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Abstract
We introduce DISSECT, a toolkit to
build and explore computational models
of word, phrase and sentence meaning
based on the principles of distributional
semantics. The toolkit focuses in partic-
ular on compositional meaning, and im-
plements a number of composition meth-
ods that have been proposed in the litera-
ture. Furthermore, DISSECT can be use-
ful to researchers and practitioners who
need models of word meaning (without
composition) as well, as it supports var-
ious methods to construct distributional
semantic spaces, assessing similarity and
even evaluating against benchmarks, that
are independent of the composition infras-
tructure.

1 Introduction

Distributional methods for meaning similarity are
based on the observation that similar words oc-
cur in similar contexts and measure similarity
based on patterns of word occurrence in large cor-
pora (Clark, 2012; Erk, 2012; Turney and Pan-
tel, 2010). More precisely, they represent words,
or any other target linguistic elements, as high-
dimensional vectors, where the dimensions repre-
sent context features. Semantic relatedness is as-
sessed by comparing vectors, leading, for exam-
ple, to determine that car and vehicle are very sim-
ilar in meaning, since they have similar contextual
distributions. Despite the appeal of these meth-
ods, modeling words in isolation has limited ap-
plications and ideally we want to model semantics
beyond word level by representing the meaning of
phrases or sentences. These combinations are in-
finite and compositional methods are called for to
derive the meaning of a larger construction from
the meaning of its parts. For this reason, the ques-
tion of compositionality within the distributional

paradigm has received a lot of attention in recent
years and a number of compositional frameworks
have been proposed in the distributional seman-
tic literature, see, e.g., Coecke et al. (2010) and
Mitchell and Lapata (2010). For example, in such
frameworks, the distributional representations of
red and car may be combined, through various op-
erations, in order to obtain a vector for red car.

The DISSECT toolkit (http://clic.
cimec.unitn.it/composes/toolkit)
is, to the best of our knowledge, the first to
provide an easy-to-use implementation of many
compositional methods proposed in the literature.
As such, we hope that it will foster further work
on compositional distributional semantics, as well
as making the relevant techniques easily available
to those interested in their many potential applica-
tions, e.g., to context-based polysemy resolution,
recognizing textual entailment or paraphrase
detection. Moreover, the DISSECT tools to
construct distributional semantic spaces from
raw co-occurrence counts, to measure similarity
and to evaluate these spaces might also be of
use to researchers who are not interested in the
compositional framework. DISSECT is freely
available under the GNU General Public License.

2 Building and composing distributional
semantic representations

The pipeline from corpora to compositional mod-
els of meaning can be roughly summarized as con-
sisting of three stages:1

1. Extraction of co-occurrence counts from cor-
pora In this stage, an input corpus is used to ex-
tract counts of target elements co-occurring with
some contextual features. The target elements
can vary from words (for lexical similarity), to
pairs of words (e.g., for relation categorization),

1See Turney and Pantel (2010) for a technical overview of
distributional methods for semantics.
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to paths in syntactic trees (for unsupervised para-
phrasing). Context features can also vary from
shallow window-based collocates to syntactic de-
pendencies.

2. Transformation of the raw counts This
stage may involve the application of weighting
schemes such as Pointwise Mutual Information,
feature selection, dimensionality reduction meth-
ods such as Singular Value Decomposition, etc.
The goal is to eliminate the biases that typically
affect raw counts and to produce vectors which
better approximate similarity in meaning.

3. Application of composition functions
Once meaningful representations have been
constructed for the atomic target elements of
interest (typically, words), various methods, such
as vector addition or multiplication, can be used
for combining them to derive context-sensitive
representations or for constructing representations
for larger phrases or even entire sentences.

DISSECT can be used for the second and
third stages of this pipeline, as well as to measure
similarity among the resulting word or phrase vec-
tors. The first step is highly language-, task- and
corpus-annotation-dependent. We do not attempt
to implement all the corpus pre-processing and
co-occurrence extraction routines that it would
require to be of general use, and expect instead as
input a matrix of raw target-context co-occurrence
counts.2 DISSECT provides various methods to
re-weight the counts with association measures,
dimensionality reduction methods as well as the
composition functions proposed by Mitchell and
Lapata (2010) (Additive, Multiplicative and Dila-
tion), Baroni and Zamparelli (2010)/Coecke et al.
(2010) (Lexfunc) and Guevara (2010)/Zanzotto et
al. (2010) (Fulladd). In DISSECT we define and
implement these in a unified framework and in a
computationally efficient manner. The focus of
DISSECT is to provide an intuitive interface for
researchers and to allow easy extension by adding
other composition methods.

3 DISSECT overview

DISSECT is written in Python. We provide many
standard functionalities through a set of power-

2These counts can be read from a text file containing two
strings (the target and context items) and a number (the corre-
sponding count) on each line (e.g., maggot food 15) or
from a matrix in format word freq1 freq2 ...

#create a semantic space from counts in
#dense format("dm"): word freq1 freq2 ..
ss = Space.build(data="counts.txt",

format="dm")

#apply transformations
ss = ss.apply(PpmiWeighting())
ss = ss.apply(Svd(300))

#retrieve the vector of a target element
print ss.get_row("car")

Figure 1: Creating a semantic space.

ful command-line tools, however users with ba-
sic Python familiarity are encouraged to use the
Python interface that DISSECT provides. This
section focuses on this interface (see the online
documentation on how to perform the same oper-
ations with the command-line tools), that consists
of the following top-level packages:

#DISSECT packages
composes.matrix
composes.semantic_space
composes.transformation
composes.similarity
composes.composition
composes.utils

Semantic spaces and transforma-
tions The concept of a semantic space
(composes.semantic space) is at the
core of the DISSECT toolkit. A semantic
space consists of co-occurrence values, stored
as a matrix, together with strings associated to
the rows of this matrix (by design, the target
linguistic elements) and a (potentially empty)
list of strings associated to the columns (the
context features). A number of transforma-
tions (composes.transformation) can
be applied to semantic spaces. We implement
weighting schemes such as positive Pointwise
Mutual Information (ppmi) and Local Mu-
tual Information, feature selection methods,
dimensionality reduction (Singular Value De-
composition (SVD) and Nonnegative Matrix
Factorization (NMF)), and new methods can
be easily added.3 Going from raw counts to a
transformed space is accomplished in just a few
lines of code (Figure 1).

3The complete list of transformations currently sup-
ported can be found at http://clic.cimec.unitn.
it/composes/toolkit/spacetrans.html#
spacetrans.
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#load a previously saved space
ss = io_utils.load("ss.pkl")

#compute cosine similarity
print ss.get_sim("car", "book",

CosSimilarity())

#the two nearest neighbours of "car"
print ss.get_neighbours("car", 2,

CosSimilarity())

Figure 2: Similarity queries in a semantic space.

Furthermore DISSECT allows the pos-
sibility of adding new data to a seman-
tic space in an online manner (using the
semantic space.peripheral space
functionality). This can be used as a way to effi-
ciently expand a co-occurrence matrix with new
rows, without re-applying the transformations to
the entire space. In some other cases, the user may
want to represent phrases that are specialization
of words already existing in the space (e.g.,
slimy maggot and maggot), without distorting the
computation of association measures by counting
the same context twice. In this case, adding slimy
maggot as a “peripheral” row to a semantic space
that already contains maggot implements the
desired behaviour.

Similarity queries Semantic spaces are used for
the computation of similarity scores. DISSECT
provides a series of similarity measures such as co-
sine, inverse Euclidean distance and Lin similarity,
implemented in the composes.similarity
package. Similarity of two elements can be com-
puted within one semantic space or across two
spaces that have the same dimensionality. Figure
2 exemplifies (word) similarity computations with
DISSECT.

Composition functions Composition functions
in DISSECT (composes.composition) take
as arguments a list of element pairs to be com-
posed, and one or two spaces where the elements
to be composed are represented. They return a se-
mantic space containing the distributional repre-
sentations of the composed items, which can be
further transformed, used for similarity queries, or
used as inputs to another round of composition,
thus scaling up beyond binary composition. Fig-
ure 3 shows a Multiplicative composition exam-
ple. See Table 1 for the currently available com-
position models, their definitions and parameters.

Model Composition function Parameters
Add. w1~u+ w2~v w1(= 1), w2(= 1)
Mult. ~u� ~v -
Dilation ||~u||22~v + (λ− 1)〈~u,~v〉~u λ(= 2)
Fulladd W1~u+W2~v W1,W2 ∈ Rm×m

Lexfunc Au~v Au ∈ Rm×m

Table 1: Currently implemented composition
functions of inputs (u, v) together with parame-
ters and their default values in parenthesis, where
defined. Note that in Lexfunc each functor word
corresponds to a separate matrix or tensor Au (Ba-
roni and Zamparelli, 2010).

Parameter estimation All composition models
except Multiplicative have parameters to be esti-
mated. For simple models with few parameters,
such as as Additive, the parameters can be passed
by hand. However, DISSECT supports automated
parameter estimation from training examples. In
particular, we extend to all composition methods
the idea originally proposed by Baroni and Zam-
parelli (2010) for Lexfunc and Guevara (2010) for
Fulladd, namely to use corpus-extracted example
vectors of both the input (typically, words) and
output elements (typically, phrases) in order to op-
timize the composition operation parameters. The
problem can be generally stated as:

θ∗ = arg min
θ

||P − fcompθ(U, V )||F

where U, V and P are matrices containing input
and output vectors respectively. For example U
may contain adjective vectors such as red, blue,
V noun vectors such as car, sky and P corpus-
extracted vectors for the corresponding phrases
red car, blue sky. fcompθ is a composition func-
tion and θ stands for a list of parameters that this
composition function is associated with.4 We im-
plement standard least-squares estimation meth-
ods as well as Ridge regression with the option
for generalized cross-validation, but other meth-
ods such as partial least-squares regression can be
easily added. Figure 4 exemplifies the Fulladd
model.

Composition output examples DISSECT pro-
vides functions to evaluate (compositional) distri-
butional semantic spaces against benchmarks in
the composes.utils package. However, as a
more qualitatively interesting example of what can
be done with DISSECT, Table 2 shows the nearest

4Details on the extended corpus-extracted vector estima-
tion method in DISSECT can be found in Dinu et al. (2013).
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#instantiate a multiplicative model
mult_model = Multiplicative()

#use the model to compose words from input space input_space
comp_space = mult_model.compose([("red", "book", "my_red_book"),

("red", "car", "my_red_car")],
input_space)

#compute similarity of: 1) two composed phrases and 2) a composed phrase and a word
print comp_space.get_sim("my_red_book", "my_red_car", CosSimilarity())
print comp_space.get_sim("my_red_book", "book", CosSimilarity(), input_space)

Figure 3: Creating and using Multiplicative phrase vectors.

#training data for learning an adjective-noun phrase model
train_data = [("red","book","red_book"), ("blue","car","blue_car")]

#train a fulladd model
fa_model = FullAdditive()
fa_model.train(train_data, input_space, phrase_space)

#use the model to compose a phrase from new words and retrieve its nearest neighb.
comp_space = fa_model.compose([("yellow", "table", "my_yellow_table")], input_space)
print comp_space.get_neighbours("my_yellow_table", 10, CosSimilarity())

Figure 4: Estimating a Fulladd model and using it to create phrase vectors.

Target Method Neighbours
florist Corpus Harrod, wholesaler, stockist

flora + -ist
Fulladd flora, fauna, ecologist
Lexfunc ornithologist, naturalist, botanist
Additive flora, fauna, ecosystem

Table 3: Compositional models for morphol-
ogy. Top 3 neighbours of florist using its (low-
frequency) corpus-extracted vector, and when the
vector is obtained through composition of flora
and -ist with Fulladd, Lexfunc and Additive.

neighbours of false belief obtained through com-
position with the Fulladd, Lexfunc and Additive
models. In Table 3, we exemplify a less typical ap-
plication of compositional models to derivational
morphology, namely obtaining a representation of
florist compositionally from distributional repre-
sentations of flora and -ist (Lazaridou et al., 2013).

4 Main features

Support for dense and sparse representations
Co-occurrence matrices, as extracted from text,
tend to be very sparse structures, especially when
using detailed context features which include syn-
tactic information, for example. On the other
hand, dimensionality reduction operations, which
are often used in distributional models, lead to

smaller, dense structures, for which sparse rep-
resentations are not optimal. This is our motiva-
tion for supporting both dense and sparse repre-
sentations. The choice of dense vs. sparse is ini-
tially determined by the input format, if a space
is created from co-occurrence counts. By default,
DISSECT switches to dense representations af-
ter dimensionality reduction, however the user can
freely switch from one representation to the other,
in order to optimize computations. For this pur-
pose DISSECT provides wrappers around matrix
operations, as well as around common linear alge-
bra operations, in the composes.matrix pack-
age. The underlying Python functionality is pro-
vided by numpy.array and scipy.sparse.

Efficient computations DISSECT is optimized
for speed since most operations are cast as matrix
operations, that are very efficiently implemented
in Python’s numpy and scipy modules5. Ta-
bles 4 and 5 show running times for typical DIS-
SECT operations: application of the ppmi weight-
ing scheme, nearest neighbour queries and estima-
tion of composition function parameters (on a 2.1

5For SVD on sparse structures, we use sparsesvd
(https://pypi.python.org/pypi/sparsesvd/).
For NMF, we adapted http://www.csie.ntu.edu.
tw/˜cjlin/nmf/ (Lin, 2007).
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Target Method Neighbours
belief Corpus moral, dogma, worldview, religion, world-view, morality, theism, tenet, agnosticism, dogmatic

false belief
Fulladd pantheist, belief, agnosticism, religiosity, dogmatism, pantheism, theist, fatalism, deism, mind-set
Lexfunc self-deception, untruth, credulity, obfuscation, misapprehension, deceiver, disservice, falsehood
Additive belief, assertion, falsity, falsehood, truth, credence, dogma, supposition, hearsay, denial

Table 2: Top nearest neighbours of belief and of false belief obtained through composition with the
Fulladd, Lexfunc and Additive models.

Method Fulladd Lexfunc Add. Dilation
Time (s.) 2864 787 46 68

Table 4: Composition model parameter estimation
times (in seconds) for 1 million training points in
300-dimensional space.

Matrix size (nnz) Ppmi Query
100Kx300 (30M) 5.8 0.5

100Kx100K (250M) 52.6 9.5

Table 5: Running times (in seconds) for 1) appli-
cation of ppmi weighting and 2) querying for the
top neighbours of a word (cosine similarity) for
different matrix sizes (nnz: number of non-zero
entries, in millions).

GHz machine). The price to pay for fast computa-
tions is that data must be stored in main memory.
We do not think that this is a major inconvenience.
For example, a typical symmetric co-occurrence
matrix extracted from a corpus of several billion
words, defining context in terms of 5-word win-
dows and considering the top 100K×100K most
frequent words, contains≈ 250 million entries and
requires only 2GB of memory for (double preci-
sion) storage.

Simple design We have opted for a very simple
and intuitive design as the classes interact in
very natural ways: A semantic space stores
the actual data matrix and structures to index
its rows and columns, and supports similarity
queries and transformations. Transformations
take one semantic space as input to return
another, transformed, space. Composition func-
tions take one or more input spaces and yield
a composed-elements space, which can further
undergo transformations and be used for similarity
queries. In fact, DISSECT semantic spaces also
support higher-order tensor representations, not
just vectors. Higher-order representations are
used, for example, to represent transitive verbs
and other multi-argument functors by Coecke
et al. (2010) and Grefenstette et al. (2013).
See http://clic.cimec.unitn.it/

composes/toolkit/composing.html for
an example of using DISSECT for estimating
such tensors.

Extensive documentation The DISSECT
documentation can be found at http://clic.
cimec.unitn.it/composes/toolkit.
We provide a tutorial which guides the user
through the creation of some toy semantic spaces,
estimation of the parameters of composition
models and similarity computations in semantic
spaces. We also provide a full-scale example
of intransitive verb-subject composition. We
show how to go from co-occurrence counts to
composed representations and make the data used
in the examples available for download.

Comparison to existing software In terms of
design choices, DISSECT most resembles the
Gensim toolkit (Řehůřek and Sojka, 2010). How-
ever Gensim is intended for topic modeling, and
therefore diverges considerably from DISSECT in
its functionality. The SSpace package of Jurgens
and Stevens (2010) also overlaps to some degree
with DISSECT in terms of its intended use, how-
ever, like Gensim, it does not support composi-
tional operations that, as far as we know, are an
unique feature of DISSECT.

5 Future extensions

We implemented and are currently testing DIS-
SECT functions supporting other composition
methods, including the one proposed by Socher
et al. (2012). Adding further methods is our top-
priority goal. In particular, several distributional
models of word meaning in context share impor-
tant similarities with composition models, and we
plan to add them to DISSECT. Dinu et al. (2012)
show, for example, that well-performing, simpli-
fied variants of the method in Thater et al. (2010),
Thater et al. (2011) and Erk and Padó (2008) can
be reduced to relatively simple matrix operations,
making them particularly suitable for a DISSECT
implementation.
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DISSECT is currently optimized for the compo-
sition of many phrases of the same type. This is in
line with most of the current evaluations of com-
positional models, which focus on specific phe-
nomena, such as adjectival modification, noun-
noun compounds or intransitive verbs, to name a
few. In the future we plan to provide a module for
composing entire sentences, taking syntactic trees
as input and returning composed representations
for each node in the input trees.

Finally, we intend to make use of the exist-
ing Python plotting libraries to add a visualization
module to DISSECT.
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