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Abstract

The task of aligning corresponding phrases
across two related sentences is an important
component of approaches for natural language
problems such as textual inference, paraphrase
detection and text-to-text generation. In this
work, we examine a state-of-the-art struc-
tured prediction model for the alignment task
which uses a phrase-based representation and
is forced to decode alignments using an ap-
proximate search approach. We propose in-
stead a straightforward exact decoding tech-
nique based on integer linear programming
that yields order-of-magnitude improvements
in decoding speed. This ILP-based decoding
strategy permits us to consider syntactically-
informed constraints on alignments which sig-
nificantly increase the precision of the model.

1 Introduction

Natural language processing problems frequently in-
volve scenarios in which a pair or group of related
sentences need to be aligned to each other, establish-
ing links between their common words or phrases.
For instance, most approaches for natural language
inference (NLI) rely on alignment techniques to es-
tablish the overlap between the given premise and a
hypothesis before determining if the former entails
the latter. Such monolingual alignment techniques
are also frequently employed in systems for para-
phrase generation, multi-document summarization,
sentence fusion and question answering.

Previous work (MacCartney et al., 2008) has pre-
sented a phrase-based monolingual aligner for NLI

(MANLI) that has been shown to significantly out-
perform a token-based NLI aligner (Chambers et
al., 2007) as well as popular alignment techniques
borrowed from machine translation (Och and Ney,
2003; Liang et al., 2006). However, MANLI’s use
of a phrase-based alignment representation appears
to pose a challenge to the decoding task, i.e. the
task of recovering the highest-scoring alignment un-
der some parameters. Consequently, MacCartney et
al. (2008) employ a stochastic search algorithm to
decode alignments approximately while remaining
consistent with regard to phrase segmentation.

In this paper, we propose an exact decoding tech-
nique for MANLI that retrieves the globally opti-
mal alignment for a sentence pair given some pa-
rameters. Our approach is based on integer lin-
ear programming (ILP) and can leverage optimized
general-purpose LP solvers to recover exact solu-
tions. This strategy boosts decoding speed by an
order of magnitude over stochastic search in our ex-
periments. Additionally, we introduce hard syntac-
tic constraints on alignments produced by the model,
yielding better precision and a large increase in the
number of perfect alignments produced over our
evaluation corpus.

2 Related Work

Alignment is an integral part of statistical MT (Vo-
gel et al., 1996; Och and Ney, 2003; Liang et al.,
2006) but the task is often substantively different
from monolingual alignment, which poses unique
challenges depending on the application (MacCart-
ney et al., 2008). Outside of NLI, prior research has
also explored the task of monolingual word align-
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ment using extensions of statistical MT (Quirk et al.,
2004) and multi-sequence alignment (Barzilay and
Lee, 2002).

ILP has been used extensively for applications
ranging from text-to-text generation (Clarke and La-
pata, 2008; Filippova and Strube, 2008; Wood-
send et al., 2010) to dependency parsing (Martins
et al., 2009). It has also been recently employed for
finding phrase-based MT alignments (DeNero and
Klein, 2008) in a manner similar to this work; how-
ever, we further build upon this model through syn-
tactic constraints on the words participating in align-
ments.

3 The MANLI Aligner

Our alignment system is structured identically to
MANLI (MacCartney et al., 2008) and uses the same
phrase-based alignment representation. An align-
ment E between two fragments of text T1 and T2

is represented by a set of edits {e1, e2, . . .}, each be-
longing to one of the following types:
• INS and DEL edits covering unaligned words in
T1 and T2 respectively
• SUB and EQ edits connecting a phrase in T1 to

a phrase in T2. EQ edits are a specific case of
SUB edits that denote a word/lemma match; we
refer to both types as SUB edits in this paper.

Every token in T1 and T2 participates in exactly one
edit. While alignments are one-to-one at the phrase
level, a phrase-based representation effectively per-
mits many-to-many alignments at the token level.
This enables the aligner to properly link paraphrases
such as death penalty and capital punishment by ex-
ploiting lexical resources.

3.1 Dataset
MANLI was trained and evaluated on a corpus of
human-generated alignment annotations produced
by Microsoft Research (Brockett, 2007) for infer-
ence problems from the second Recognizing Tex-
tual Entailment (RTE2) challenge (Bar-Haim et al.,
2006). The corpus consists of a development set
and test set that both feature 800 inference prob-
lems, each of which consists of a premise, a hy-
pothesis and three independently-annotated human
alignments. In our experiments, we merge the an-
notations using majority rule in the same manner as
MacCartney et al. (2008).

3.2 Features

A MANLI alignment is scored as a sum of weighted
feature values over the edits that it contains. Fea-
tures encode the type of edit, the size of the phrases
involved in SUB edits, whether the phrases are con-
stituents and their similarity (determined by lever-
aging various lexical resources). Additionally, con-
textual features note the similarity of neighboring
words and the relative positions of phrases while
a positional distortion feature accounts for the dif-
ference between the relative positions of SUB edit
phrases in their respective sentences.

Our implementation uses the same set of fea-
tures as MacCartney et al. (2008) with some mi-
nor changes: we use a shallow parser (Daumé and
Marcu, 2005) for detecting constituents and employ
only string similarity and WordNet for determining
semantic relatedness, forgoing NomBank and the
distributional similarity resources used in the orig-
inal MANLI implementation.

3.3 Parameter Inference

Feature weights are learned using the averaged
structured perceptron algorithm (Collins, 2002), an
intuitive structured prediction technique. We deviate
from MacCartney et al. (2008) and do not introduce
L2 normalization of weights during learning as this
could have an unpredictable effect on the averaged
parameters. For efficiency reasons, we parallelize
the training procedure using iterative parameter mix-
ing (McDonald et al., 2010) in our experiments.

3.4 Decoding

The decoding problem is that of finding the highest-
scoring alignment under some parameter values for
the model. MANLI’s phrase-based representation
makes decoding more complex because the segmen-
tation of T1 and T2 into phrases is not known before-
hand. Every pair of phrases considered for inclusion
in an alignment must adhere to some consistent seg-
mentation so that overlapping edits and uncovered
words are avoided.

Consequently, the decoding problem cannot be
factored into a number of independent decisions
and MANLI searches for a good alignment using
a stochastic simulated annealing strategy. While
seemingly quite effective at avoiding local maxima,
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System Data P% R% F1% E%

MANLI dev 83.4 85.5 84.4 21.7
(reported 2008) test 85.4 85.3 85.3 21.3
MANLI dev 85.7 84.8 85.0 23.8
(reimplemented) test 87.2 86.3 86.7 24.5
MANLI-Exact dev 85.7 84.7 85.2 24.6
(this work) test 87.8 86.1 86.8 24.8

Table 1: Performance of aligners in terms of precision, re-
call, F-measure and number of perfect alignments (E%).

this iterative search strategy is computationally ex-
pensive and moreover is not guaranteed to return the
highest-scoring alignment under the parameters.

4 Exact Decoding via ILP

Instead of resorting to approximate solutions, we
can simply reformulate the decoding problem as the
optimization of a linear objective function with lin-
ear constraints, which can be solved by well-studied
algorithms using off-the-shelf solvers1. We first de-
fine boolean indicator variables xe for every possible
edit e between T1 and T2 that indicate whether e is
present in the alignment or not. The linear objective
that maximizes the score of edits for a given param-
eter vector w is expressed as follows:

f(w) = max
∑
e

xe × scorew(e)

= max
∑
e

xe ×w · Φ(e) (1)

where Φ(e) is the feature vector over an edit. This
expresses the score of an alignment as the sum of
scores of edits that are present in it, i.e., edits e that
have xe = 1.

In order to address the phrase segmentation issue
discussed in §3.4, we merely need to add linear con-
straints ensuring that every token participates in ex-
actly one edit. Introducing the notation e ≺ t to in-
dicate that edit e covers token t in one of its phrases,
this constraint can be encoded as:∑

e: e≺t
xe = 1 ∀t ∈ Ti, i = {1, 2}

On solving this integer program, the values of the
variables xe indicate which edits are present in the

1We use LPsolve: http://lpsolve.sourceforge.net/

Corpus Size Approximate Exact
Search ILP

RTE2 dev 800 2.58 0.11
test 800 1.67 0.08

McKeown et al.
(2010)

297 61.96 2.45

Table 2: Approximate running time per decoding task in
seconds for the search-based approximate decoder and
the ILP-based exact decoder on various corpora (see text
for details).

highest-scoring alignment under w. A similar ap-
proach is employed by DeNero and Klein (2008) for
finding optimal phrase-based alignments for MT.

4.1 Alignment experiments

For evaluation purposes, we compare the perfor-
mance of approximate search decoding against ex-
act ILP-based decoding on a reimplementation of
MANLI as described in §3. All models are trained
on the development section of the Microsoft Re-
search RTE2 alignment corpus (cf. §3.1) using
the training parameters specified in MacCartney
et al. (2008). Aligner performance is determined
by counting aligned token pairs per problem and
macro-averaging over all problems. The results are
shown in Table 1.

We first observe that our reimplemented version
of MANLI improves over the results reported in
MacCartney et al. (2008), gaining 2% in precision,
1% in recall and 2-3% in the fraction of alignments
that exactly matched human annotations. We at-
tribute at least some part of this gain to our modified
parameter inference (cf. §3.3) which avoids normal-
izing the structured perceptron weights and instead
adheres closely to the algorithm of Collins (2002).

Although exact decoding improves alignment per-
formance over the approximate search approach, the
gain is marginal and not significant. This seems to
indicate that the simulated annealing search strategy
is fairly effective at avoiding local maxima and find-
ing the highest-scoring alignments.

4.2 Runtime experiments

Table 2 contains the results from timing alignment
tasks over various corpora on the same machine us-
ing the models trained as per §4.1. We observe a
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twenty-fold improvement in performance with ILP-
based decoding. It is important to note that the spe-
cific implementations being compared2 may be re-
sponsible for the relative speed of decoding.

The short hypotheses featured in the RTE2 cor-
pus (averaging 11 words) dampen the effect of the
quadratic growth in number of edits with sentence
length. For this reason, we also run the aligners on
a corpus of 297 related sentence pairs which don’t
have a particular disparity in sentence lengths (McK-
eown et al., 2010). The large difference in decoding
time illustrates the scaling limitations of the search-
based decoder.

5 Syntactically-Informed Constraints

The use of an integer program for decoding pro-
vides us with a convenient mechanism to prevent
common alignment errors by introducting additional
constraints on edits. For example, function words
such as determiners and prepositions are often mis-
aligned just because they occur frequently in many
different contexts. Although MANLI makes use
of contextual features which consider the similar-
ity of neighboring words around phrase pairs, out-
of-context alignments of function words often ap-
pear in the output. We address this issue by adding
constraints to the integer program from §4 that look
at the syntactic structure of T1 and T2 and prevent
matching function words from appearing in an align-
ment unless they are syntactically linked with other
words that are aligned.

To enforce token-based constraints, we define
boolean indicator variables yt for each token t in
text snippets T1 and T2 that indicate whether t is in-
volved in a SUB edit or not. The following constraint
ensures that yt = 1 if and only if it is covered by a
SUB edit that is present in the alignment.

yt −
∑
e: e≺t,
e is SUB

xe = 0 ∀t ∈ Ti, i = {1, 2}

We refer to tokens t with yt = 1 as being active in
the alignment. Constraints can now be applied over
any token with specific part-of-speech (POS) tag in

2Our Python reimplementation closely follows the original
Java implementation of MANLI and was optimized for perfor-
mance. MacCartney et al. (2008) report a decoding time of
about 2 seconds per problem.

System Data P% R% F1% E%

MANLI-Exact with dev 86.8 84.5 85.6 25.3
M constraints test 88.8 85.7 87.2 29.9
MANLI-Exact with dev 86.1 84.6 85.3 24.5
L constraints test 88.2 86.4 87.3 27.6
MANLI-Exact with dev 87.1 84.4 85.8 25.4
M + L constraints test 89.5 86.2 87.8 33.0

Table 3: Performance of MANLI-Exact featuring addi-
tional modifier (M) and lineage (L) constraints. Figures
in boldface are statistically significant over the uncon-
strained MANLI reimplementation (p ≤ 0.05).

order to ensure that it can only be active if a differ-
ent token related to it in a dependency parse of the
sentence is also active. We consider the following
classes of constraints:

Modifier constraints: Tokens t that represent con-
junctions, determiners, modals and cardinals can
only be active if their parent tokens π(t) are active.

yt − yπ(t) <= 0

if POS(t) ∈ {CC, CD, MD, DT, PDT, WDT}

Lineage constraints: Tokens t that represent prepo-
sitions and particles (which are often confused by
parsers) can only be active if one of their ancestors
α(t) or descendants δ(t) is active. These constraints
are less restrictive than the modifier constraints in
order to account for attachment errors.

yt −
∑
a∈α(t)

ya −
∑
d∈δ(t)

yd <= 0

if POS(t) ∈ {IN, TO, RP}

5.1 Alignment experiments
A TAG-based probabilistic dependency parser (Ban-
galore et al., 2009) is used to formulate the above
constraints in our experiments. The results are
shown in Table 3 and indicate a notable increase in
alignment precision, which is to be expected as the
constraints specifically seek to exclude poor edits.
Despite the simple and overly general restrictions
being applied, recall is almost unaffected. Most
compellingly, the number of perfect alignments pro-
duced by the system increases significantly when

257



compared to the unconstrained models from Table 1
(a relative increase of 35% on the test corpus).

6 Discussion

The results of our evaluation indicate that exact de-
coding via ILP is a robust and efficient technique for
solving alignment problems. Furthermore, the in-
corporation of simple constraints over a dependency
parse can help to shape more accurate alignments.
An examination of the alignments produced by our
system reveals that many remaining errors can be
tackled by the use of named-entity recognition and
better paraphrase corpora; this was also noted by
MacCartney et al. (2008) with regard to the original
MANLI system. In addition, stricter constraints that
enforce the alignment of syntactically-related tokens
(rather than just their inclusion in the solution) may
also yield performance gains.

Although MANLI’s structured prediction ap-
proach to the alignment problem allows us to encode
preferences as features and learn their weights via
the structured perceptron, the decoding constraints
used here can be used to establish dynamic links be-
tween alignment edits which cannot be determined
a priori. The interaction between the selection of
soft features for structured prediction and hard con-
straints for decoding is an interesting avenue for fur-
ther research on this task. Initial experiments with
a feature that considers the similarity of dependency
heads of tokens in an edit (similar to MANLI’s con-
textual features that look at preceding and following
words) yielded some improvement over the base-
line models; however, this did not perform as well
as the simple constraints described above. Specific
features that approximate soft variants of these con-
straints could also be devised but this was not ex-
plored here.

In addition to the NLI applications considered in
this work, we have also employed the MANLI align-
ment technique to tackle alignment problems that
are not inherently asymmetric such as the sentence
fusion problems from McKeown et al. (2010). Al-
though the absence of asymmetric alignment fea-
tures affects performance marginally over the RTE2
dataset, all the performance gains exhibited by exact
decoding with constraints appear to be preserved in
symmetric settings.

7 Conclusion

We present a simple exact decoding technique as an
alternative to approximate search-based decoding in
MANLI that exhibits a twenty-fold improvement in
runtime performance in our experiments. In addi-
tion, we propose novel syntactically-informed con-
straints to increase precision. Our final system im-
proves over the results reported in MacCartney et al.
(2008) by about 4.5% in precision and 1% in recall,
with a large gain in the number of perfect alignments
over the test corpus. Finally, we analyze the align-
ments produced and suggest that further improve-
ments are possible through careful feature/constraint
design, as well as the use of named-entity recogni-
tion and additional resources.
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