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Abstract 

We present a new open source toolkit for 
phrase-based and syntax-based machine 
translation. The toolkit supports several 
state-of-the-art models developed in 
statistical machine translation, including 
the phrase-based model, the hierachical 
phrase-based model, and various syntax-
based models. The key innovation provided 
by the toolkit is that the decoder can work 
with various grammars and offers different 
choices of decoding algrithms, such as 
phrase-based decoding, decoding as 
parsing/tree-parsing and forest-based 
decoding. Moreover, several useful utilities 
were distributed with the toolkit, including 
a discriminative reordering model, a simple 
and fast language model, and an 
implementation of minimum error rate 
training  for weight tuning. 

1 Introduction 

We present NiuTrans, a new open source machine 
translation toolkit, which was developed for 
constructing high quality machine translation 
systems. The NiuTrans toolkit supports most 
statistical machine translation (SMT) paradigms 
developed over the past decade, and allows for 
training and decoding with several state-of-the-art 
models, including: the phrase-based model (Koehn 
et al., 2003), the hierarchical phrase-based model 
(Chiang, 2007), and various syntax-based models 
(Galley et al., 2004; Liu et al., 2006). In particular, 

a unified framework was adopted to decode with 
different models and ease the implementation of 
decoding algorithms. Moreover, some useful 
utilities were distributed with the toolkit, such as: a 
discriminative reordering model, a simple and fast 
language model, and an implementation of 
minimum error rate training that allows for various 
evaluation metrics for tuning the system. In 
addition, the toolkit provides easy-to-use APIs for 
the development of new features. The toolkit has 
been used to build translation systems that have 
placed well at recent MT evaluations, such as the 
NTCIR-9 Chinese-to-English PatentMT task (Goto 
et al., 2011). 

We implemented the toolkit in C++ language, 
with special consideration of extensibility and 
efficiency. C++ enables us to develop efficient 
translation engines which have high running speed 
for both training and decoding stages. This 
property is especially important when the programs 
are used for large scale translation. While the 
development of C++ program is slower than that of 
the similar programs written in other popular 
languages such as Java, the modern compliers 
generally result in C++ programs being 
consistently faster than the Java-based counterparts. 

The toolkit is available under the GNU general 
public license 1 . The website of NiuTrans is   
http://www.nlplab.com/NiuPlan/NiuTrans.html. 

2 Motivation 

As in current approaches to statistical machine 
translation, NiuTrans is based on a log-linear 

                                                           
1 http://www.gnu.org/licenses/gpl-2.0.html 
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model where a number of features are defined to 
model the translation process. Actually NiuTrans is 
not the first system of this kind. To date, several 
open-source SMT systems (based on either phrase-
based models or syntax-based models) have been 
developed, such as Moses (Koehn et al., 2007), 
Joshua (Li et al., 2009), SAMT (Zollmann and 
Venugopal, 2006), Phrasal (Cer et al., 2010), cdec 
(Dyer et al., 2010), Jane (Vilar et al., 2010) and 
SilkRoad 2 , and offer good references for the 
development of the NiuTrans toolkit. While our 
toolkit includes all necessary components as 
provided within the above systems, we have 
additional goals for this project, as follows: 

 It fully supports most state-of-the-art SMT 
models. Among these are: the phrase-based 
model, the hierarchical phrase-based model, 
and the syntax-based models that explicitly 
use syntactic information on either (both) 
source and (or) target language side(s). 

 It offers a wide choice of decoding 
algorithms. For example, the toolkit has 
several useful decoding options, including: 
standard phrase-based decoding, decoding 
as parsing, decoding as tree-parsing, and 
forest-based decoding. 

 It is easy-to-use and fast. A new system can 
be built using only a few commands. To 
control the system, users only need to 
modify a configuration file. In addition to 
the special attention to usability, the 
running speed of the system is also 
improved in several ways. For example, we 
used several pruning and multithreading 
techniques to speed-up the system. 

3 Toolkit 

The toolkit serves as an end-to-end platform for 
training and evaluating statistical machine 
translation models. To build new translation 
systems, all you need is a collection of word-
aligned sentences 3 , and a set of additional 
sentences with one or more reference translations 
for weight tuning and test. Once the data is 
prepared, the MT system can be created using a 

                                                           
2 http://www.nlp.org.cn/project/project.php?proj_id=14 
3 To obtain word-to-word alignments, several easy-to-use 
toolkits are available, such as GIZA++ and Berkeley Aligner. 

sequence of commands. Given a number of 
sentence-pairs and the word alignments between 
them, the toolkit first extracts a phrase table and 
two reordering models for the phrase-based system, 
or a Synchronous Context-free/Tree-substitution 
Grammar (SCFG/STSG) for the hierarchical 
phrase-based and syntax-based systems. Then, an 
n-gram language model is built on the target-
language corpus. Finally, the resulting models are 
incorporated into the decoder which can 
automatically tune feature weights on the 
development set using minimum error rate training 
(Och, 2003) and translate new sentences with the 
optimized weights. 

In the following, we will give a brief review of 
the above components and the main features 
provided by the toolkit. 

3.1 Phrase Extraction and Reordering Model 

We use a standard way to implement the phrase 
extraction module for the phrase-based model. 
That is, we extract all phrase-pairs that are 
consistent with word alignments. Five features are 
associated with each phrase-pair. They are two 
phrase translation probabilities, two lexical weights, 
and a feature of phrase penalty. We follow the 
method proposed in (Koehn et al., 2003) to 
estimate the values of these features. 

Unlike previous systems that adopt only one 
reordering model, our toolkit supports two 
different reordering models which are trained 
independently but jointly used during decoding. 

 The first of these is a discriminative 
reordering model. This model is based on 
the standard framework of maximum 
entropy. Thus the reordering problem is 
modeled as a classification problem, and 
the reordering probability can be efficiently 
computed using a (log-)linear combination 
of features. In our implementation, we use 
all boundary words as features which are 
similar to those used in (Xiong et al., 2006). 

 The second model is the MSD reordering 
model4 which has been successfully used in 
the Moses system. Unlike Moses, our 
toolkit supports both the word-based and 
phrase-based methods for estimating the 

                                                           
4 Term MSD refers to the three orientations (reordering types), 
including Monotone (M), Swap (S), and Discontinuous (D). 
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probabilities of the three orientations 
(Galley and Manning, 2008). 

3.2 Translation Rule Extraction 

For the hierarchical phrase-based model, we follow 
the general framework of SCFG where a grammar 
rule has three parts – a source-side, a target-side 
and alignments between source and target non-
terminals. To learn SCFG rules from word-aligned 
sentences, we choose the algorithm proposed in 
(Chiang, 2007) and estimate the associated feature 
values as in the phrase-based system. 

For the syntax-based models, all non-terminals 
in translation rules are annotated with syntactic 
labels. We use the GHKM algorithm to extract 
(minimal) translation rules from bilingual 
sentences with parse trees on source-language side 
and/or target-language side5 . Also, two or more 
minimal rules can be composed together to obtain 
larger rules and involve more contextual 
information. For unaligned words, we attach them 
to all nearby rules, instead of using the most likely 
attachment as in (Galley et al., 2006). 

3.3 N-gram Language Modeling 

The toolkit includes a simple but effective n-gram 
language model (LM). The LM builder is basically 
a “sorted” trie structure (Pauls and Klein, 2011), 
where a map is developed to implement an array of 
key/value pairs, guaranteeing that the keys can be 
accessed in sorted order. To reduce the size of 
resulting language model, low-frequency n-grams 
are filtered out by some thresholds. Moreover, an 
n-gram cache is implemented to speed up n-gram 
probability requests for decoding. 

3.4 Weight Tuning 

We implement the weight tuning component 
according to the minimum error rate training 
(MERT) method (Och, 2003). As MERT suffers 
from local optimums, we added a small program 
into the MERT system to let it jump out from the 
coverage area. When MERT converges to a (local) 
optimum, our program automatically conducts the 
MERT run again from a random starting point near 
the newly-obtained optimal point. This procedure 

                                                           
5 For tree-to-tree models, we use a natural extension of the 
GHKM algorithm which defines admissible nodes on tree-
pairs and obtains tree-to-tree rules on all pairs of source and 
target tree-fragments. 

is repeated for several times until no better weights 
(i.e., weights with a higher BLEU score) are found. 
In this way, our program can introduce some 
randomness into weight training. Hence users do 
not need to repeat MERT for obtaining stable and 
optimized weights using different starting points.  

3.5 Decoding 

Chart-parsing is employed to decode sentences in 
development and test sets. Given a source sentence, 
the decoder generates 1-best or k-best translations 
in a bottom-up fashion using a CKY-style parsing 
algorithm. The basic data structure used in the 
decoder is a chart, where an array of cells is 
organized in topological order. Each cell maintains 
a list of hypotheses (or items). The decoding 
process starts with the minimal cells, and proceeds 
by repeatedly applying translation rules or 
composing items in adjunct cells to obtain new 
items. Once a new item is created, the associated 
scores are computed (with an integrated n-gram 
language model). Then, the item is added into the 
list of the corresponding cell. This procedure stops 
when we reach the final state (i.e., the cell 
associates with the entire source span). 

The decoder can work with all (hierarchical) 
phrase-based and syntax-based models. In 
particular, our toolkit provides the following 
decoding modes. 

 Phrase-based decoding. To fit the phrase-
based model into the CKY paring 
framework, we restrict the phrase-based 
decoding with the ITG constraint (Wu, 
1996). In this way, each pair of items in 
adjunct cells can be composed in either 
monotone order or inverted order. Hence 
the decoding can be trivially implemented 
by a three-loop structure as in standard 
CKY parsing. This algorithm is actually the 
same as that used in parsing with 
bracketing transduction grammars. 

 Decoding as parsing (or string-based 
decoding). This mode is designed for 
decoding with SCFGs/STSGs which are 
used in the hierarchical phrase-based and 
syntax-based systems. In the general 
framework of synchronous grammars and 
tree transducers, decoding can be regarded 
as a parsing problem. Therefore, the above 
chart-based decoder is directly applicable to 
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the hierarchical phrase-based and syntax-
based models. For efficient integration of n-
gram language model into decoding, rules 
containing more than two variables are 
binarized into binary rules. In addition to 
the rules learned from bilingual data, glue 
rules are employed to glue the translations 
of a sequence of chunks.  

 Decoding as tree-parsing (or tree-based 
decoding). If the parse tree of source 
sentence is provided, decoding (for tree-to-
string and tree-to-tree models) can also be 
cast as a tree-parsing problem (Eisner, 
2003). In tree-parsing, translation rules are 
first mapped onto the nodes of input parse 
tree. This results in a translation tree/forest 
(or a hypergraph) where each edge 
represents a rule application. Then 
decoding can proceed on the hypergraph as 
usual. That is, we visit in bottom-up order 
each node in the parse tree, and calculate 
the model score for each edge rooting at the 
node. The final output is the 1-best/k-best 
translations maintained by the root node of 
the parse tree. Since tree-parsing restricts 
its search space to the derivations that 
exactly match with the input parse tree, it in 
general has a much higher decoding speed 
than a normal parsing procedure. But it in 
turn results in lower translation quality due 
to more search errors. 

 Forest-based decoding. Forest-based 
decoding (Mi et al., 2008) is a natural 
extension of tree-based decoding. In 
principle, forest is a data structure that can 
encode exponential number of trees 
efficiently. This structure has been proved 
to be helpful in reducing the effects caused 
by parser errors. Since our internal 
representation is already in a hypergraph 
structure, it is easy to extend the decoder to 
handle the input forest, with little 
modification of the code. 

4 Other Features 

In addition to the basic components described 
above, several additional features are introduced to 
ease the use of the toolkit. 

4.1 Multithreading 

The decoder supports multithreading to make full 
advantage of the modern computers where more 
than one CPUs (or cores) are provided. In general, 
the decoding speed can be improved when multiple 
threads are involved. However, modern MT 
decoders do not run faster when too many threads 
are used (Cer et al., 2010). 

4.2 Pruning 

To make decoding computational feasible, beam 
pruning is used to aggressively prune the search 
space. In our implementation, we maintain a beam 
for each cell. Once all the items of the cell are 
proved, only the top-k best items according to 
model score are kept and the rest are discarded. 
Also, we re-implemented the cube pruning method 
described in (Chiang, 2007) to further speed-up the 
system. 

In addition, we develop another method that 
prunes the search space using punctuations. The 
idea is to divide the input sentence into a sequence 
of segments according to punctuations. Then, each 
segment is translated individually. The MT outputs 
are finally generated by composing the translations 
of those segments. 

4.3 APIs for Feature Engineering 

To ease the implementation and test of new 
features, the toolkit offers APIs for experimenting 
with the features developed by users. For example, 
users can develop new features that are associated 
with each phrase-pair. The system can 
automatically recognize them and incorporate them 
into decoding. Also, more complex features can be 
activated during decoding. When an item is created 
during decoding, new features can be introduced 
into an internal object which returns feature values 
for computing the model score. 

5 Experiments 

5.1 Experimental Setup 

We evaluated our systems on NIST Chinese-
English MT tasks. Our training corpus consists of 
1.9M bilingual sentences. We used GIZA++ and 
the “grow-diag-final-and” heuristics to generate 
word alignment for the bilingual data. The parse 
trees on both the Chinese and English sides were 
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BLEU4[%] Entry 
 Dev  Test 

Moses: phrase  36.51  34.93
Moses: hierarchical phrase  36.65  34.79

 phrase  36.99  35.29
 hierarchical phrase  37.41  35.35

 parsing  36.48  34.71
 tree-parsing  35.54  33.99

 t2s 

 forest-based  36.14  34.25
 parsing  35.99  34.01
 tree-parsing  35.04  33.21

 t2t 

 forest-based  35.56  33.45

   
   

   
 N

iu
Tr

an
s 

 s2t  parsing  37.63  35.65
Table 1: BLEU scores of various systems. t2s, t2t, 
and s2t represent the tree-to-string, tree-to-tree, and 
string-to-tree systems, respectively. 
 
generated using the Berkeley Parser, which were 
then binarized in a head-out fashion 6. A 5-gram 
language model was trained on the Xinhua portion 
of the Gigaword corpus in addition to the English 
part of the LDC bilingual training data. We used 
the NIST 2003 MT evaluation set as our 
development set (919 sentences) and the NIST 
2005 MT evaluation set as our test set (1,082 
sentences). The translation quality was evaluated 
with the case-insensitive IBM-version BLEU4. 

For the phrase-based system, phrases are of at 
most 7 words on either source or target-side. For 
the hierarchical phrase-based system, all SCFG 
rules have at most two variables. For the syntax-
based systems, minimal rules were extracted from 
the binarized trees on both (either) language-
side(s). Larger rules were then generated by 
composing two or three minimal rules. By default, 
all these systems used a beam of size 30 for 
decoding. 

5.2 Evaluation of Translations 

Table 1 shows the BLEU scores of different MT 
systems built using our toolkit. For comparison, 
the result of the Moses system is also reported. We 
see, first of all, that our phrase-based and 
hierarchical phrase-based systems achieve 
competitive performance, even outperforms the 
Moses system over 0.3 BLEU points in some cases. 
Also, the syntax-based systems obtain very  
                                                           
6 The parse trees follow the nested bracketing format, as 
defined in the Penn Treebank. Also, the NiuTrans package 
includes a tool for tree binarization. 

BLEU4[%] Entry 
Dev Test 

Speed
(sent/sec)

Moses: phrase  36.69  34.99    0.11
+ cube pruning   36.51  34.93    0.47
NiuTrans: phrase  37.14  35.47    0.14
+ cube pruning  36.98  35.39    0.60
+ cube & punct pruning  36.99  35.29    3.71
+ all pruning & 8 threads  36.99  35.29  21.89
+ all pruning & 16 threads  36.99  35.29  22.36

Table 2: Effects of pruning and multithreading 
techniques. 
 
promising results. For example, the string-to-tree 
system significantly outperforms the phrase-based 
and hierarchical phrase-based counterparts. In 
addition, Table 1 gives a test of different decoding 
methods (for syntax-based systems). We see that 
the parsing-based method achieves the best BLEU 
score. On the other hand, as expected, it runs 
slowest due to its large search space. For example, 
it is 5-8 times slower than the tree-parsing-based 
method in our experiments. The forest-based 
decoding further improves the BLEU scores on top 
of tree-parsing. In most cases, it obtains a +0.6 
BLEU improvement but is 2-3 times slower than 
the tree-parsing-based method. 

5.3 System Speed-up 

We also study the effectiveness of pruning and 
multithreading techniques. Table 2 shows that all 
the pruning methods implemented in the toolkit is 
helpful in speeding up the (phrase-based) system, 
while does not result in significant decrease in 
BLEU score. On top of a straightforward baseline 
(only beam pruning is used), cube pruning and 
pruning with punctuations give a speed 
improvement of 25 times together7. Moreover, the 
decoding process can be further accelerated by 
using multithreading technique. However, more 
than 8 threads do not help in our experiments. 

6 Conclusion and Future Work 

We have presented a new open-source toolkit for 
phrase-based and syntax-based machine translation. 
It is implemented in C++ and runs fast. Moreover, 
it supports several state-of-the-art models ranging 
from phrase-based models to syntax-based models, 

                                                           
7 The translation speed is tested on Intel Core Due 2 E8500 
processors running at 3.16 GHz. 

23



and provides a wide choice of decoding methods. 
The experimental results on NIST MT tasks show 
that the MT systems built with our toolkit achieve 
state-of-the-art translation performance. 

The next version of NiuTrans will support 
ARPA-format LMs, MIRA for weight tuning and a 
beam-stack decoder which removes the ITG 
constraint for phrase decoding. In addition, a 
Hadoop-based MapReduce-parallelized version is 
underway and will be released in near future.  
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