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Abstract

We propose a label propagation approach
to geolocation prediction based on Modi-
fied Adsorption, with two enhancements:
(1) the removal of “celebrity” nodes to
increase location homophily and boost
tractability; and (2) the incorporation
of text-based geolocation priors for test
users. Experiments over three Twitter
benchmark datasets achieve state-of-the-
art results, and demonstrate the effective-
ness of the enhancements.

1 Introduction

Geolocation of social media users is essential
in applications ranging from rapid disaster re-
sponse (Earle et al., 2010; Ashktorab et al.,
2014; Morstatter et al., 2013a) and opinion anal-
ysis (Mostafa, 2013; Kirilenko and Stepchenkova,
2014), to recommender systems (Noulas et al.,
2012; Schedl and Schnitzer, 2014). Social media
platforms like Twitter provide support for users to
declare their location manually in their text pro-
file or automatically with GPS-based geotagging.
However, the text-based profile locations are noisy
and only 1–3% of tweets are geotagged (Cheng et
al., 2010; Morstatter et al., 2013b), meaning that
geolocation needs to be inferred from other infor-
mation sources such as the tweet text and network
relationships.

User geolocation is the task of inferring the pri-
mary (or “home”) location of a user from avail-
able sources of information, such as text posted
by that individual, or network relationships with
other individuals (Han et al., 2014). Geolocation
models are usually trained on the small set of users
whose location is known (e.g. through GPS-based
geotagging), and other users are geolocated using
the resulting model. These models broadly fall
into two categories: text-based and network-based

methods. Orthogonally, the geolocation task can
be viewed as a regression task over real-valued
geographical coordinates, or a classification task
over discretised region-based locations.

Most previous research on user geolocation
has focused either on text-based classification
approaches (Eisenstein et al., 2010; Wing and
Baldridge, 2011; Roller et al., 2012; Han et al.,
2014) or, to a lesser extent, network-based regres-
sion approaches (Jurgens, 2013; Compton et al.,
2014; Rahimi et al., 2015). Methods which com-
bine the two, however, are rare.

In this paper, we present our work on Twit-
ter user geolocation using both text and net-
work information. Our contributions are as fol-
lows: (1) we propose the use of Modified Ad-
sorption (Talukdar and Crammer, 2009) as a base-
line network-based geolocation model, and show
that it outperforms previous network-based ap-
proaches (Jurgens, 2013; Rahimi et al., 2015); (2)
we demonstrate that removing “celebrity” nodes
(nodes with high in-degrees) from the network in-
creases geolocation accuracy and dramatically de-
creases network edge size; and (3) we integrate
text-based geolocation priors into Modified Ad-
sorption, and show that our unified geolocation
model outperforms both text-only and network-
only approaches, and achieves state-of-the-art re-
sults over three standard datasets.

2 Related Work

A recent spike in interest on user geolocation over
social media data has resulted in the development
of a range of approaches to automatic geolocation
prediction, based on information sources such as
the text of messages, social networks, user pro-
file data, and temporal data. Text-based methods
model the geographical bias of language use in so-
cial media, and use it to geolocate non-geotagged
users. Gazetted expressions (Leidner and Lieber-
man, 2011) and geographical names (Quercini et
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al., 2010) were used as feature in early work,
but were shown to be sparse in coverage. Han
et al. (2014) used information-theoretic methods
to automatically extract location-indicative words
for location classification. Wing and Baldridge
(2014) reported that discriminative approaches
(based on hierarchical classification over adap-
tive grids), when optimised properly, are superior
to explicit feature selection. Cha et al. (2015)
showed that sparse coding can be used to effec-
tively learn a latent representation of tweet text to
use in user geolocation. Eisenstein et al. (2010)
and Ahmed et al. (2013) proposed topic model-
based approaches to geolocation, based on the as-
sumption that words are generated from hidden
topics and geographical regions. Similarly, Yuan
et al. (2013) used graphical models to jointly learn
spatio-temporal topics for users. The advantage of
these generative approaches is that they are able to
work with the continuous geographical space di-
rectly without any pre-discretisation, but they are
algorithmically complex and don’t scale well to
larger datasets. Hulden et al. (2015) used kernel-
based methods to smooth linguistic features over
very small grid sizes to alleviate data sparseness.

Network-based geolocation models, on the
other hand, utilise the fact that social media users
interact more with people who live nearby. Ju-
rgens (2013) and Compton et al. (2014) used a
Twitter reciprocal mention network, and geolo-
cated users based on the geographical coordinates
of their friends, by minimising the weighted dis-
tance of a given user to their friends. For a recip-
rocal mention network to be effective, however, a
huge amount of Twitter data is required. Rahimi
et al. (2015) showed that this assumption could
be relaxed to use an undirected mention network
for smaller datasets, and still attain state-of-the-
art results. The greatest shortcoming of network-
based models is that they completely fail to ge-
olocate users who are not connected to geolocated
components of the graph. As shown by Rahimi et
al. (2015), geolocation predictions from text can
be used as a backoff for disconnected users, but
there has been little work that has investigated a
more integrated text- and network-based approach
to user geolocation.

3 Data

We evaluate our models over three pre-existing
geotagged Twitter datasets: (1) GEOTEXT (Eisen-

stein et al., 2010), (2) TWITTER-US (Roller et
al., 2012), and (3) TWITTER-WORLD (Han et al.,
2012). In each dataset, users are represented by
a single meta-document, generated by concatenat-
ing their tweets. The datasets are pre-partitioned
into training, development and test sets, and re-
built from the original version to include men-
tion information. The first two datasets were con-
structed to contain mostly English messages.

GEOTEXT consists of tweets from 9.5K users:
1895 users are held out for each of development
and test data. The primary location of each user is
set to the coordinates of their first tweet.

TWITTER-US consists of 449K users, of which
10K users are held out for each of development
and test data. The primary location of each user
is, once again, set to the coordinates of their first
tweet.

TWITTER-WORLD consists of 1.3M users, of
which 10000 each are held out for development
and test. Unlike the other two datasets, the primary
location of users is mapped to the geographic cen-
tre of the city where the majority of their tweets
were posted.

4 Methods

We use label propagation over an @-mention
graph in our models. We use k-d tree descre-
tised adaptive grids as class labels for users and
learn a label distribution for each user by label
propagation over the @-mention network using
labelled nodes as seeds. For k-d tree discretisa-
tion, we set the number of users in each region to
50, 2400, 2400 for GEOTEXT, TWITTER-US and
TWITTER-WORLD respectively, based on tuning
over the development data.

Social Network: We used the @-mention infor-
mation to build an undirected graph between users.
In order to make the inference more tractable,
we removed all nodes that were not a member
of the training/test set, and connected all pairings
of training/test users if there was any path be-
tween them (including paths through non train-
ing/test users). We call this network a “collapsed
network”, as illustrated in Figure 1. Note that a
celebrity node with n mentions connects n(n− 1)
nodes in the collapsed network. We experiment
with both binary and weighted edge (based on the
number of mentions connecting the given users)
networks.
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Figure 1: A collapsed network is built from the @-mention network. Each mention is shown by a
directed arrow, noting that as it is based exclusively on the tweets from the training and test users, it
will always be directed from a training or test user to a mentioned node. All mentioned nodes which are
not a member of either training or test users are removed and the corresponding training and test users,
previously connected through that node, are connected directly by an edge, as indicated by the dashed
lines. Mentioned nodes with more than T unique mentions (celebrities, such as m3) are removed from
the graph. To each test node, a dongle node that carries the label from another learner (here, text-based
LR) is added in MADCEL-B-LR and MADCEL-W-LR.

Baseline: Our baseline geolocation model
(“MAD-B”) is formulated as label propagation
over a binary collapsed network, based on Modi-
fied Adsorption (Talukdar and Crammer, 2009). It
applies to a graph G = (V,E,W ) where V is the
set of nodes with |V | = n = nl + nu (where nl

nodes are labelled and nu nodes are unlabelled),
E is the set of edges, and W is an edge weight
matrix. Assume C is the set of labels where
|C| = m is the total number of labels. Y is an
n×m matrix storing the training node labels, and
Ŷ is the estimated label distribution for the nodes.
The goal is to estimate Ŷ for all nodes (including
training nodes) so that the following objective
function is minimised:

C(Ŷ ) =
∑

l

[
µ1(Yl − Ŷl)TS(Yl − Ŷl)+

µ2Ŷ
T
l LŶl

]
where µ1 and µ2 are hyperparameters;1 L is the
Laplacian of an undirected graph derived from
G; and S is a diagonal binary matrix indicating
if a node is labelled or not. The first term of
the equation forces the labelled nodes to keep
their label (prior term), while the second term
pulls a node’s label toward that of its neighbours

1In the base formulation of MAD-B, there is also a regu-
larisation term with weight µ3, but in all our experiments, we
found that the best results were achieved over development
data with µ3 = 0, i.e. with no regularisation; the term is thus
omitted from our description.

(smoothness term). For the first term, the label
confidence for training and test users is set to 1.0
and 0.0, respectively. Based on the development
data, we set µ1 and µ2 to 1.0 and 0.1, respectively,
for all the experiments. For TWITTER-US and
TWITTER-WORLD, the inference was intractable
for the default network, as it was too large.

There are two immediate issues with the base-
line graph propagation method: (1) it doesn’t scale
to large datasets with high edge counts, related to
which, it tends to be biased by highly-connected
nodes; and (2) it can’t predict the geolocation of
test users who aren’t connected to any training
user (MAD-B returns Unknown, which we rewrite
with the centre of the map). We redress these two
issues as follows.

Celebrity Removal To address the first issue,
we target “celebrity” users, i.e. highly-mentioned
Twitter users. Edges involving these users often
carry little or no geolocation information (e.g. the
majority of people who mention Barack Obama
don’t live in Washington D.C.). Additionally,
these users tend to be highly connected to other
users and generate a disproportionately high num-
ber of edges in the graph, leading in large part to
the baseline MAD-B not scaling over large datasets
such as TWITTER-US and TWITTER-WORLD.
We identify and filter out celebrity nodes sim-
ply by assuming that a celebrity is mentioned by
more than T users, where T is tuned over develop-
ment data. Based on tuning over the development
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GEOTEXT TWITTER-US TWITTER-WORLD

Acc@161 Mean Median Acc@161 Mean Median Acc@161 Mean Median
MAD-B 50 683 146 ××× ××× ××× ××× ××× ×××
MADCEL-B 56 609 76 54 709 117 70 936 0
MADCEL-W 58 586 60 54 705 116 71 976 0
MADCEL-B-LR 57 608 65 60 533 77 72 786 0
MADCEL-W-LR 59 581 57 60 529 78 72 802 0

LR (Rahimi et al., 2015) 38 880 397 50 686 159 63 866 19
LP (Rahimi et al., 2015) 45 676 255 37 747 431 56 1026 79
LP-LR (Rahimi et al., 2015) 50 653 151 50 620 157 59 903 53
Wing and Baldridge (2014) (uniform) — — — 49 703 170 32 1714 490
Wing and Baldridge (2014) (k-d) — — — 48 686 191 31 1669 509
Han et al. (2012) — — — 45 814 260 24 1953 646
Ahmed et al. (2013) ??? ??? 298 — — — — — —
Cha et al. (2015) ??? 581 425 — — — — — —

Table 1: Geolocation results over the three Twitter corpora, comparing baseline Modified Adsorp-
tion (MAD-B), with Modified Adsorption with celebrity removal (MADCEL-B and MADCEL-W, over
binary and weighted networks, resp.) or celebrity removal plus text priors (MADCEL-B-LR and
MADCEL-W-LR, over binary and weighted networks, resp.); the table also includes state-of-the-art re-
sults for each dataset (“—” signifies that no results were published for the given dataset; “???” signifies
that no results were reported for the given metric; and “×××” signifies that results could not be generated,
due to the intractability of the training data).

set of GEOTEXT and TWITTER-US, T was set
to 5 and 15 respectively. For TWITTER-WORLD

tuning was very resource intensive so T was set
to 5 based on GEOTEXT, to make the inference
faster. Celebrity removal dramatically reduced the
edge count in all three datasets (from 1 × 109 to
5 × 106 for TWITTER-US and from 4 × 1010 to
1 × 107 for TWITTER-WORLD), and made infer-
ence tractable for TWITTER-US and TWITTER-
WORLD. Jurgens et al. (2015) report that the time
complexity of most network-based geolocation
methods is O(k2) for each node where k is the
average number of vertex neighbours. In the case
of the collapsed network of TWITTER-WORLD, k
is decreased by a factor of 4000 after setting the
celebrity threshold T to 5. We apply celebrity
removal over both binary (“MADCEL-B”) and
weighted (“MADCEL-W”) networks (using the re-
spective T for each dataset). The effect of
celebrity removal over the development set of
TWITTER-US is shown in Figure 2 where it dra-
matically reduces the graph edge size and simulta-
neously leads to an improvement in the mean er-
ror.

A Unified Geolocation Model To address the
issue of disconnected test users, we incorporate
text information into the model by attaching a la-
belled dongle node to every test node (Zhu and
Ghahramani, 2002; Goldberg and Zhu, 2006).
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Figure 2: Effect of celebrity removal on geoloca-
tion performance and graph size. For each T per-
formance is measured over the development set of
TWITTER-US by MADCEL-W.

The label for the dongle node is based on a text-
based l1 regularised logistic regression model, us-
ing the method of Rahimi et al. (2015). The don-
gle nodes with their corresponding label confi-
dences are added to the seed set, and are treated
in the same way as other labelled nodes (i.e.
the training nodes). Once again, we experi-
ment with text-based labelled dongle nodes over
both binary (“MADCEL-B-LR”) and weighted
(“MADCEL-W-LR”) networks.
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5 Evaluation

Following Cheng et al. (2010) and Eisenstein et
al. (2010), we evaluate using the mean and me-
dian error (in km) over all test users (“Mean”
and “Median”, resp.), and also accuracy within
161km of the actual location (“Acc@161”). Note
that higher numbers are better for Acc@161, but
lower numbers are better for mean and median er-
ror, with a lower bound of 0 and no (theoretical)
upper bound.

To generate a continuous-valued lati-
tude/longitude coordinate for a given user
from the k-d tree cell, we use the median co-
ordinates of all training points in the predicted
region.

6 Results

Table 1 shows the performance of MAD-B,
MADCEL-B, MADCEL-W, MADCEL-B-LR and
MADCEL-W-LR over the GEOTEXT, TWITTER-
US and TWITTER-WORLD datasets. The re-
sults are also compared with prior work on
network-based geolocation using label propaga-
tion (LP) (Rahimi et al., 2015), text-based clas-
sification models (Han et al., 2012; Wing and
Baldridge, 2011; Wing and Baldridge, 2014;
Rahimi et al., 2015; Cha et al., 2015), text-
based graphical models (Ahmed et al., 2013), and
network–text hybrid models (LP-LR) (Rahimi et
al., 2015).

Our baseline network-based model of MAD-B
outperforms the text-based models and also previ-
ous network-based models (Jurgens, 2013; Comp-
ton et al., 2014; Rahimi et al., 2015). The in-
ference, however, is intractable for TWITTER-US
and TWITTER-WORLD due to the size of the net-
work.

Celebrity removal in MADCEL-B and
MADCEL-W has a positive effect on geoloca-
tion accuracy, and results in a 47% reduction in
Median over GEOTEXT. It also makes graph
inference over TWITTER-US and TWITTER-
WORLD tractable, and results in superior
Acc@161 and Median, but slightly inferior
Mean, compared to the state-of-the-art results of
LR, based on text-based classification (Rahimi et
al., 2015).
MADCEL-W (weighted graph) outperforms

MADCEL-B (binary graph) over the smaller
GEOTEXT dataset where it compensates for the
sparsity of network information, but doesn’t

improve the results for the two larger datasets
where network information is denser.

Adding text to the network-based geolocation
models in the form of MADCEL-B-LR (binary
edges) and MADCEL-W-LR (weighted edges),
we achieve state-of-the-art results over all three
datasets. The inclusion of text-based priors has
the greatest impact on Mean, resulting in an
additional 26% and 23% error reduction over
TWITTER-US and TWITTER-WORLD, respec-
tively. The reason for this is that it provides a
user-specific geolocation prior for (relatively) dis-
connected users.

7 Conclusions and Future Work

We proposed a label propagation method over
adaptive grids based on collapsed @-mention net-
works using Modified Adsorption, and success-
fully supplemented the baseline algorithm by: (a)
removing “celebrity” nodes (improving the results
and also making inference more tractable); and (b)
incorporating text-based geolocation priors into
the model.

As future work, we plan to use temporal data
and also look at improving the text-based geoloca-
tion model using sparse coding (Cha et al., 2015).
We also plan to investigate more nuanced meth-
ods for differentiating between global and local
celebrity nodes, to be able to filter out global
celebrity nodes but preserve local nodes that can
have high geolocation utility.
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