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Abstract

In this paper, we present an approach
that address the answer sentence selection
problem for question answering. The pro-
posed method uses a stacked bidirectional
Long-Short Term Memory (BLSTM) net-
work to sequentially read words from
question and answer sentences, and then
outputs their relevance scores. Unlike
prior work, this approach does not require
any syntactic parsing or external knowl-
edge resources such as WordNet which
may not be available in some domains
or languages. The full system is based
on a combination of the stacked BLSTM
relevance model and keywords matching.
The results of our experiments on a public
benchmark dataset from TREC show that
our system outperforms previous work
which requires syntactic features and ex-
ternal knowledge resources.

1 Introduction

A typical architecture of open-domain question
answering (QA) systems is composed of three
high level major steps: a) question analysis and
retrieval of candidate passages; b) ranking and se-
lecting of passages which contain the answer; and
optionally c) extracting and verifying the answer
(Prager, 2006; Ferrucci, 2012). In this paper, we
focus on the answer sentence selection. Being
considered as a key subtask of QA, the selection
is to identify the answer-bearing sentences from
all candidate sentences. The selected sentences
should be relevant to and answer the input ques-
tions.

The nature of this task is to match not only
the words but also the meaning between ques-
tion and answer sentences. For instance, although
both of the following sentences contain keywords

“Capriati” and “play”, only the first sentence an-
swers the question: “What sport does Jennifer
Capriati play?”

Positive Sentence: “Capriati, 19, who has not
played competitive tennis since November 1994,
has been given a wild card to take part in the Paris
tournament which starts on February 13.”

Negative Sentence: “Capriati also was playing
in the U.S. Open semifinals in ’91, one year be-
fore Davenport won the junior title on those same
courts.”

Besides its application in the automated factoid
QA system, another benefit of the answer sentence
selection is that it can be potentially used to pre-
dict answer quality in community QA sites. The
techniques developed from this task might also be
beneficial to the emerging real-time user-oriented
QA tasks such as TREC LiveQA. However, user-
generated content can be noisy and hard to parse
with off-the-shelf NLP tools. Therefore, methods
that requires less syntactic features are desirable.

Recently, neural network-based distributed sen-
tence modeling has been found successful in many
natural language processing tasks such as word
sense disambiguation (McCarthy et al., 2004), dis-
course parsing (Li et al., 2014), machine transla-
tion (Sutskever et al., 2014; Cho et al., 2014), and
paraphrase detection (Socher et al., 2011).

In this paper, we present an approach that lever-
ages the power of deep neural network to address
the answer sentence selection problem for ques-
tion answering. Our method employs stacked bidi-
rectional Long Short-Term Memory (BLSTM) to
sequentially read the words from question and an-
swer sentences, and then output their relevance
scores. The full system, when combined with key-
words matching, outperforms previous approaches
without using any syntactic parsing or external
knowledge resources.
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2 Related Work

Prior to this work there were other approaches
to address the sentence selection task. The ma-
jority of previous approaches focused on syn-
tactic matching between questions and answers.
Punyakanok et al. (2004) and Cui et al. (2005)
were among the earliest to propose the general
tree matching methods based on tree-edit distance.
Subsequent to these two papers, the approach in
(Wang et al., 2007) use quasi-synchronous gram-
mar to match each pair of question and sentence by
their dependency trees. Later, tree kernel function
together with a logistic regression model (Heilman
and Smith, 2010) or Conditional Random Fields
models (Wang and Manning, 2010; Yao et al.,
2013) with extracted feature were adopted to learn
the associations between question and answer. Re-
cently, discriminative tree-edit features extraction
and engineering over parsing trees are automated
in (Severyn and Moschitti, 2013).

Besides syntactic approaches, lexical semantic
model (Yih et al., 2013) is also used to select an-
swer sentences. This model is to pair semantically
related words based on word relations including
synonymy/antonymy, hypernymy/hyponymy and
general semantic word similarity.

There were also prior efforts in deep learning
neural networks to question answering. Yih et al.
(2014) focused on answering single-relation fac-
tual questions by a semantic similarity model us-
ing convolutional neural networks. Bordes et al.
(2014) jointly embedded words and knowledge
base constituents into same vector space to mea-
sure the relevance of question and answer sen-
tences in that space. Iyyer et al. (2014) worked
on the quiz bowl task, which is an application of
recursive neural networks for factoid question an-
swering over paragraphs. The correct answers are
identified from a relatively small fixed set of can-
didate answers which are in the form of entities
instead of sentences.

3 Approach

The goal of this system is to reduce as much as
possible the dependency on syntactic features and
external resources by leveraging the power of deep
recurrent neural network architecture. The pro-
posed network architecture is trained directly on
the word sequences of question and answer pas-
sages, and is actually not limited to sentences.

3.1 Network Architecture
Recurrent Neural Network RNN is an exten-
sion of conventional feed-forward neural network,
used to deal with variable-length sequence input.
It uses a recurrent hidden state whose activation
is dependent on that of the one immediate be-
fore. More formally, given an input sequence x =
(x1, x2, . . . , xT ), a conventional RNN updates the
hidden vector sequence h = (h1, h2, . . . , hT ) and
output vector sequence y = (y1, y2, . . . , yT ) from
t = 1 to T as follows:

ht = H(Wxhxt +Whhht−1 + bh) (1)

yt = Whyht + by (2)

where the W denotes weight matrices, the b de-
notes bias vectors andH(·) is the recurrent hidden
layer function.

Long Short-Term Memory (LSTM) Due to
the gradient vanishing problem, conventional
RNNs is found difficult to be trained to exploit
long-range dependencies. In order to mitigate this
weak point in conventional RNNs, specially de-
signed activation functions have been introduced.
LSTM is one of the earliest attempts and still
a popular option to tackle this problem. LSTM
cell was originally proposed by Hochreiter and
Schmidhuber (1997). Several minor modifications
have been made to the original LSTM cell since
then. In our approach, we adopted a slightly mod-
ified implementation of LSTM in (Graves, 2013).

In the LSTM architecture, there are three gates
(input i, forget f and output o), and a cell mem-
ory activation vector c. The vector formulas for
recurrent hidden layer function H in this version
of LSTM network are implemented as following:

it = σ(Wxixt +Whiht−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 + bf ) (4)

ct = ftct−1 + itτ(Wxcxt +Whcht−1 + bc) (5)

ot = σ(Wxoxt +Whoht−1 + bo) (6)

ht = otθ(ct) (7)

where, τ and θ are the cell input and cell output
non-linear activation functions which are stated as
tanh in this paper.

LSTM uses input and output gates to control the
flow of information through the cell. The input
gate should be kept sufficiently active to allow the
signals in. Same rule applies to the output gate.
The forget gate is used to reset the cell’s own state.
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Figure 1: An illustration of a stacked bidirectional
LSTM network

In (Graves, 2013), peephole connections are usu-
ally used to connect gates to the cell in tasks re-
quiring precise timing and counting of the inter-
nal states. In our approach, we don’t use peephole
connections because the precise timing does not
seem to be required.

Bidirectional RNNs Another weak point of
conventional RNNs is their utilization of only pre-
vious context with no exploitation of future con-
text. Unlike conventional RNNs, bidirectional
RNNs utilize both the previous and future context,
by processing the data from two directions with
two separate hidden layers. One layer processes
the input sequence in the forward direction, while
the other processes the input in the reverse direc-
tion. The output of current time step is then gen-
erated by combining both layers’ hidden vector

−→
ht

and
←−
ht by: yt = W−→

h y

−→
ht +W←−

h y

←−
ht + by.

Stacked RNNs In a stacked RNN, the output ht

from the lower layer becomes the input of the up-
per layer. Through the multi-layer stacked net-
work, it is possible to achieve different levels of
abstraction from multiple network layers. There
are theoretical supports indicating that a deep, hi-
erarchical model can be more efficient in repre-
senting some functions than a shallow one (Ben-
gio, 2009). Empirical performance improvement
is also observed in LSTM network compared with
the shallow network (Graves et al., 2013).

Figure 2: An illustration of our QA sentence rele-
vance model based on stacked BLSTM

3.2 Answer Sentence Selection with Stacked
BLSTM

As per analysis in section 3.1, we adopt multi-
layer stacked bidirectional LSTM RNNs (rather
than conventional RNNs) to model the answer sen-
tence selection problem as illustrated in Figure 2.
The words of input sentences are first converted
to vector representations learned from word2vec
tool (Mikolov et al., 2013). In order to differen-
tiate question q and answer a sentences, we in-
sert a special symbol, <S>, after the question se-
quence. Then, the question and answer sentences
word vectors are sequentially read by BLSTM
from both directions. In this way, the contextual
information across words in both question and an-
swer sentences is modeled by employing temporal
recurrence in BLSTM.

Since the LSTM in each direction carries a cell
memory while reading the input sequence, it is ca-
pable of aggregating the context information and
storing it into cell memory vector. For each time
step in the BLSTM layer, the hidden vector or the
output vector is generated by combining the cell
memory vectors from two LSTM of both sides. In
other words, all the contextual information across
the entire sequence (both question and answer sen-
tences) has been taken into consideration. The fi-
nal output of each time step is the label indicat-
ing whether the candidate answer sentence should
be selected as the correct answer sentence for
the input question. This objective encourages the
BLSTMs to learn a weight matrix that outputs a
positive label if there is overlapping context infor-
mation between two LSTM cell memories. Mean
pooling is applied to all time step outputs during
the training. During the test phase, we collect
mean, sum and max poolings as features.
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3.3 Incorporating Keywords Matching

In order to identify the correct candidate answer
sentences, it is crucial to match the cardinal num-
bers and proper nouns with those occurred in the
question. However, many cardinal numbers and
proper nouns are out of the vocabulary (OOV) of
our word embeddings. In addition, some proper
nouns’ embeddings may bring noise to the match-
ing process. For example, “Japan” and “China”
are two words very close in the embedding space.
It is critical to discriminate these two proper
nouns when matching question and answer sen-
tences. In order to mitigate this weak point of the
distributed representations, our full system com-
bined the stacked BLSTM relevance model and
exact keywords overlapping baseline by gradient
boosted regression tree (GBDT) method (Fried-
man, 2001).

4 Experiments

Dataset The answer sentence selection dataset
used in this paper was created by Wang et
al. (2007) based on Text REtrieval Conference
(TREC) QA track (8-13) data.1 Candidate answer
sentences were automatically retrieved for each
question which is on average associated with 33
candidate sentences. There are two sets of data
provided for training. One is the full training set
containing 1229 questions that are automatically
labeled by matching answer keys’ regular expres-
sions.2 However, the generated labels are noisy
and sometimes erroneously mark unrelated sen-
tences as the correct answers solely because those
sentences contain answer keys. Wang et al. (2007)
also provided one small training set contains 94
questions, which were manually corrected for er-
rors. In our experiments, we use the full training
set because it provides significantly more question
and answer sentences for learning, even though
some of its labels are noisy.

The development and test data sets have 82 and
100 questions, respectively. Following (Wang et
al., 2007), candidate answer sentences with over
40 words and questions with only positive or nega-
tive candidate answer sentences are removed from

1http://nlp.stanford.edu/mengqiu/data/
qg-emnlp07-data.tgz

2Because the original full training dataset is no longer
available from the website of the lead author of (Wang et
al., 2007), we obtained this data re-released from Yao et al.
(2013): http://cs.jhu.edu/˜xuchen/packages/
jacana-qa-naacl2013-data-results.tar.bz2

evaluation.3

Evaluation Metric Following previous works
on this task, we also use Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR) as eval-
uation metrics, which are calculated using the of-
ficial trec eval evaluation scripts.

Keywords Matching Baseline (BM25) As
noted by Yih et al. (2013), counting overlapped
keywords, especially when re-weighted by idf
value of the question word, is a fairly competi-
tive baseline. Following (Yih et al., 2013), our
keywords matching baseline also counts the words
that occurred in both questions and answer sen-
tences, after excluding stop words and lowering
the case. But, instead of the tf · idf formula used
in (Yih et al., 2013), word counts are re-weighted
by its idf value using the Okapi BM25 (Robertson
and Walker, 1997) formula (with constants values
K1 = 1.2 and B = 0.75).

Network Setup The network weights are ran-
domly initialized using a Gaussian distribution
(µ = 0 and σ = 0.1), and the network is trained
with the stochastic gradient descent (SGD) with
momentum 0.9. We experimented single-layer
unidirectional LSTM, single-layer BLSTM, and
three-layer stacked BLSTM. Each layer of LSTM
and BLSTM has a memory size of 500. We
use 300-dimensional vectors that were trained and
provided by word2vec tool (Mikolov et al., 2013)
using a part of the Google News dataset4 (around
100 billion tokens) .

5 Results

Table 1 surveys prior results on this task, and
places our models in the context of the current
state-of-the-art results. Table 2 summarizes the re-
sults of our model on the answer selection task.
According to Table 1 and 2, our combined system
outperforms prior works on MAP and MRR met-
rics.

As indicated in Table 2, the three-layer
stacked BLSTM alone shows better experiment re-
sults than single-layer BLSTM and unidirectional

3As mentioned in the footnote 7 of (Yih et al., 2013):
“Among the 72 questions in the test set, 4 of them would al-
ways be treated answered incorrectly by the evaluation script
used by previous work. This makes the upper bound of both
MAP and MRR become 0.9444 instead of 1.” In order to make
experiment results comparable with previous works, we also
use this experiment setting.

4https://code.google.com/p/word2vec/
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Reference MAP MRR
Yih et al. (2013) – Random 0.3965 0.4929
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
Yao et al. (2013) 0.6307 0.7477
Severyn and Moschitti (2013) 0.6781 0.7358
Yih et al. (2013) – BDT 0.6940 0.7894
Yih et al. (2013) – LCLR 0.7092 0.7700

Table 1: Overview of prior results on the answer
sentence selection task

Features MAP MRR
BM25 0.6370 0.7076
Single-Layer LSTM 0.5302 0.5956
Single-Layer BLSTM 0.5636 0.6304
Three-Layer BLSTM 0.5928 0.6721
Three-Layer BLSTM + BM25 0.7134 0.7913

Table 2: Overview of our results on the answer
sentence selection task. Features are keywords
matching baseline score (BM25), and pooling val-
ues of single-layer unidirectional LSTM (Single-
Layer LSTM), single-Layer bidirectional LSTM
(Single-Layer BLSTM) and three-Layer stacked
BLSTM’s (Three-Layer BLSTM) outputs. Gra-
dient boosted regression tree (GBDT) method is
used to combine features.

LSTM, and performs comparably to previous sys-
tems. In order to mitigate the weak point of the
distributed representations previously discussed in
section 3.3, we combine the stacked BLSTM out-
puts with a keywords matching baseline (BM25).
Our combined system’s results are statistically sig-
nificantly better than the keywords matching base-
line (using the Student’s t-test with p < 0.05) and
outperforms previous state-of-art results.

6 Conclusion

In this paper, we presented an approach to address
the answer sentence selection problem for ques-
tion answering, by a combination of the stacked
bidirectional LSTM model and keywords match-
ing. The experiments provide strong evidence
that distributed and symbolic representations en-
code complementary types of knowledge, which
are all helpful in identifying answer sentences.
Based on the experiment results, we found that
our model not only performs better than previous

work but most importantly does not require any
syntactic features or external resources. In the fu-
ture, we would like to further evaluate the models
presented in this paper for different tasks, such as
answer quality prediction in Community QA, rec-
ognizing textual entailment, and machine compre-
hension of text.
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