
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 950–958,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Hierarchical Chunk-to-String Translation ∗

Yang Feng† Dongdong Zhang‡ Mu Li ‡ Ming Zhou ‡ Qun Liu ⋆

† Department of Computer Science ‡ Microsoft Research Asia
University of Sheffield dozhang@microsoft.com

Sheffield, UK muli@microsoft.com
y.feng@shef.ac.uk mingzhou@microsoft.com

⋆Key Laboratory of Intelligent Information Processing
Institute of Computing Technology

Chinese Academy of Sciences
liuqun@ict.ac.cn

Abstract

We present a hierarchical chunk-to-string
translation model, which can be seen as a
compromise between the hierarchical phrase-
based model and the tree-to-string model,
to combine the merits of the two models.
With the help of shallow parsing, our model
learns rules consisting of words andchunks
and meanwhile introduce syntax cohesion.
Under the weighed synchronous context-free
grammar defined by these rules, our model
searches for the best translation derivation
and yields target translation simultaneously.
Our experiments show that our model signif-
icantly outperforms the hierarchical phrase-
based model and the tree-to-string model on
English-Chinese Translation tasks.

1 Introduction

The hierarchical phrase-based model (Chiang, 2007)
makes an advance of statistical machine translation
by employing hierarchical phrases, which not only
uses phrases to learn local translations but also uses
hierarchical phrases to capture reorderings of words
and subphrases which can cover a large scope. Be-
sides, this model is formal syntax-based and does
not need to specify the syntactic constituents of
subphrases, so it can directly learn synchronous
context-free grammars (SCFG) from a parallel text
without relying on any linguistic annotations or as-
sumptions, which makes it used conveniently and
widely.

∗This work was done when the first author visited Microsoft
Research Asia as an intern.

However, it is often desirable to consider syntac-
tic constituents of subphrases, e.g. the hierarchical
phrase

X → 〈X 1 for X 2 , X 2 de X1 〉

can be applied to both of the following strings in
Figure 1

“A request for a purchase of shares”
“filed for bankruptcy”,

and get the following translation, respectively

“goumai gufen de shenqing”
“pochan de shenqing”.

In the former, “A request” is a NP and this rule acts
correctly while in the latter “filed” is a VP and this
rule gives a wrong reordering. If we specify the first
X on the right-hand side to NP, this kind of errors
can be avoided.

The tree-to-string model (Liu et al., 2006; Huang
et al., 2006) introduces linguistic syntax via source
parse to direct word reordering, especially long-
distance reordering. Furthermore, this model is for-
malised as Tree Substitution Grammars, so it ob-
serves syntactic cohesion. Syntactic cohesion means
that the translation of a string covered by a subtree
in a source parse tends to be continuous. Fox (2002)
shows that translation between English and French
satisfies cohesion in the majority cases. Many pre-
vious works show promising results with an as-
sumption that syntactic cohesion explains almost
all translation movement for some language pairs
(Wu, 1997; Yamada and Knight, 2001; Eisner, 2003;
Graehl and Knight, 2004; Quirk et al., 2005; Cherry,
2008; Feng et al., 2010).

950

But unfortunately, the tree-to-string model re-
quires each node must be strictly matched during
rule matching, which makes it strongly dependent
on the relationship of tree nodes and their roles in
the whole sentence. This will lead to data sparse-
ness and being vulnerable to parse errors.

In this paper, we present a hierarchical chunk-to-
string translation model to combine the merits of the
two models. Instead of parse trees, our model intro-
duces linguistic information in the form ofchunks,
so it does not need to care the internal structures and
the roles in the main sentence of chunks. Based on
shallow parsing results, it learns rules consisting of
either words (terminals) or chunks (nonterminals),
where adjacent chunks are packed into one nonter-
minal. It searches for the best derivation through the
SCFG-motivated space defined by these rules and
get target translation simultaneously. In some sense,
our model can be seen as a compromise between
the hierarchical phrase-based model and the tree-to-
string model, specifically

• Compared with the hierarchical phrase-based
model, it integrates linguistic syntax and sat-
isfies syntactic cohesion.

• Compared with the tree-to-string model, it only
needs to perform shallow parsing which intro-
duces less parsing errors. Besides, our model
allows a nonterminal in a rule to cover several
chunks, which can alleviate data sparseness and
the influence of parsing errors.

• we refine our hierarchical chunk-to-string
model into two models: a loose model (Section
2.1) which is more similar to the hierarchical
phrase-based model and a tight model (Section
2.2) which is more similar to the tree-to-string
model.

The experiments show that on the 2008 NIST
English-Chinese MT translation test set, both the
loose model and the tight model outperform the hi-
erarchical phrase-based model and the tree-to-string
model, where the loose model has a better perfor-
mance. While in terms of speed, the tight model
runs faster and its speed ranking is between the tree-
to-string model and the hierarchical phrase-based
model.

NP IN NP IN NP VBD VP
A request for a purchase of shares was made

goumai gufen de shenqing bei dijiao
购买 股份 的 申请 被 递交

(a)

NP VBZ VBN IN NP
The bank has filed for bankruptcy

gai yinhang yijing shenqing pochan
该 银行 已经 申请 破产

(b)

Figure 1: A running example of two sentences. For each
sentence, the first row gives the chunk sequence.

S

NP

DT

The

NN

bank

VP

VBZ

has

VP

VBN

filed

PP

IN

for

NP

NN

bankruptcy

(a) A parse tree

B-NP I-NP B-VBZ B-VBN B-IN B-NP
The bank has filed for bankruptcy

(b) A chunk sequence got from the parse tree

Figure 2: An example of shallow parsing.

2 Modeling

Shallow parsing (alsochunking) is an analysis of
a sentence which identifies the constituents (noun
groups, verbs, verb groups, etc), but neither spec-
ifies their internal structures, nor their roles in the
main sentence. In Figure 1, we give the chunk se-
quence in the first row for each sentence. We treat
shallow parsing as a sequence label task, and a sen-
tencef can have many possible different chunk la-
bel sequences. Therefore, in theory, the conditional
probability of a target translatione conditioned on
the source sentencef is given by taking the chunk
label sequences as a latent variablec:

p(e|f) =
∑

c

p(c|f)p(e|f , c) (1)

951

In practice, we only take the best chunk label se-
quencêc got by

ĉ = argmax
c

p(c|f) (2)

Then we can ignore the conditional probability
p(ĉ|f) as it holds the same value for each transla-
tion, and get:

p(e|f) = p(ĉ|f)p(e|f , ĉ)

= p(e|f , ĉ) (3)

We formalize our model as a weighted SCFG.
In a SCFG, each rule (usually called production in
SCFGs) has an aligned pair of right-hand sides —
the source side and the target side, just as follows:

X → 〈α, β,∼〉

where X is a nonterminal,α andβ are both strings of
terminals and nonterminals, and∼ denotes one-to-
one links between nonterminal occurrences inα and
nonterminal occurrences inβ. A SCFG produces a
derivation by starting with a pair of start symbols
and recursively rewrites every two coindexed non-
terminals with the corresponding components of a
matched rule. A derivation yields a pair of strings
on the right-hand side which are translation of each
other.

In a weighted SCFG, each rule has a weight and
the total weight of a derivation is the production
of the weights of the rules used by the derivation.
A translation may be produced by many different
derivations and we only use the best derivation to
evaluate its probability. Withd denoting a deriva-
tion andr denoting a rule, we have

p(e|f) = max
d

p(d,e|f , ĉ)

= max
d

∏

r∈d

p(r,e|f , ĉ) (4)

Following Och and Ney (2002), we frame our model
as a log-linear model:

p(e|f) =
exp

∑
k λkHk(d,e, ĉ,f)

exp
∑

d′,e′,k λkHk(d′,e′, ĉ,f)
(5)

where Hk(d,e, ĉ,f) =
∑

r

hk(f , ĉ, r)

So the best translation is given by

ê = argmax
e

∑

k

λkHk(d,e, ĉ,f) (6)

We employ the same set of features for the log-
linear model as the hierarchical phrase-based model
does(Chiang, 2005).

We further refine our hierarchical chunk-to-string
model into two models: a loose model which is more
similar to the hierarchical phrase-based model and
a tight model which is more similar to the tree-to-
string model. The two models differ in the form of
rules and the way of estimating rule probabilities.
While for decoding, we employ the same decoding
algorithm for the two models: given a test sentence,
the decoders first perform shallow parsing to get the
best chunk sequence, then apply a CYK parsing al-
gorithm with beam search.

2.1 A Loose Model

In our model, we employ rules containing non-
terminals to handle long-distance reordering where
boundary words play an important role. So for the
subphrases which cover more than one chunk, we
just maintain boundary chunks: we bundle adjacent
chunks into one nonterminal and denote it as the first
chunk tag immediately followed by “-” and next fol-
lowed by the last chunk tag. Then, for the string pair
<filed for bankruptcy, shenqing pochan>, we can
get the rule

r1 : X → 〈VBN 1 for NP2 , VBN 1 NP2 〉

while for the string pair<A request for a purchase
of shares, goumai gufen de shenqing>, we can get

r2 : X → 〈NP1 for NP-NP2 , NP-NP2 de NP1 〉.

The rule matching “A request for a purchase of
shares was” will be

r3 : X → 〈NP-NP1 VBD 2 , NP-NP1 VBD 2 〉.

We can see that in contrast to the method of rep-
resenting each chunk separately, this representation
form can alleviate data sparseness and the influence
of parsing errors.

952

〈S1 , S1 〉 ⇒ 〈S2 X 3 , S2 X 3 〉

⇒ 〈X 4 X 3 , X 4 X 3 〉

⇒ 〈NP-NP5 VBD 6 X 3 , NP-NP5 VBD 6 X 3 〉

⇒ 〈NP7 for NP-NP8 VBD 6 X 3 , NP-NP8 de NP7 VBD 6 X 3 〉

⇒ 〈A request for NP-NP8 VBD 6 X 3 , NP-NP8 de shenqing VBD6 X 3 〉

⇒ 〈A request for a purchase of shares VBD6 X 3 , goumai gufen de shenqing VBD6 X 3 〉

⇒ 〈A request for a purchase of shares was X3 , goumai gufen de shenqing bei X3 〉

⇒ 〈A request for a purchase of shares was made, goumai gufen de shenqing bei dijiao〉

(a) The loose model

〈NP-VP1 , NP-VP1 〉 ⇒ 〈NP-VBD 2 VP 3 , NP-VBD 2 VP 3 〉

⇒ 〈NP-NP4 VBD 5 VP 3 , NP-NP4 VBD 5 VP 3 〉

⇒ 〈NP6 for NP-NP7 VBD 5 VP 3 , NP-NP7 de NP6 VBD 5 VP 3 〉

⇒ 〈A request for NP-NP7 VBD 5 VP 3 , NP-NP7 de shenqing VBD5 VP 3 〉

⇒ 〈A request for a purchase of shares VBD5 VP 3 , goumai gufen de shenqing VBD5 VP 3 〉

⇒ 〈A request for a purchase of shares was VP3 , goumai gufen de shenqing bei VP3 〉

⇒ 〈A request for a purchase of shares was made, goumai gufen de shenqing bei dijiao〉

(b) The tight model

Figure 3: The derivations of the sentence in Figure 1(a).

In these rules, the left-hand nonterminal symbol X
can not match any nonterminal symbol on the right-
hand side. So we need a set of rules such as

NP→ 〈X 1 , X 1 〉

NP-NP→ 〈X 1 , X 1 〉

and so on, and set the probabilities of these rules to
1. To simplify the derivation, we discard this kind of
rules and assume that X can match any nonterminal
on the right-hand side.

Only with r2 and r3, we cannot produce any
derivation of the whole sentence in Figure 1 (a). In
this case we need two specialglue rules:

r4 : S→ 〈S1 X 2 , S1 X 2 〉

r5 : S→ 〈X 1 , X 1 〉

Together with the following four lexical rules,

r6 : X → 〈a request, shenqing〉

r7 : X → 〈a purchase of shares, goumai gufen〉

r8 : X → 〈was, bei〉

r9 : X → 〈made, dijiao〉

Figure 3(a) shows the derivation of the sentence in
Figure 1(a).

2.2 A Tight Model

In the tight model, the right-hand side of each rule
remains the same as the loose model, but the left-
hand side nonterminal is not X but the correspond-
ing chunk labels. If a rule covers more than one
chunk, we just use the first and the last chunk la-
bels to denote the left-hand side nonterminal. The
rule set used in the tight model for the example in
Figure 1(a) corresponding to that in the loose model
becomes:

r2 : NP-NP→ 〈NP1 for NP-NP2 , NP-NP2 de NP1 〉

r3 : NP-VBD → 〈NP-NP1 VBD 2 , NP-NP1 VBD 2 〉.

r6 : NP→ 〈a request, shenqing〉

r7 : NP-NP→ 〈a purchase of shares, goumai gufen〉

r8 : VBD → 〈was, bei〉

r9 : VP → 〈made, dijiao〉

During decoding, we first collect rules for each
span. For a span which does not have any matching
rule, if we do not construct default rules for it, there
will be no derivation for the whole sentence, then we
need to construct default rules for this kind of span
by enumerating all possible binary segmentation of
the chunks in this span. For the example in Figure
1(a), there is no rule matching the whole sentence,

953

so we need to construct default rules for it, which
should be

NP-VP→ 〈NP-VBD 1 VP 2 , NP-VBD 1 VP 2 〉.

NP-VP→ 〈NP-NP1 VBD-VP 2 , NP-NP1 VBD-VP 2 〉.

and so on.
Figure 3(b) shows the derivation of the sentence

in Figure 1(a).

3 Shallow Parsing

In a parse tree, a chunk is defined by a leaf node or
an inner node whose children are all leaf nodes (See
Figure 2 (a)). In our model, we identify chunks by
traversing a parse tree in a breadth-first order. Once
a node is recognized as a chunk, we skip its children.
In this way, we can get a sole chunk sequence given
a parse tree. Then we label each word with a label
indicating whether the word starts a chunk (B-) or
continues a chunk (I-). Figure 2(a) gives an example.
In this method, we get the training data for shallow
parsing from Penn Tree Bank.

We take shallow Parsing (chunking) as a sequence
label task and employ Conditional Random Field
(CRF)1 to train a chunker. CRF is a good choice for
label tasks as it can avoid label bias and use more
statistical correlated features. We employ the fea-
tures described in Sha and Pereira (2003) for CRF.
We do not introduce CRF-based chunkier in this pa-
per and more details can be got from Hammersley
and Clifford (1971), Lafferty et al. (2001), Taskar et
al. (2002), Sha and Pereira (2003).

4 Rule Extraction

In what follows, we introduce how to get the rule
set. We learn rules from a corpus that first is bi-
directionally word-aligned by the GIZA++ toolkit
(Och and Ney, 2000) and then is refined using a
“final-and” strategy. We generate the rule set in two
steps: first, we extract two sets of phrases,basic
phrasesandchunk-based phrases. Basic phrases are
defined using the same heuristic as previous systems
(Koehn et al., 2003; Och and Ney, 2004; Chiang,
2005). A chunk-based phrase is such a basic phrase
that covers one or more chunks on the source side.

1We use the open source toolkit CRF++ got in
http://code.google.com/p/crfpp/ .

We identity chunk-based phrases〈cj2
j1

,f
j2
j1

,ei2
i1
〉 as

follows:

1. A chunk-based phrase is a basic phrase;

2. cj1 begins with “B-”;

3. fj2 is the end word on the source side orcj2+1

does not begins with “I-”.

Given a sentence pair〈f ,e,∼〉, we extract rules for
the loose model as follows

1. If 〈f j2
j1

,ei2
i1
〉 is a basic phrase, then we can have

a rule
X → 〈f j2

j1
,ei2

i1
〉

2. Assume X → 〈α, β〉 is a rule with α =
α1f

j2
j1

α2 and β = β1e
i2
i1

β2, and 〈f j2
j1

,ei2
i1
〉 is

a chunk-based phrase with a chunk sequence
Yu · · ·Yv, then we have the following rule

X → 〈α1Yu-Yv k α2, β1Yu-Yv k β2〉.

We evaluate the distribution of these rules in the
same way as Chiang (2007).

We extract rules for the tight model as follows

1. If 〈f j2
j1

,ei2
i1
〉 is a chunk-based phrase with a

chunk sequence Ys · · ·Yt, then we can have a
rule

Ys-Yt → 〈f j2
j1

,ei2
i1
〉

2. Assume Ys-Yt → 〈α, β〉 is a rule withα =
α1f

j2
j1

α2 and β = β1e
i2
i1

β2, and 〈f j2
j1

,ei2
i1
〉 is

a chunk-based phrase with a chunk sequence
Yu · · ·Yv, then we have the following rule

Ys-Yt → 〈α1Yu-Yv k α2, β1Yu-Yv k β2〉.

We evaluate the distribution of rules in the same way
as Liu et al. (2006).

For the loose model, the nonterminals must be co-
hesive, while the whole rule can be noncohesive: if
both ends of a rule are nonterminals, the whole rule
is cohesive, otherwise, it may be noncohesive. In
contrast, for the tight model, both the whole rule and
the nonterminal are cohesive.

Even with the cohesion constraints, our model
still generates a large number of rules, but not all

954

of the rules are useful for translation. So we follow
the method described in Chiang (2007) to filter the
rule set except that we allow two nonterminals to be
adjacent.

5 Related Works

Watanabe et al. (2003) presented a chunk-to-string
translation model where the decoder generates a
translation by first translating the words in each
chunk, then reordering the translation of chunks.
Our model distinguishes from their model mainly
in reordering model. Their model reorders chunks
resorting to a distortion model while our model re-
orders chunks according to SCFG rules which retain
the relative positions of chunks.

Nguyen et al. (2008) presented a tree-to-string
phrase-based method which is based on SCFGs.
This method generates SCFGs through syntac-
tic transformation including a word-to-phrase tree
transformation model and a phrase reordering model
while our model learns SCFG-based rules from
word-aligned bilingual corpus directly

There are also some works aiming to introduce
linguistic knowledge into the hierarchical phrase-
based model. Marton and Resnik (2008) took the
source parse tree into account and added soft con-
straints to hierarchical phrase-based model. Cherry
(2008) used dependency tree to add syntactic cohe-
sion. These methods work with the original SCFG
defined by hierarchical phrase-based model and use
linguistic knowledge to assist translation. Instead,
our model works under the new defined SCFG with
chunks.

Besides, some other researchers make efforts on
the tree-to-string model by employing exponentially
alternative parses to alleviate the drawback of 1-best
parse. Mi et al. (2008) presented forest-based trans-
lation where the decoder translates a packed forest
of exponentially many parses instead of i-best parse.
Liu and Liu (2010) proposed to parse and to trans-
late jointly by taking tree-based translation as pars-
ing. Given a source sentence, this decoder produces
a parse tree on the source side and a translation on
the target side simultaneously. Both the models per-
form in the unit of tree nodes rather than chunks.

6 Experiments

6.1 Data Preparation

Data for shallow parsing We got training data and
test data for shallow parsing from the standard Penn
Tree Bank (PTB) English parsing task by splitting
the sections 02-21 on the Wall Street Journal Portion
(Marcus et al., 1993) into two sets: the last 1000
sentences as the test set and the rest as the training
set. We filtered the features whose frequency was
lower than 3 and substituted‘‘ and’’ with ˝ to
keep consistent with translation data. We usedL2
algorithm to train CRF.

Data for Translation We used the NIST training
set for Chinese-English translation tasks excluding
the Hong Kong Law and Hong Kong Hansard2 as the
training data, which contains 470K sentence pairs.
For the training data set, we first performed word
alignment in both directions using GIZA++ toolkit
(Och and Ney, 2000) then refined the alignments
using “final-and”. We trained a 5-gram language
model with modified Kneser-Ney smoothing on the
Xinhua portion of LDC Chinese Gigaword corpus.
For the tree-to-string model, we parsed English sen-
tences using Stanford parser and extracted rules us-
ing the GHKM algorithm (Galley et al., 2004).

We used our in-house English-Chinese data set
as the development set and used the 2008 NIST
English-Chinese MT test set (1859 sentences) as the
test set. Our evaluation metric was BLEU-4 (Pap-
ineni et al., 2002) based on characters (as the tar-
get language is Chinese), which performed case-
insensitive matching of n-grams up ton = 4 and
used the shortest reference for the brevity penalty.
We used the standard minimum error-rate training
(Och, 2003) to tune the feature weights to maximize
the BLEU score on the development set.

6.2 Shallow Parsing

The standard evaluation metrics for shallow parsing
are precision P, recall R, and their harmonic mean
F1 score, given by:

P =
number of exactly recognized chunks

number of output chunks

R =
number of exactly recognized chunks

number of reference chunks
2The source side and target side are reversed.

955

Word number Chunk number Accuracy %
23861 12258 94.48

Chunk type P % R % F1 % Found
All 91.14 91.35 91.25 12286
One 90.32 90.99 90.65 5236
NP 93.97 94.47 94.22 5523

ADVP 82.53 84.30 83.40 475
VP 93.66 92.04 92.84 284

ADJP 65.68 69.20 67.39 236
WHNP 96.30 95.79 96.04 189

QP 83.06 80.00 81.50 183

Table 1: Shallow parsing result. The collumFoundgives
the number of chunks recognized by CRF, the rowAll
represents all types of chunks, and the rowOnerepresents
the chunks that consist of one word.

F1 =
2 · P · R

P + R

Besides, we need another metric, accuracy A, to
evaluate the accurate rate of individual labeling de-
cisions of every word as

A =
number of exactly labeled words

number of words

For example, given a reference sequence
B-NP I-NP I-NP B-VP I-VP B-VP, CRF out-
puts a sequence O-NP I-NP I-NP B-VP I-VP I-NP,
thenP = 33.33%, A = 66.67%.

Table 1 summaries the results of shallow parsing.
For‘‘ and’’ were substituted with ˝ , the perfor-
mance was slightly influenced.

The F1 score of all chunks is 91.25% and the F1
score ofOneand NP, which in number account for
about 90% of chunks, is 90.65% and 94.22% respec-
tively. F score of NP chunking approaches 94.38%
given in Sha and Pereira (2003).

6.3 Performance Comparison

We compared our loose decoder and tight decoder
with our in-house hierarchical phrase-based decoder
(Chiang, 2007) and the tree-to-string decoder (Liu et
al., 2006). We set the same configuration for all the
decoders as follows: stack size = 30, nbest size = 30.
For the hierarchical chunk-based and phrase-based
decoders, we set max rule length to 5. For the tree-
to-string decoder, we set the configuration of rule

System Dev NIST08 Speed
phrase 0.2843 0.3921 1.163

tree 0.2786 0.3817 1.107
tight 0.2914 0.3987 1.208
loose 0.2936 0.4023 1.429

Table 2: Performance comparison.Phraserepresents
the hierarchical phrase-based decoder,treerepresents the
tree-to-string decoder,tight represents our tight decoder
andlooserepresents our loose decoder. The speed is re-
ported by seconds per sentence. The speed for the tree-to-
string decoder includes the parsing time (0.23s) and the
speed for the tight and loose models includes the shallow
parsing time, too.

extraction as: the height up to 3 and the number of
leaf nodes up to 5.

We give the results in Table 2. From the results,
we can see that both the loose and tight decoders
outperform the baseline decoders and the improve-
ment is significant using thesign-testof Collins et
al. (2005) (p < 0.01). Specifically, the loose model
has a better performance while the tight model has a
faster speed.

Compared with the hierarchical phrase-based
model, the loose model only imposes syntactic cohe-
sion cohesion to nonterminals while the tight model
imposes syntax cohesion to both rules and nonter-
minals which reduces search space, so it decoders
faster. We can conclude that linguistic syntax can
indeed improve the translation performance; syntac-
tic cohesion for nonterminals can explain linguis-
tic phenomena well; noncohesive rules are useful,
too. The extra time consumption against hierarchi-
cal phrase-based system comes from shallow pars-
ing.

By investigating the translation result, we find that
our decoder does well in rule selection. For exam-
ple, in the hierarchical phrase-based model, this kind
of rules, such as

X → 〈X of X , ∗〉, X → 〈X for X , ∗〉

and so on, where∗ stands for the target component,
are used with a loose restriction as long as the ter-
minals are matched, while our models employ more
stringent constraints on these rules by specifying the
syntactic constituent of “X”. With chunk labels, our
models can make different treatment for different
situations.

956

System Dev NIST08 Speed
cohesive 0.2936 0.4023 1.429

noncohesive 0.2937 0.3964 1.734

Table 3: Influence of cohesion. The rowcohesiverep-
resents the loose system where nonterminals satisfy co-
hesion, and the rownoncohesiverepresents the modified
version of the loose system where nonterminals can be
noncohesive.

Compared with the tree-to-string model, the re-
sult indicates that the change of the source-side lin-
guistic syntax from parses to chunks can improve
translation performance. The reasons should be our
model can reduce parse errors and it is enough to use
chunks as the basic unit for machine translation. Al-
though our decoders and tree-to-string decoder all
run in linear-time with beam search, tree-to-string
model runs faster for it searches through a smaller
SCFG-motivated space.

6.4 Influence of Cohesion

We verify the influence of syntax cohesion via the
loose model. The cohesive model imposes syntax
cohesion on nonterminals to ensure the chunk is re-
ordered as a whole. In this experiment, we introduce
a noncohesive model by allowing a nonterminal to
match part of a chunk. For example, in the nonco-
hesive model, it is legal for a rule with the source
side

“NP for NP-NP”

to match

“request for a purchase of shares”

in Figure 1 (a), where “request” is part of NP. As
well, the rule with the source side

“NP for a NP-NP”

can match

“request for a purchase of shares”.

In this way, we can ensure all the rules used in the
cohesive system can be used in the noncohesive sys-
tem. Besides cohesive rules, the noncohesive system
can use noncohesive rules, too.

We give the results in Table 3. From the results,
we can see that cohesion helps to reduce search
space, so the cohesive system decodes faster. The
noncohesive system decoder slower, as it employs

System Number Dev NIST08 Speed
loose two 0.2936 0.4023 1.429
loose three 0.2978 0.4037 2.056
tight two 0.2914 0.3987 1.208
tight three 0.2954 0.4026 1.780

Table 4: The influence of the number of nonterminals.
The columnnumber lists the number of nonterminals
used at most in a rule.

more rules, but this does not bring any improvement
of translation performance. As other researches said
in their papers, syntax cohesion can explain linguis-
tic phenomena well.

6.5 Influence of the number of nonterminals

We also tried to allow a rule to hold three nonter-
minals at most. We give the result in Table 4. The
result shows that using three nonterminals does not
bring a significant improvement of translation per-
formance but quite more time consumption. So we
only retain two nonterminals at most in a rule.

7 Conclusion

In this paper, we present a hierarchical chunk-
to-string model for statistical machine translation
which can be seen as a compromise of the hierarchi-
cal phrase-based model and the tree-to-string model.
With the help of shallow parsing, our model learns
rules consisting of either words or chunks and com-
presses adjacent chunks in a rule to a nonterminal,
then it searches for the best derivation under the
SCFG defined by these rules. Our model can com-
bine the merits of both the models: employing lin-
guistic syntax to direct decoding, being syntax co-
hesive and robust to parsing errors. We refine the hi-
erarchical chunk-to-string model into two models: a
loose model (more similar to the hierarchical phrase-
based model) and a tight model (more similar to the
tree-to-string model).

Our experiments show that our decoder can im-
prove translation performance significantly over the
hierarchical phrase-based decoder and the tree-to-
string decoder. Besides, the loose model gives a bet-
ter performance while the tight model gives a faster
speed.

957

8 Acknowledgements

We would like to thank Trevor Cohn, Shujie Liu,
Nan Duan, Lei Cui and Mo Yu for their help,
and anonymous reviewers for their valuable com-
ments and suggestions. This work was supported
in part by EPSRC grant EP/I034750/1 and in part
by High Technology R&D Program Project No.
2011AA01A207.

References

Colin Cherry. 2008. Cohesive phrase-based decoding for
statistical machine translation. InProc. of ACL, pages
72–80.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. InProc. of ACL,
pages 263–270.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33:201–228.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. InProc. of ACL, pages 531–540.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. InProc. of ACL, pages
205–208.

Yang Feng, Haitao Mi, Yang Liu, and Qun Liu. 2010. An
efficient shift-reduce decoding algorithm for phrased-
based machine translation. InProc. of Coling:Posters,
pages 285–293.

Heidi Fox. 2002. Phrasal cohesion and statistical ma-
chine translation. InProc. of EMNLP, pages 304–
3111.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? InProc of
NAACL, pages 273–280.

Jonathan Graehl and Kevin Knight. 2004. Training tree
transducers. InProc. of HLT-NAACL, pages 105–112.

J Hammersley and P Clifford. 1971. Markov fields on
finite graphs and lattices. InUnpublished manuscript.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. InProceedings of AMTA.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. InProc. of HLT-
NAACL, pages 127–133.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. InProc. of
ICML, pages 282–289.

Yang Liu and Qun Liu. 2010. Joint parsing and transla-
tion. In Proc. of COLING, pages 707–715.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-
string alignment template for statistical machine trans-
lation. InProc. of COLING-ACL, pages 609–616.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank.Computational
Linguistics, 19:313–330.

Yuval Marton and Philip Resnik. 2008. Soft syntactic
constraints for hierarchical phrased-based translation.
In Proc. of ACL, pages 1003–1011.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. InProc. of ACL, pages 192–199.

Thai Phuong Nguyen, Akira Shimazu, Tu Bao Ho,
Minh Le Nguyen, and Vinh Van Nguyen. 2008. A
tree-to-string phrase-based model for statistical ma-
chine translation. InProc. of CoNLL, pages 143–150.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. InProc. of ACL.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for statis-
tical machine translation. InProc. of ACL, pages 295–
302.

Frans J. Och and Hermann Ney. 2004. The alignment
template approach to statistical machine translation.
Computational Linguistics, 30:417–449.

Frans J. Och. 2003. Minimum error rate training in sta-
tistical machine translation. InProc. of ACL, pages
160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. InProceedings of ACL,
pages 311–318.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal smt. InProceedings of ACL, pages 271–279.

Fei Sha and Fernando Pereira. 2003. Shallow pars-
ing with conditional random fields. InProc. of HLT-
NAACL, pages 134–141.

Ben Taskar, Pieter Abbeel, and Daphne Koller. 2002.
Discriminative probabilistic models for relational data.
In Eighteenth Conference on Uncertainty in Artificial
Intelligence.

Taro Watanabe, Eiichiro Sumita, and Hiroshi G. Okuno.
2003. Chunk-based statistical translation. InProc. of
ACL, pages 303–310.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23:377–403.

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. InProc. of ACL, pages
523–530.

958

