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Abstract

Quality estimation evaluation commonly
takes the form of measurement of the error
that exists between predictions and gold
standard labels for a particular test set of
translations. Issues can arise during com-
parison of quality estimation prediction
score distributions and gold label distribu-
tions, however. In this paper, we provide
an analysis of methods of comparison and
identify areas of concern with respect to
widely used measures, such as the ability
to gain by prediction of aggregate statistics
specific to gold label distributions or by
optimally conservative variance in predic-
tion score distributions. As an alternative,
we propose the use of the unit-free Pear-
son correlation, in addition to providing an
appropriate method of significance testing
improvements over a baseline. Compo-
nents of WMT-13 and WMT-14 quality es-
timation shared tasks are replicated to re-
veal substantially increased conclusivity in
system rankings, including identification
of outright winners of tasks.

1 Introduction

Machine Translation (MT) Quality Estimation
(QE) is the automatic prediction of machine trans-
lation quality without the use of reference trans-
lations (Blatz et al., 2004; Specia et al., 2009).
Human assessment of translation quality in theory
provides the most meaningful evaluation of sys-
tems, but human assessors are known to be incon-
sistent and this causes challenges for quality es-
timation evaluation. For instance, there is a gen-
eral lack of consensus both with respect to what

provides the most meaningful gold standard rep-
resentation, as well as best method of compari-
son of gold labels and system predictions. For ex-
ample, in the 2014 Workshop on Statistical Ma-
chine Translation (WMT), which since 2012 has
provided a main venue for evaluation of systems,
sentence-level systems were evaluated with re-
spect to three distinct gold standard representa-
tions and each of those compared to predictions
using four different measures, resulting in a total
of 12 different system rankings, 6 identified as of-
ficial rankings (Bojar et al., 2014).

Although the aim of several methods of evalua-
tion is to provide more insight into performance of
systems, this also produces conflicting results and
raises the question which method of evaluation re-
ally identifies the system(s) or method(s) that best
predicts translation quality. For example, an ex-
treme case in WMT-14 occurred for sentence-level
quality estimation for English-to-Spanish. In each
of the 12 system rankings, many systems were tied
and this resulted in a total of 22 official winning
systems for this language pair. Besides leaving po-
tential users of quality estimation systems at a loss
as to what the best system may be, a large number
of inconclusive evaluation methodologies is also
likely to lead to confusion about which evaluation
methods should be applied in general in QE re-
search, or worse still, researchers simply choos-
ing the methodology that favors their system from
among the many different methodologies.

In this paper, we provide an analysis of each of
the methodologies used in WMT and widely ap-
plied to evaluation of quality estimation systems
in general. Our analysis reveals potential flaws in
existing methods and we subsequently provide de-
tail of a single method that overcomes previous
challenges. To demonstrate, we replicate com-
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ponents of evaluations previously carried out at
WMT-13 and WMT-14 sentence-level quality es-
timation shared tasks. Results reveal substantially
more conclusive system rankings, revealing out-
right winners that had not previously been identi-
fied.

2 Relevant Work

The Workshop on Statistical Machine Transla-
tion (WMT) provides a main venue for evalua-
tion of quality estimation systems, in addition to
the rare and highly-valued effort of provision of
publicly available data sets to facilitate further re-
search. We provide an analysis of current evalu-
ation methodologies applied not only in the most
recent WMT shared task but also widely within
quality estimation research.

2.1 WMT-style Evaluation

WMT-14 quality estimation evaluation at the
sentence-level, Task 1, is comprised of three sub-
tasks. In Task 1.1, human gold labels comprise
three levels of translation quality or “perceived
post-edit effort” (1 = perfect translation; 2 = near
miss translation; 3 = very low quality translation).
A possible downside of the evaluation methodol-
ogy applied in Task 1.1 is firstly that the gold stan-
dard representation may be overly coarse-grained.
Considering the vast range of possible errors oc-
curring in translations, limiting the levels of trans-
lation quality to only three may impact negatively
on systems’ ability to discriminate between trans-
lations of various quality.

More importantly, however, the combination of
such coarse-grained gold labels (1, 2 or 3) and
comparison of gold labels and system predictions
by mean absolute error (MAE) has a counter-
intuitive effect on system rankings, as systems that
produce continuous predictions are at an advan-
tage over those that produce discrete predictions
even though gold labels are also discrete. Figure
1(a) shows discrete gold label distributions for the
scoring variant of Task 1.1 in WMT-14 and Figure
1(b) prediction distributions for an example sys-
tem that was at a disadvantage because it restricted
its predictions to discrete ratings like those of gold
labels, and Figure 1(c) a system that achieves ap-
parent better performance (lower MAE) despite
prediction representations mismatching the dis-
crete nature of gold labels.

Evaluation of the ranking variant of Task 1.1

r

Post-edit Time 0.36
Post-edit Rate 0.69∗∗∗

Table 1: Pearson correlation with HTER scores of
post-edit times (PETs) and post-edit rates (PERs)
for WMT-14 Task 1.2 and Task 1.3 gold labels,
correlation marked with ∗∗∗ is significantly greater
at p < 0.001.

again includes a significant mismatch between
representations used as gold labels, which again
were limited to the ratings 1, 2 or 3, while sys-
tems were required to provide a total-order rank-
ing of test set translations, for example ranks 1-
600 or 1-450, depending on language pair. Evalu-
ation methodologies applied to ranking tasks may
be better facilitated by application of more fine-
grained gold standard labels that more closely rep-
resent total-order rankings of system predictions.

Evaluation methodologies applied in Task 1.3
employ the more fine-grained post-edit times
(PETs) as translation quality gold labels. PETs
potentially provide a good indication of the un-
derlying quality of translations, as a translation
that takes longer to manually correct is thought
to have lower quality. However, we propose what
may correspond more directly to translation qual-
ity is an alteration of this, a post-edit rate (PER),
where PETs are normalized by the number of
words in translations. This takes into account the
fact that, all else being equal, longer translations
simply take a greater amount of time to post-edit
than shorter ones. To investigate to what degree
PERs may correspond better to translation quality
than PETs, we compute correlations of each with
HTER gold labels of translations from Task 1.2.
Table 6 reveals a significantly higher correlation
that exists between PER and HTER compared to
PET and HTER (p < 0.001) , and we conclude
therefore that the PER of a translation provides a
more faithful representation of translation quality
than PET, and convert PETs for both predictions
and gold labels to PERs (in seconds per word) in
our later replication of Task 1.3.

In Task 1.2 of WMT-14, gold standard labels
used to evaluate systems were in the form of hu-
man translation error rates (HTERs) (Snover et
al., 2009). HTER scores provide an effective
representation for evaluation of quality estima-
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Figure 1: WMT-14 English-to-German quality estimation Task 1.1 where mismatched prediction/gold
labels achieves apparent better performance, where (a) gold label distribution; (b) example system disad-
vantaged by its discrete predictions; (c) example system gaining advantage by its continuous predictions.

tion systems, as scores are individually computed
per translation using custom post-edited reference
translations, avoiding the bias that can occur with
metrics that employ generic reference translations.
In our later evaluation, we therefore use HTER
scores in addition to PERs as suitable gold stan-
dard labels.

2.2 Mean Absolute Error

Mean absolute error is likely the most widely ap-
plied comparison measure of quality estimation
system predictions and gold labels, in addition to
being the official measure applied to scoring vari-
ants of tasks in WMT (Bojar et al., 2014). MAE is
the average absolute difference that exists between
a system’s predictions and gold standard labels for
translations, and a system achieving a lower MAE
is considered a better system. Significant issues
arise for evaluation of quality estimation systems
with MAE when comparing distributions for pre-
dictions and gold labels, however. Firstly, a sys-
tem’s MAE can be lowered not only by individ-
ual predictions closer to corresponding gold la-
bels, but also by prediction of aggregate statistics
specific to the distribution of gold labels in the par-
ticular test set used for evaluation. MAE is most
susceptible in this respect when gold labels have
a unimodal distribution with relatively low stan-
dard deviation. For example, Figure 2(a) shows
test set gold label HTER distribution for Task 1.2
in WMT-14 where the bulk of HTERs are located
around one main peak with relatively low variance
in the distribution. Unfortunately with MAE, a
system that correctly predicts the location of the
mode of the test set gold distribution and centers
predictions around it with an optimally conserva-

tive variance can achieve lower MAE and appar-
ent better performance. Figure 2(b) shows a lower
MAE can be achieved by rescaling the original
prediction distribution for an example system to
a distribution with lower variance.

A disadvantage of an ability to gain in perfor-
mance by prediction of such features of a given
test set is that prediction of aggregates is, in gen-
eral, far easier than individual predictions. In ad-
dition, inclusion of confounding test set aggre-
gates such as these in evaluations will likely lead
to both an overestimate of the ability of some sys-
tems to predict the quality of unseen translations
and an underestimate of the accuracy of systems
that courageously attempt to predict the quality of
translations in the tails of gold distributions, and
it follows that systems optimized for MAE can
be expected to perform badly when predicting the
quality of translations in the tails of gold label dis-
tributions (Moreau and Vogel, 2014).

Table 2 shows how MAEs of original predicted
score distributions for all systems participating in
Task 1.2 WMT-14 can be reduced by shifting and
rescaling the prediction score distribution accord-
ing to gold label aggregates. Table 3 shows that
for similar reasons other measures commonly ap-
plied to evaluation of quality estimation systems,
such as root mean squared error (RMSE), that are
also not unit-free, encounter the same problem.

2.3 Significance Testing

In quality estimation, it is common to apply boot-
strap resampling to assess the likelihood that a de-
crease in MAE (an improvement) has occurred by
chance. In contrast to other areas of MT, where
the accuracy of randomized methods of signifi-
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Figure 2: Comparison of example system from
WMT-14 English-to-Spanish Task 1.2 (a) original
prediction distribution and gold labels and (b) the
same when the prediction distribution is rescaled
to half its original standard deviation, showing a
lower MAE can be achieved by reducing the vari-
ance in prediction distributions.

Original Rescaled
MAE MAE

FBK-UPV-UEDIN-wp 0.129 0.125
DCU-rtm-svr 0.134 0.127
USHEFF 0.136 0.133
DCU-rtm-tree 0.140 0.129
DFKI-svr 0.143 0.132
FBK-UPV-UEDIN-nowp 0.144 0.137
SHEFF-lite-sparse 0.150 0.141
Multilizer 0.150 0.135
baseline 0.152 0.149
DFKI-svr-xdata 0.161 0.146
SHEFF-lite 0.182 0.168

Table 2: MAE of WMT-14 Task 1.2 systems for
original HTER prediction distributions and when
distributions are shifted and rescaled to the mean
and half the standard deviation of the gold label
distribution.

Original Rescaled
RMSE RMSE

FBK-UPV-UEDIN-wp 0.167 0.166
DCU-rtm-svr 0.167 0.165
DCU-rtm-tree 0.175 0.169
DFKI-svr 0.177 0.171
USHEFF 0.178 0.178
FBK-UPV-UEDIN-nowp 0.181 0.180
SHEFF-lite-sparse 0.184 0.179
baseline 0.195 0.194
DFKI-svr-xdata 0.195 0.187
Multilizer 0.209 0.181
SHEFF-lite 0.234 0.216

Table 3: RMSE of WMT-14 Task 1.2 systems for
original HTER prediction distributions and when
distributions are shifted and rescaled to the mean
and half the standard deviation of the gold label
distribution.

cance testing such as bootstrap resampling in com-
bination with BLEU and other metrics have been
empirically evaluated (Koehn, 2004; Graham et
al., 2014), to the best of our knowledge no re-
search has been carried out to assess the accuracy
of similar methods specifically for quality estima-
tion evaluation. In addition, since data used for
evaluation of quality estimation systems are not
independent, methods of significance testing dif-
ferences in performance will be inaccurate unless
the dependent nature of the data is taken into ac-
count.

3 Quality Estimation Evaluation by
Pearson Correlation

The Pearson correlation is a measure of the linear
correlation between two variables, and in the case
of quality estimation evaluation this amounts to
the linear correlation between system predictions
and gold labels. Pearson’s r overcomes the out-
lined challenges of previous approaches, such as
mean absolute error, for several reasons. Firstly,
Pearson’s r is a unit-free measure with a key prop-
erty being that the correlation coefficient is invari-
ant to separate changes in location and scale in
either of the two variables. This has the obvious
advantage over MAE that the coefficient cannot
be altered by shifting or rescaling prediction score
distributions according to aggregates specific to
the test set.

To illustrate, Figure 3 depicts a pair of systems
for which the baseline system appears to outper-
form the other when evaluated with MAE, but this
is only due to the conservative variance in its pre-
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Figure 3: WMT-13 Task 1.1 systems showing baseline with better MAE than CMU-ISL-FULL only due
to conservative variance in prediction distribution and despite its weaker correlation with gold labels.

diction score distribution, as can be seen by the
narrow blue spike in Figure 3(b). Figure 3(e)
shows how the prediction distribution of CMU-
ISL-FULL, on the other hand, has higher variance,
and subsequently higher MAE. Figures 3(c) and
3(f) depict what occurs in computation of the Pear-
son correlation where raw prediction and gold la-
bel scores are replaced by standardized scores, i.e.
numbers of standard deviations from the mean of
each distribution, where CMU-ISL-FULL in fact
achieves a significantly higher correlation than the
baseline system at p < 0.001.

An additional advantage of the Pearson corre-
lation is that coefficients do not change depend-
ing on the representation used in the gold standard
in the way they do with MAE, making possible a
comparison of performance across evaluations that
employ different gold label representations. Addi-
tionally, there is no longer a need for training and
test representations to directly correspond to one
another. To demonstrate, in our later evaluation we
include the evaluation of systems trained on both
HTER and PETs for prediction of both HTER
and PERs.

Finally, when evaluated with the Pearson cor-
relation significance tests can be applied without
resorting to randomized methods, in addition to
taking into account the dependent nature of data
used in evaluations.

The fact that the Pearson correlation is invariant
to separate shifts in location and scale of either of
the two variables is nonproblematic for evaluation
of quality estimation systems. Take, for instance,
the possible counter-argument: a pair of systems,
one of which predicts the precise gold distribution,
and another system predicting the gold distribution
+ 1, would unfairly receive the same Pearson cor-
relation coefficient. Firstly, it is just as difficult to
predict the gold distribution + 1, as it is to pre-
dict the gold distribution itself. More importantly,
however, the scenario is extremely unlikely to oc-
cur in practice, it is highly unlikely that a system
would ever accurately predict the gold distribution
+ 1, as opposed to the actual gold distribution un-
less training labels were adjusted in the same man-
ner, or indeed predict the gold distribution shifted
or rescaled by any other constant value. It is im-
portant to understand that invariance of the Pear-
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son correlation to a shift in location or scale means
that the measure is only invariant to a shift in loca-
tion or scale applied to the entire distribution (of
either of the two variables), such as the shift in
location and scale that can be used to boost appar-
ent performance of systems when measures like
MAE and RMSE, that are not unit-free, are em-
ployed. Increasing the distance between system
predictions and gold labels for anything less than
the entire distribution, a more realistic scenario,
or by something other than a constant across the
entire distribution, will result in an appropriately
weaker Pearson correlation.

4 Quality Estimation Significance
Testing

Previous work has shown the suitability of
Williams significance test (Williams, 1959) for
evaluation of automatic MT metrics (Graham and
Baldwin, 2014; Graham et al., 2015), and, for sim-
ilar reasons, Williams test is appropriate for signif-
icance testing differences in performance of com-
peting quality estimation systems which we detail
further below.

Evaluation of a given quality estimation system,
Pnew, by Pearson correlation takes the form of
quantifying the correlation, r(Pnew, G), that ex-
ists between system prediction scores and corre-
sponding gold standard labels, and contrasting this
correlation with the correlation for some baseline
system, r(Pbase, G).

At first it might seem reasonable to perform sig-
nificance testing in the following manner when
an increase in correlation with gold labels is ob-
served: apply a significance test separately to the
correlation of each quality estimation system with
gold labels, with the hope that the new system will
achieve a significant correlation where the base-
line system does not. The reasoning here is flawed
however: the fact that one correlation is signifi-
cantly higher than zero (r(Pnew, G)) and that of
another is not, does not necessarily mean that the
difference between the two correlations is signif-
icant. Instead, a specific test should be applied
to the difference in correlations on the data. For
this same reason, confidence intervals for individ-
ual correlations with gold labels are also not use-
ful.

In psychology, it is often the case that sam-
ples that data are drawn from are independent,
and differences in correlations are computed on

independent data sets. In such cases, the Fisher
r to z transformation is applied to test for sig-
nificant differences in correlations. Data used
for evaluation of quality estimation systems are
not independent, however, and this means that if
r(Pbase, G) and r(Pnew, G) are both > 0, the cor-
relation between both sets of predictions them-
selves, r(Pbase, Pnew), must also be > 0. The
strength of this correlation, directly between pre-
dictions of pairs of quality estimation systems,
should be taken into account using a signifi-
cance test of the difference in correlation between
r(Pbase, G) and r(Pnew, G).

Williams test 1 (Williams, 1959) evaluates the
significance of a difference in dependent correla-
tions (Steiger, 1980). It is formulated as follows
as a test of whether the population correlation be-
tween X1 and X3 equals the population correla-
tion between X2 and X3:

t(n− 3) =
(r13 − r23)

√
(n− 1)(1 + r12)√

2K (n−1)
(n−3) + (r23+r13)2

4 (1− r12)3
,

where rij is the correlation between Xi and Xj , n
is the size of the population, and:

K = 1− r12
2 − r13

2 − r23
2 + 2r12r13r23

As part of this research, we have made avail-
able an open-source implementation of statisti-
cal tests tailored to the assessment of quality es-
timation systems, at https://github.com/
ygraham/mt-qe-eval.

5 Evaluation and Discussion

To demonstrate the use of the Pearson correlation
as an effective mechanism for evaluation of quality
estimation systems, we rerun components of pre-
vious evaluations originally carried out at WMT-
13 and WMT-14.

Table 4 shows Pearson correlations for systems
participating in WMT-13 Task 1.1 where gold la-
bels were in the form of HTER scores. System
rankings diverge considerably from original rank-
ings, notably the top system according to the Pear-
son correlation is tied in fifth place when evaluated
with MAE.

Table 5 shows Pearson correlations of systems
that took part in Task 1.2 of WMT-14, where gold
labels were again in the form of HTER scores,

1Also known as Hotelling-Williams.
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System r MAE

DCU-SYMC-rc 0.595 0.135
SHEFMIN-FS 0.575 0.124
DCU-SYMC-ra 0.572 0.135
CNGL-SVRPLS 0.560 0.133
CMU-ISL-noB 0.516 0.138
CNGL-SVR 0.508 0.138
CMU-ISL-full 0.494 0.152
fbk-uedin-extra 0.483 0.144
LIMSI-ELASTIC 0.475 0.133
SHEFMIN-FS-AL 0.474 0.130
LORIA-INCTRA-CONT 0.474 0.148
fbk-uedin-rsvr 0.464 0.145
LORIA-INCTRA 0.461 0.148
baseline 0.451 0.148
TCD-CNGL-OPEN 0.329 0.148
TCD-CNGL-RESTR 0.291 0.152
UMAC-EBLEU 0.113 0.170

Table 4: Pearson correlation and MAE of system
HTER predictions and gold labels for English-to-
Spanish WMT-13 Task 1.1.

and to demonstrate the ability of evaluation of sys-
tems trained on a representation distinct from that
of gold labels made possible by the unit-free Pear-
son correlation, we also include evaluation of sys-
tems originally trained on PET labels to predict
HTER scores. Since PET systems also produce
predictions in the form of PET, we convert pre-
dictions for all systems to PERs prior to compu-
tation of correlations, as PERs more closely cor-
respond to translation quality. Results reveal that
systems originally trained on PETs in general per-
form worse than HTER trained systems, and this
is not all that surprising considering the training
representation did not correspond well to transla-
tion quality. Again system rankings diverge from
MAE rankings with the second best system ac-
cording to MAE moved to the initial position.

Table 6 shows Pearson correlations for predic-
tions of PER for systems trained on either PETs
or HTER, and predictions for systems trained on
PETs are converted to PER for evaluation. Sys-
tem rankings diverge most for this data set from
the original rankings by MAE, as the system hold-
ing initial position according to MAE moves to po-
sition 13 according to the Pearson correlation.

Many of the differences in correlation between
systems in Tables 4, 5 and 6 are small and instead
of assuming that an increase in correlation of one
system over another corresponds to an improve-
ment in performance, we first apply significance
testing to differences in correlation with gold la-
bels that exist between correlations for each pair

Training QE
Labels System r MAE

HTER DCU-rtm-svr 0.550 0.134
HTER FBK-UPV-UEDIN-wp 0.540 0.129
HTER DCU-rtm-tree 0.518 0.140
HTER DFKI-svr 0.501 0.143
HTER USHEFF 0.432 0.136
HTER SHEFF-lite-sparse 0.428 0.150
HTER FBK-UPV-UEDIN-nowp 0.414 0.144
HTER Multilizer 0.409 0.150
PET DCU-rtm-rr 0.350 −
HTER DFKI-svr-xdata 0.349 0.161
PET FBK-UPV-UEDIN-wp 0.346 −
PET Multilizer-2 0.331 −
PET Multilizer-1 0.328 −
PET DCU-rtm-svr 0.315 −
HTER baseline 0.283 0.152
PET FBK-UPV-UEDIN-nowp 0.279 −
PET USHEFF 0.246 −
PET baseline 0.246 −
PET SHEFF-lite-sparse 0.229 −
PET SHEFF-lite 0.194 −
HTER SHEFF-lite 0.052 0.182

Table 5: Pearson correlation and MAE of system
HTER predictions and gold labels for English-to-
Spanish WMT-14 Task 1.2 and 1.3 systems trained
on either HTER or PET labelled data.

Training QE
Labels System r MAE

HTER FBK-UPV-UEDIN-wp 0.529 −
PET FBK-UPV-UEDIN-wp 0.472 0.972
HTER FBK-UPV-UEDIN-nowp 0.452 −
HTER USHEFF 0.444 −
HTER DCU-rtm-svr 0.444 −
HTER DCU-rtm-tree 0.442 −
HTER SHEFF-lite-sparse 0.441 −
PET DCU-rtm-rr 0.430 0.932
PET FBK-UPV-UEDIN-nowp 0.423 1.012
HTER DFKI-svr 0.412 −
PET USHEFF 0.394 1.358
PET baseline 0.394 1.359
PET DCU-rtm-svr 0.365 0.915
HTER Multilizer 0.361 −
PET SHEFF-lite-sparse 0.337 0.951
PET SHEFF-lite 0.323 0.940
PET Multilizer-1 0.288 0.993
HTER baseline 0.286 −
HTER DFKI-svr-xdata 0.277 −
PET Multilizer-2 0.271 0.972
HTER SHEFF-lite 0.011 −

Table 6: Pearson correlation of system PER pre-
dictions and gold labels for English-to-Spanish
WMT-14 Task 1.2 and 1.3 systems trained on ei-
ther HTER or PET labelled data, mean absolute
error (MAE) provided are in seconds per word.
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Figure 4: Pearson correlation between prediction
scores for all pairs of systems participating in
WMT-14 Task 1.2

of systems.

5.1 Significance Tests

When an increase in correlation with gold labels
is present for a pair of systems, significance tests
provide insight into the likelihood that such an in-
crease has occurred by chance. As described in
detail in Section 4, the Williams test (Williams,
1959), a test also appropriate for MT metrics eval-
uated by the Pearson correlation (Graham and
Baldwin, 2014), is appropriate for testing the sig-
nificance of a difference in dependent correlations
and therefore provides a suitable method of signif-
icance testing for quality estimation systems. Fig-
ure 4 provides an example of the strength of cor-
relations that commonly exist between predictions
of quality estimation systems.

Figure 5 shows significance test outcomes of
the Williams test for systems originally taking part
in WMT-13 Task 1.1, with systems ordered by
strongest to least Pearson correlation with gold la-
bels, where a green cell in (row i, column j) signi-
fies a significant win for row i system over column
j system, where darker shades of green signify
conclusions made with more certainty. Test out-
comes allow identification of significant increases
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Figure 5: HTER prediction significance test out-
comes for all pairs of systems from English-to-
Spanish WMT-13 Task 1.1, colored cells denote a
significant increase in correlation with gold labels
for row i system over column j system.

in correlation with gold labels of one system over
another, and subsequently the systems shown to
outperform others. Test outcomes in Figure 5 re-
veal substantially increased conclusivity in sys-
tem rankings made possible with the application
of the Pearson correlation and Williams test, with
almost an unambiguous total-order ranking of sys-
tems and an outright winner of the task.

Figure 6 shows outcomes of Williams signifi-
cance tests for prediction of HTER and Figure 7
shows outcomes of tests for PER prediction for
WMT-14 English-to-Spanish, again showing sub-
stantially increased conclusivity in system rank-
ings for tasks.

It is important to note that the number of com-
peting systems a system significantly outperforms
should not be used as the criterion for ranking
competing quality estimation systems, since the
power of the Williams test changes depending on
the degree to which predictions of a pair of sys-
tems correlate with each other. A system with pre-
dictions that happen to correlate strongly with pre-
dictions of many other systems would be at an un-
fair advantage, were numbers of significant wins
to be used to rank systems. For this reason, it is
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Figure 6: HTER prediction significance test out-
comes for all pairs of systems from English-to-
Spanish WMT-14 Task 1.2, colored cells denote a
significant increase in correlation with gold labels
for row i system over column j system.
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Figure 7: PER prediction significance test out-
comes for all pairs of systems from English-to-
Spanish WMT-14 Task 1.3, colored cells denote a
significant increase in correlation with gold labels
for row i system over column j system.

best to interpret pairwise system tests in isolation.

6 Conclusion

We have provided a critique of current widely used
methods of evaluation of quality estimation sys-
tems and highlighted potential flaws in existing
methods, with respect to the ability to boost scores
by prediction of aggregate statistics specific to the
particular test set in use or conservative variance in
prediction distributions. We provide an alternate
mechanism, and since the Pearson correlation is a
unit-free measure, it can be applied to evaluation
of quality estimation systems avoiding the previ-
ous vulnerabilities of measures such as MAE and
RMSE. Advantages also outlined are that training
and test representations no longer need to directly
correspond in evaluations as long as labels com-
prise a representation that closely reflects transla-
tion quality. We demonstrated the suitability of the
proposed measures through replication of compo-
nents of WMT-13 and WMT-14 quality estima-
tion shared tasks, revealing substantially increased
conclusivity of system rankings.
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