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Abstract

We investigate the potential of Tree Substitu-
tion Grammars as a source of features for na-
tive language detection, the task of inferring
an author’s native language from text in a dif-
ferent language. We compare two state of the
art methods for Tree Substitution Grammar
induction and show that features from both
methods outperform previous state of the art
results at native language detection. Further-
more, we contrast these two induction algo-
rithms and show that the Bayesian approach
produces superior classification results with a
smaller feature set.

1 Introduction

The correlation between a person’s native language
(L1) and aspects of their writing in a second lan-
guage (L2) can be exploited to predict L1 label given
L2 text. The International Corpus of Learner En-
glish (Granger et al, 2002), or ICLE, is a large set
of English student essays annotated with L1 labels
that allows us to bring the power of supervised ma-
chine learning techniques to bear on this task. In
this work we explore the possibility of automatically
induced Tree Substitution Grammar (TSG) rules as
features for a logistic regression model1 trained to
predict these L1 labels.

Automatic TSG induction is made difficult by the
exponential number of possible TSG rules given a
corpus. This is an active area of research with two
distinct effective solutions. The first uses a nonpara-
metric Bayesian model to handle the large number

1a.k.a. Maximum Entropy Model

of rules (Cohn and Blunsom, 2010), while the sec-
ond is inspired by tree kernel methods and extracts
common subtrees from pairs of parse trees (Sangati
and Zuidema, 2011). While both are effective, we
show that the Bayesian method of TSG induction
produces superior features and achieves a new best
result at the task of native language detection.

2 Related Work

2.1 Native Language Detection

Work in automatic native language detection has
been mainly associated with the ICLE, published in
2002. Koppel et al (2005) first constructed such
a system with a feature set consisting of function
words, POS bi-grams, and character n-grams. These
features provide a strong baseline but cannot capture
many linguistic phenomena.

More recently, Wong and Dras (2011a) consid-
ered syntactic features for this task, using logis-
tic regression with features extracted from parse
trees produced by a state of the art statistical parser.
They investigated two classes of features: rerank-
ing features from the Charniak parser and CFG fea-
tures. They showed that while reranking features
capture long range dependencies in parse trees that
CFG rules cannot, they do not produce classification
performance superior to simple CFG rules. Their
CFG feature approach represents the best perform-
ing model to date for the task of native language de-
tection. Wong and Dras (2011b) also investigated
the use of LDA topic modeling to produce a latent
feature set of reduced dimensionality, but failed to
outperform baseline systems with this approach.
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2.2 TSG induction

One inherent difficulty in the use of TSGs is con-
trolling the size of grammars automatically in-
duced from data, which with any reasonable corpus
quickly becomes too large for modern workstations
to handle. When automatically induced TSGs were
first proposed by Bod (1991), the problem of gram-
mar induction was tackled with random selection of
fragments or weak constraints that led to massive
grammars.

A more principled technique is to use a sparse
nonparametric prior, as was recently presented by
Cohn et al (2009) and Post and Gildea (2009). They
provide a local Gibbs sampling algorithm, and Cohn
and Blunsom (2010) later developed a block sam-
pling algorithm with better convergence behavior.
While this Bayesian method has yet to produce
state of the art parsing results, it has achieved state
of the art results for unsupervised grammar induc-
tion (Blunsom and Cohn, 2010) and has been ex-
tended to synchronous grammars for use in sentence
compression (Yamangil and Shieber, 2010).

More recently, (Sangati and Zuidema, 2011) pre-
sented an elegantly simple heuristic inspired by tree
kernels that they call DoubleDOP. They showed that
manageable grammar sizes can be obtained from a
corpus the size of the Penn Treebank by recording
all fragments that occur at least twice, subject to a
pairwise constraint of maximality. Using an addi-
tional heuristic to provide a distribution over frag-
ments, DoubleDOP achieved the current state of the
art for TSG parsing, competing closely with the ab-
solute best results set by refinement based parsers.

2.3 Fragment Based Classification

The use of parse tree fragments for classification
began with Collins and Duffy (2001). They used
the number of common subtrees between two parse
trees as a convolution kernel in a voted perceptron
and applied it as a parse reranker. Since then, such
tree kernels have been used to perform a variety of
text classification tasks, such as semantic role la-
beling (Moschitti et al, 2008), authorship attribu-
tion (Kim et al, 2010), or the work of Suzuki and
Isozaki (2006) that performs question classification,
subjectivity detection, and polarity identification.

Syntactic features have also been used in non-

kernelized classifiers, such as in the work of Wong
and Dras (2011a) mentioned in Section 2.1. Ad-
ditional examples include Raghavan et al (2010),
which uses a CFG language model to perform au-
thorship attribution, and Post (2011), which uses
TSG features in a logistic regression model to per-
form grammaticality detection.

3 Tree Substitution Grammars

Tree Substitution Grammars are similar to Context
Free Grammars, differing in that they allow rewrite
rules of arbitrary parse tree structure with any num-
ber of nonterminal or terminal leaves. We adopt the
common term fragment2 to refer to these rules, as
they are easily visualised as fragments of a complete
parse tree.
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Figure 1: Fragments from a Tree Substitution Grammar
capable of deriving the sentences “George hates broccoli”
and “George hates shoes”.

3.1 Bayesian Induction

Nonparametric Bayesian models can represent dis-
tributions of unbounded size with a dynamic param-
eter set that grows with the size of the training data.
One method of TSG induction is to represent a prob-
abilistic TSG with Dirichlet Process priors and sam-
ple derivations of a corpus using MCMC.

Under this model the posterior probability of a
fragment e is given as

P (e|e−, α, P0) =
#e + αP0

#• + α
(1)

where e− is the multiset of fragments in the current
derivations excluding e, #e is the count of the frag-
ment e in e−, and #• is the total number of frag-
ments in e− with the same root node as e. P0 is

2As opposed to elementary tree, often used in related work

194



a PCFG distribution over fragments with a bias to-
wards small fragments. α is the concentration pa-
rameter of the DP, and can be used to roughly tune
the number of fragments that appear in the sampled
derivations.

With this posterior distribution the derivations of
a corpus can be sampled tree by tree using the block
sampling algorithm of Cohn and Blunsom (2010),
converging eventually on a sample from the true
posterior of all derivations.

3.2 DoubleDOP Induction

DoubleDOP uses a heuristic inspired by tree kernels,
which are commonly used to measure similarity be-
tween two parse trees by counting the number of
fragments they share. DoubleDOP uses the same un-
derlying technique, but caches the shared fragments
instead of simply counting them. This yields a set
of fragments where each member is guaranteed to
appear at least twice in the training set.

In order to avoid unmanageably large grammars
only maximal fragments are retained in each pair-
wise extraction, which is to say that any shared frag-
ment that occurs inside another shared fragment is
discarded. The main disadvantage of this method
is that the complexity scales quadratically with the
training set size, as all pairs of sentences must be
considered. It is fully parallelizable, however, which
mediates this disadvantage to some extent.

4 Experiments

4.1 Methodology

Our data is drawn from the International Corpus
of Learner English (Version 2), which consists of
raw unsegmented English text tagged with L1 la-
bels. Our experimental setup follows Wong and
Dras (2011a) in analyzing Chinese, Russian, Bul-
garian, Japanese, French, Czech, and Spanish L1 es-
says. As in their work we randomly sample 70 train-
ing and 25 test documents for each language. All re-
ported results are averaged over 5 subsamplings of
the full data set.

Our data preproccesing pipeline is as fol-
lows: First we perform sentence segmentation with
OpenNLP and then parse each sentence with a 6
split grammar for the Berkeley Parser (Petrov et al,
2006). We then replace all terminal symbols which

do not occur in a list of 598 function words3 with
a single UNK terminal. This aggressive removal of
lexical items is standard in this task and mitigates the
effect of other unwanted information sources such
as topic and geographic location that are correlated
with native language in the data.

We contrast three different TSG feature sets in our
experiments. First, to provide a baseline, we sim-
ply read off the CFG rules from the data set (note
that a CFG can be taken as a TSG with all frag-
ments having depth one). Second, in the method
we call BTSG, we use the Bayesian induction model
with the Dirichlet process’ concentration parameters
tuned to 100 and run for 1000 iterations of sampling.
We take as our resulting finite grammar the frag-
ments that appear in the sampled derivations. Third,
we run the parameterless DoubleDOP (2DOP) in-
duction method.

Using the full 2DOP feature set produces over
400k features, which heavily taxes the resources of
a single modern workstation. To balance the feature
set sizes between 2DOP and BTSG we pass back
over the training data and count the actual number
of times each fragment recovered by 2DOP appears.
We then limit the list to the n most common frag-
ments, where n is the average number of fragments
recovered by the BTSG method (around 7k). We re-
fer to results using this trimmed feature set with the
label 2DOP, using 2DOP(F) to refer to DoubleDOP
with the full set of features.

Given each TSG, we create a binary feature func-
tion for each fragment e in the grammar such that the
feature fe(d) is active for a document d if there ex-
ists a derivation of some tree t ∈ d that uses e. Clas-
sification is performed with the Mallet package for
logistic regression using the default initialized Max-
EntTrainer.

5 Results

5.1 Predictive Power

The resulting classification accuracies are shown in
Table 1. The BTSG feature set gives the highest per-
formance, and both true TSG induction techniques
outperform the CFG baseline.

3We use the stop word list distributed with the ROUGE sum-
marization evaluation package.
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Model Accuracy (%)
CFG 72.6
2DOP 73.5
2DOP(F) 76.8
BTSG 78.4

Table 1: Classification accuracy

The CFG result represents the work of Wong and
Dras (2011a), the previous best result for this task.
While in their work they report 80% accuracy with
the CFG model, this is for a single sampling of the
full data set. We observed a large variance in clas-
sification accuracy over such samplings, which in-
cludes some values in their reported range but with
a much lower mean. The numbers we report are
from our own implementation of their CFG tech-
nique, and all results are averaged over 5 random
samplings from the full corpus.

For 2DOP we limit the 2DOP(F) fragments by
choosing the 7k with maximum frequency, but there
may exist superior methods. Indeed, Wong and
Dras (2011a) claims that Information Gain is a better
criteria. However, this metric requires a probabilis-
tic formulation of the grammar, which 2DOP does
not supply. Instead of experimenting with different
limiting metrics, we note that when all 400k rules
are used, the averaged accuracy is only 76.8 percent,
which still lags behind BTSG.

5.2 Robustness

We also investigated different classification strate-
gies, as binary indicators of fragment occurrence
over an entire document may lead to noisy results.
Consider a single outlier sentence in a document
with a single fragment that is indicative of the in-
correct L1 label. Note that it is just as important in
the eyes of the classifier as a fragment indicative of
the correct label that appears many times. To inves-
tigate this phenomena we classified individual sen-
tences, and used these results to vote for each docu-
ment level label in the test set.

We employed two voting schemes. In the first,
VoteOne, each sentence contributes one vote to its
maximum probability label. In the second, VoteAll,
the probability of each L1 label is contributed as a
partial vote. Neither method increases performance

Model VoteOne (%) VoteAll (%)
CFG 69.6 74.7
2DOP 69.1 73.5
BTSG 72.5 76.5

Table 2: Sentence based classification accuracy

for BTSG or 2DOP, but what is more interesting
is that in both cases the CFG model outperforms
2DOP (with less than half of the features). The
robust behavior of the BTSG method shows that it
finds correctly discriminative features across several
sentences in each document to a greater extent than
other methods.

5.3 Concision

One possible explanation for the superior perfor-
mance of BTSG is that DDOP is prone to yielding
multiple fragments that represent the same linguistic
phenomena, leading to sets of highly correlated fea-
tures. While correlated features are not crippling to
a logistic regression model, they add computational
complexity without contributing to higher classifica-
tion accuracy.

To address this hypothesis empirically, we con-
sidered pairs of fragments eA and eB and calcu-
lated the pointwise mutual information (PMI) be-
tween events signifying their occurrence in a sen-
tence. For BTSG, the average pointwise mutual in-
formation over all pairs (eA, eB) is −.14, while for
2DOP it is −.01. As increasingly negative values
of PMI indicate exclusivity, this supports the claim
that DDOP’s comparative weakness is to some ex-
tent due to feature redundancy.

6 Conclusion

In this work we investigate automatically induced
TSG fragments as classification features for native
language detection. We compare Bayesian and Dou-
bleDOP induced features and find that the former
represents the data with less redundancy, is more ro-
bust to classification strategy, and gives higher clas-
sification accuracy. Additionally, the Bayesian TSG
features give a new best result for the task of native
language detection.
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