation results were
more consistent.

5.3 Results

Table 1 presents the performance of feature-
engineered and neural methods on the MCTest test
set. Accuracy scores are divided among questions
whose evidence lies in a single sentence (single)
and across multiple sentences (multi), and among
the two variants. Clearly, MCTest-160 is easier.

The first three rows represent feature-
engineered methods. Richardson et al. (2013) +
RTE is the best-performing variant of the original
baseline published along with MCTest. It uses a
lexical sliding window and distance-based mea-
sure, augmented with rules for recognizing textual
entailment. We described the methods of Sachan
et al. (2015) and Wang et al. (2015) in Section 3.
On MCTest-500, the Parallel Hierarchical model
significantly outperforms these methods on single
questions (> 2%) and slightly outperforms the
latter two on multi questions (≈ 0.3%) and overall
(≈ 1%). The method of Wang et al. (2015)
achieves the best overall result on MCTest-160.
We suspect this is because our neural method
suffered from the relative lack of training data.

The last four rows in Table 1 are neural methods
that we discussed in Section 3. Performance mea-
sures are taken from Yin et al. (2016). Here we
see our model outperforming the alternatives by a
large margin across the board (> 15%). The Neu-
ral Reasoner and the Attentive Reader are large,
deep models with hundreds of thousands of pa-
rameters, so it is unsurprising that they performed
poorly on MCTest. The specifically-designed
HABCNN fared better, its convolutional architec-
ture cutting down on the parameter count. Because
there are similarities between our model and the
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Method MCTest-160 accuracy (%) MCTest-500 accuracy (%)
Single (112) Multiple (128) All Single (272) Multiple (328) All

Richardson et al. (2013) + RTE 76.78 62.50 69.16 68.01 59.45 63.33
Sachan et al. (2015) - - - 67.65 67.99 67.83
Wang et al. (2015) 84.22 67.85 75.27 72.05 67.94 69.94
Attentive Reader 48.1 44.7 46.3 44.4 39.5 41.9
Neural Reasoner 48.4 46.8 47.6 45.7 45.6 45.6
HABCNN-TE 63.3 62.9 63.1 54.2 51.7 52.9

Parallel-Hierarchical 79.46 70.31 74.58 74.26 68.29 71.00

Table 1: Experimental results on MCTest.

Ablated component Validation accuracy (%)
- 70.13

n-gram 66.25
Top N 66.63

Sentential 65.00
SW-sequential 68.88

SW-dependency 69.75
Word weights 66.88

Trainable embeddings 63.50
Training wheels 34.75

Table 2: Ablation study on MCTest-500 (all).

HABCNN, we hypothesize that the performance
difference is attributable to the greater simplicity
of our model and our training wheels methodol-
ogy.

6 Analysis and Discussion

We measure the contribution of each component
of the model by ablating it. Results on the vali-
dation set are given in Table 2. Not surprisingly,
the n-gram functionality is important, contribut-
ing almost 4% accuracy improvement. Without
this, the model has almost no means for synthe-
sizing distributed evidence. The top N function
contributes similarly to the overall performance,
suggesting that there is a nonnegligible number
of multi questions that have their evidence dis-
tributed across noncontiguous sentences. Ablating
the sentential component made a significant differ-
ence, reducing performance by about 5%. Sim-
ple word-by-word matching is obviously useful
on MCTest. The sequential sliding window con-
tributes about 1.3%, suggesting that word-distance
measures are not overly important. Similarly, the
dependency-based sliding window makes a very
minor contribution. We found this surprising. It
may be that linearization of the dependency graph
removes too much of its information. The ex-
ogenous word weights make a significant contri-
bution of over 3%. Allowing the embeddings to
change with training reduced performance fairly
significantly, almost 8%. As discussed, this is a

case of having too many parameters for the avail-
able training data. Finally, we see that the training
wheels methodology had enormous impact. With-
out heuristic-based initialization of the model’s
various weight matrices, accuracy goes down to
about 35%, which is only ten points over random
chance.

Analysis reveals that most of our system’s test
failures occur on questions about quantity (e.g.,
How many...? ) and temporal order (e.g., Who
was invited last? ). Quantity questions make up
9.5% of our errors on the validation set, while or-
der questions make up 10.3%. This weakness is
not unexpected, since our architecture lacks any
capacity for counting or tracking temporal order.
Incorporating mechanisms for these forms of rea-
soning is a priority for future work (in contrast,
the Memory Network model (Weston et al., 2014)
is quite good at temporal reasoning).

The Parallel-Hierarchical model is simple. It
does no complex language or sequence modeling.
Its simplicity is a response to the limited data of
MCTest. Nevertheless, the model achieves state-
of-the-art results on the multi questions, which
(putatively) require some limited reasoning. Our
model is able to handle them reasonably well just
by stringing important sentences together. Thus,
the model imitates reasoning with a heuristic. This
suggests that, to learn true reasoning abilities,
MCTest is too simple a dataset—and it is almost
certainly too small for this goal.

However, it may be that human language pro-
cessing can be factored into separate processes of
comprehension and reasoning. If so, the Parallel-
Hierarchical model is a good start on the former.
Indeed, if we train the method exclusively on sin-
gle questions then its results become even more
impressive: we can achieve a test accuracy of
79.1% on MCTest-500. Note that this boost in
performance comes from training on only about
half the data. The ‘single’ questions can be con-
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sidered a close analogue of the RTE task, at which
our model becomes very adept even with less data.

Incorporating the various views of our model
amounts to encoding prior knowledge about the
problem structure. This is similar to the purpose
of feature engineering, except that the views can
be fully trained. Encoding problem structure into
the structure of neural networks is not new: as an-
other example, the convolutional architecture has
led to large gains in vision tasks.

7 Conclusion

We have presented the novel Parallel-Hierarchical
model for machine comprehension, and evalu-
ated it on the small but complex MCTest. Our
model achieves state-of-the-art results, outper-
forming several feature-engineered and neural ap-
proaches.

Working with our model has emphasized to
us the following (not necessarily novel) concepts,
which we record here to promote further empirical
validation.

• Good comprehension of language is sup-
ported by hierarchical levels of understand-
ing (cf. Hill et al. (2015)).

• Exogenous attention (the trainable word
weights) may be broadly helpful for NLP.

• The training wheels approach, that is, ini-
tializing neural networks to perform sensible
heuristics, appears helpful for small datasets.

• Reasoning over language is challenging, but
easily simulated in some cases.
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Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A neural probabilistic language model. In Ad-
vances in Neural Information Processing Systems,
pages 932–938.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pas-
canu, G. Desjardins, J. Turian, D. Warde-Farley, and
Y. Bengio. 2010. Theano: a CPU and GPU math
expression compiler. In In Proc. of SciPy.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750.

François Chollet. 2015. keras.
https://github.com/fchollet/keras.

Silviu Cucerzan and Eugene Agichtein. 2005. Factoid
question answering over unstructured and structured
web content. In TREC, volume 72, page 90.

Gene H Golub and Charles F Van Loan. 2012. Matrix
computations, volume 3. JHU Press.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1684–
1692.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Brad-
bury, Robert English, Brian Pierce, Peter Ondruska,
Ishaan Gulrajani, and Richard Socher. 2015.
Ask me anything: Dynamic memory networks
for natural language processing. arXiv preprint
arXiv:1506.07285.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Andrew R Mayer, Jill M Dorflinger, Stephen M
Rao, and Michael Seidenberg. 2004. Neural
networks underlying endogenous and exogenous
visual–spatial orienting. Neuroimage, 23(2):534–
541.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Karthik Narasimhan and Regina Barzilay. 2015. Ma-
chine comprehension with discourse relations. In
53rd Annual Meeting of the Association for Com-
putational Linguistics.

Baolin Peng, Zhengdong Lu, Hang Li, and Kam-Fai
Wong. 2015. Towards neural network-based rea-
soning. arXiv preprint arXiv:1508.05508.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text. In
EMNLP, volume 1, page 2.

440



Mrinmaya Sachan, Avinava Dubey, Eric P Xing, and
Matthew Richardson. 2015. Learning answerentail-
ing structures for machine comprehension. In Pro-
ceedings of ACL.

Ellery Smith, Nicola Greco, Matko Bosnjak, and An-
dreas Vlachos. 2015. A strong lexical matching
method for the machine comprehension test. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1693–
1698, Lisbon, Portugal, September. Association for
Computational Linguistics.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013. Parsing with composi-
tional vector grammars. In ACL (1), pages 455–465.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in Neural Information Processing Systems, pages
2431–2439.

Shuohang Wang and Jing Jiang. 2015. Learning nat-
ural language inference with lstm. arXiv preprint
arXiv:1512.08849.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David
McAllester. 2015. Machine comprehension with
syntax, frames, and semantics. In Proceedings of
ACL, Volume 2: Short Papers, page 700.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916.

Wenpeng Yin, Sebastian Ebert, and Hinrich Schütze.
2016. Attention-based convolutional neural net-
work for machine comprehension. arXiv preprint
arXiv:1602.04341.

441


