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Abstract 

This paper focuses on mining the hypon-

ymy (or is-a) relation from large-scale, 

open-domain web documents. A nonlinear 

probabilistic model is exploited to model 

the correlation between sentences in the 

aggregation of pattern matching results. 

Based on the model, we design a set of ev-

idence combination and propagation algo-

rithms. These significantly improve the 

result quality of existing approaches.  Ex-

perimental results conducted on 500 mil-

lion web pages and hypernym labels for 

300 terms show over 20% performance 

improvement in terms of P@5, MAP and 

R-Precision. 

1 Introduction1 

An important task in text mining is the automatic 

extraction of entities and their lexical relations; this 

has wide applications in natural language pro-

cessing and web search. This paper focuses on 

mining the hyponymy (or is-a) relation from large-

scale, open-domain web documents. From the 

viewpoint of entity classification, the problem is to 

automatically assign fine-grained class labels to 

terms. 

There have been a number of approaches 

(Hearst 1992; Pantel & Ravichandran 2004; Snow 

et al., 2005; Durme & Pasca, 2008; Talukdar et al., 

2008) to address the problem. These methods typi-

cally exploited manually-designed or automatical-

                                                           
* This work was performed when Fan Zhang and Shuqi Sun 

were interns at Microsoft Research Asia 

ly-learned patterns (e.g., “NP such as NP”, “NP 

like NP”, “NP is a NP”). Although some degree of 

success has been achieved with these efforts, the 

results are still far from perfect, in terms of both 

recall and precision. As will be demonstrated in 

this paper, even by processing a large corpus of 

500 million web pages with the most popular pat-

terns, we are not able to extract correct labels for 

many (especially rare) entities. Even for popular 

terms, incorrect results often appear in their label 

lists. 

The basic philosophy in existing hyponymy ex-

traction approaches (and also many other text-

mining methods) is counting: count the number of 

supporting sentences. Here a supporting sentence 

of a term-label pair is a sentence from which the 

pair can be extracted via an extraction pattern. We 

demonstrate that the specific way of counting has a 

great impact on result quality, and that the state-of-

the-art counting methods are not optimal. Specifi-

cally, we examine the problem from the viewpoint 

of probabilistic evidence combination and find that 

the probabilistic assumption behind simple count-

ing is the statistical independence between the ob-

servations of supporting sentences. By assuming a 

positive correlation between supporting sentence 

observations and adopting properly designed non-

linear combination functions, the results precision 

can be improved. 

It is hard to extract correct labels for rare terms 

from a web corpus due to the data sparseness prob-

lem. To address this issue, we propose an evidence 

propagation algorithm motivated by the observa-

tion that similar terms tend to share common hy-

pernyms. For example, if we already know that 1) 

Helsinki and Tampere are cities, and 2) Porvoo is 

similar to Helsinki and Tampere, then Porvoo is 
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very likely also a city. This intuition, however, 

does not mean that the labels of a term can always 

be transferred to its similar terms. For example, 

Mount Vesuvius and Kilimanjaro are volcanoes 

and Lhotse is similar to them, but Lhotse is not a 

volcano. Therefore we should be very conservative 

and careful in hypernym propagation. In our prop-

agation algorithm, we first construct some pseudo 

supporting sentences for a term from the support-

ing sentences of its similar terms. Then we calcu-

late label scores for terms by performing nonlinear 

evidence combination based on the (pseudo and 

real) supporting sentences. Such a nonlinear prop-

agation algorithm is demonstrated to perform bet-

ter than linear propagation. 

Experimental results on a publicly available col-

lection of 500 million web pages with hypernym 

labels annotated for 300 terms show that our non-

linear evidence fusion and propagation significant-

ly improve the precision and coverage of the 

extracted hyponymy data. This is one of the tech-

nologies adopted in our semantic search and min-

ing system NeedleSeek
2
. 

In the next section, we discuss major related ef-

forts and how they differ from our work. Section 3 

is a brief description of the baseline approach. The 

probabilistic evidence combination model that we 

exploited is introduced in Section 4. Our main ap-

proach is illustrated in Section 5. Section 6 shows 

our experimental settings and results. Finally, Sec-

tion 7 concludes this paper. 

2 Related Work 

Existing efforts for hyponymy relation extraction 

have been conducted upon various types of data 

sources, including plain-text corpora (Hearst 1992; 

Pantel & Ravichandran, 2004; Snow et al., 2005; 

Snow et al., 2006; Banko, et al., 2007; Durme & 

Pasca, 2008; Talukdar et al., 2008), semi-

structured web pages (Cafarella  et al., 2008; Shin-

zato & Torisawa, 2004), web search results (Geraci 

et al., 2006; Kozareva et al., 2008; Wang & Cohen, 

2009), and query logs (Pasca 2010). Our target for 

optimization in this paper is the approaches that 

use lexico-syntactic patterns to extract hyponymy 

relations from plain-text corpora. Our future work 

will study the application of the proposed algo-

rithms on other types of approaches. 

                                                           
2 http://research.microsoft.com/en-us/projects/needleseek/ or 

http://needleseek.msra.cn/  

The probabilistic evidence combination model 

that we exploit here was first proposed in (Shi et 

al., 2009), for combining the page in-link evidence 

in building a nonlinear static-rank computation 

algorithm. We applied it to the hyponymy extrac-

tion problem because the model takes the depend-

ency between supporting sentences into 

consideration and the resultant evidence fusion 

formulas are quite simple. In (Snow et al., 2006), a 

probabilistic model was adopted to combine evi-

dence from heterogeneous relationships to jointly 

optimize the relationships. The independence of 

evidence was assumed in their model. In compari-

son, we show that better results will be obtained if 

the evidence correlation is modeled appropriately. 

Our evidence propagation is basically about us-

ing term similarity information to help instance 

labeling. There have been several approaches 

which improve hyponymy extraction with instance 

clusters built by distributional similarity. In (Pantel 

& Ravichandran, 2004), labels were assigned to 

the committee (i.e., representative members) of a 

semantic class and used as the hypernyms of the 

whole class. Labels generated by their approach 

tend to be rather coarse-grained, excluding the pos-

sibility of a term having its private labels (consid-

ering the case that one meaning of a term is not 

covered by the input semantic classes). In contrast 

to their method, our label scoring and ranking ap-

proach is applied to every single term rather than a 

semantic class. In addition, we also compute label 

scores in a nonlinear way, which improves results 

quality. In Snow et al. (2005), a supervised ap-

proach was proposed to improve hypernym classi-

fication using coordinate terms. In comparison, our 

approach is unsupervised. Durme & Pasca (2008) 

cleaned the set of instance-label pairs with a 

TF*IDF like method, by exploiting clusters of se-

mantically related phrases. The core idea is to keep 

a term-label pair (T, L) only if the number of terms 

having the label L in the term T’s cluster is above a 

threshold and if L is not the label of too many clus-

ters (otherwise the pair will be discarded). In con-

trast, we are able to add new (high-quality) labels 

for a term with our evidence propagation method. 

On the other hand, low quality labels get smaller 

score gains via propagation and are ranked lower. 

Label propagation is performed in (Talukdar et 

al., 2008; Talukdar & Pereira, 2010) based on mul-

tiple instance-label graphs. Term similarity infor-

mation was not used in their approach. 
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Most existing work tends to utilize small-scale 

or private corpora, whereas the corpus that we used 

is publicly available and much larger than most of 

the existing work. We published our term sets (re-

fer to Section 6.1) and their corresponding user 

judgments so researchers working on similar topics 

can reproduce our results. 

 

Type Pattern 

Hearst-I NPL {,} (such as) {NP,}* {and|or} NP  

Hearst-II 
NPL {,} (include(s) | including) {NP,}* 

{and|or} NP 

Hearst-III NPL {,} (e.g.|e.g) {NP,}* {and|or} NP 

IsA-I NP (is|are|was|were|being) (a|an) NPL 

IsA-II NP (is|are|was|were|being) {the, those} NPL 

IsA-III NP (is|are|was|were|being) {another, any} NPL 

Table 1. Patterns adopted in this paper (NP: named 

phrase representing an entity; NPL: label) 

3 Preliminaries 

The problem addressed in this paper is corpus-

based is-a relation mining: extracting hypernyms 

(as labels) for entities from a large-scale, open-

domain document corpus. The desired output is a 

mapping from terms to their corresponding hyper-

nyms, which can naturally be represented as a 

weighted bipartite graph (term-label graph). Typi-

cally we are only interested in top labels of a term 

in the graph. 

Following existing efforts, we adopt pattern-

matching as a basic way of extracting hyper-

nymy/hyponymy relations. Two types of patterns 

(refer to Table 1) are employed, including the pop-

ular “Hearst patterns” (Hearst, 1992) and the IsA 

patterns which are exploited less frequently in ex-

isting hyponym mining efforts. One or more term-

label pairs can be extracted if a pattern matches a 

sentence. In the baseline approach, the weight of 

an edge TL (from term T to hypernym label L) in 

the term-label graph is computed as, 

 w(TL)       ( )       
   

    ( )
 (3.1) 

where m is the number of times the pair (T, L) is 

extracted from the corpus, DF(L) is the number of 

in-links of L in the graph, N is total number of 

terms in the graph, and IDF means the “inverse 

document frequency”. 

A term can only keep its top-k neighbors (ac-

cording to the edge weight) in the graph as its final 

labels. 

Our pattern matching algorithm implemented in 

this paper uses part-of-speech (POS) tagging in-

formation, without adopting a parser or a chunker. 

The noun phrase boundaries (for terms and labels) 

are determined by a manually designed POS tag 

list. 

4 Probabilistic Label-Scoring Model 

Here we model the hyponymy extraction problem 

from the probability theory point of view, aiming 

at estimating the score of a term-label pair (i.e., the 

score of a label w.r.t. a term) with probabilistic 

evidence combination. The model was studied in 

(Shi et al., 2009) to combine the page in-link evi-

dence in building a nonlinear static-rank computa-

tion algorithm. 

We represent the score of a term-label pair by 

the probability of the label being a correct hyper-

nym of the term, and define the following events, 

AT,L: Label L is a hypernym of term T (the ab-

breviated form A is used in this paper unless it is 

ambiguous). 

Ei: The observation that (T, L) is extracted from 

a sentence Si via pattern matching (i.e., Si is a sup-

porting sentence of the pair). 

Assuming that we already know m supporting 

sentences (S1~Sm), our problem is to compute 

P(A|E1,E2,..,Em), the posterior probability that L is 

a hypernym of term T, given evidence E1~Em. 

Formally, we need to find a function f to satisfy, 

 P(A|E1,…,Em) = f(P(A), P(A|E1)…, P(A|Em) ) (4.1) 

For simplicity, we first consider the case of 

m=2. The case of m>2 is quite similar. 

We start from the simple case of independent 

supporting sentences. That is, 

  (     )   (  )   (  ) (4.2) 

  (       )   (    )   (    ) (4.3) 

By applying Bayes rule, we get, 

 

 (       )  
 (       )   ( )

 (     )
 

           
 (    )   ( )

 (  )
 
 (    )   ( )

 (  )
 

 

 ( )
 

           
 (    )   (    )

 ( )
 

(4.4) 

Then define 

 (   )     
 (   )

 ( )
     ( (   ))     ( ( )) 
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Here G(A|E) represents the log-probability-gain 

of A given E, with the meaning of the gain in the 

log-probability value of A after the evidence E is 

observed (or known). It is a measure of the impact 

of evidence E to the probability of event A. With 

the definition of G(A|E), Formula 4.4 can be trans-

formed to, 

  (       )   (    )   (    ) (4.5) 

Therefore, if E1 and E2 are independent, the log-

probability-gain of A given both pieces of evidence 

will exactly be the sum of the gains of A given eve-

ry single piece of evidence respectively. It is easy 

to prove (by following a similar procedure) that the 

above Formula holds for the case of m>2, as long 

as the pieces of evidence are mutually independent. 

Therefore for a term-label pair with m mutually 

independent supporting sentences, if we set every 

gain G(A|Ei) to be a constant value g, the posterior 

gain score of the pair will be ∑   
      . If the 

value g is the IDF of label L, the posterior gain will 

be, 

 G(AT,L|E1…,Em)  ∑    ( ) 
         ( ) (4.6) 

This is exactly the Formula 3.1. By this way, we 

provide a probabilistic explanation of scoring the 

candidate labels for a term via simple counting. 

 

 Hearst-I IsA-I 
E1: Hearst-I 

E2: IsA-I 

RA: 
 (       )

 (    ) (    )
  66.87 17.30 24.38 

R: 
 (     )

 (  ) (  )
  5997 1711 802.7 

RA/R 0.011 0.010 0.030 

Table 2. Evidence dependency estimation for intra-

pattern and inter-pattern supporting sentences 

In the above analysis, we assume the statistical 

independence of the supporting sentence observa-

tions, which may not hold in reality. Intuitively, if 

we already know one supporting sentence S1 for a 

term-label pair (T, L), then we have more chance to 

find another supporting sentence than if we do not 

know S1. The reason is that, before we find S1, we 

have to estimate the probability with the chance of 

discovering a supporting sentence for a random 

term-label pair. The probability is quite low be-

cause most term-label pairs do not have hyponymy 

relations. Once we have observed S1, however, the 

chance of (T, L) having a hyponymy relation in-

creases. Therefore the chance of observing another 

supporting sentence becomes larger than before. 

Table 2 shows the rough estimation of 
 (       )

 (    ) (    )
 (denoted as RA), 

 (     )

 (  ) (  )
 (denoted 

as R), and their ratios. The statistics are obtained 

by performing maximal likelihood estimation 

(MLE) upon our corpus and a random selection of 

term-label pairs from our term sets (see Section 

6.1) together with their top labels
3
. The data veri-

fies our analysis about the correlation between E1 

and E2 (note that R=1 means independent). In addi-

tion, it can be seen that the conditional independ-

ence assumption of Formula 4.3 does not hold 

(because RA>1). It is hence necessary to consider 

the correlation between supporting sentences in the 

model. The estimation of Table 2 also indicates 

that, 

 
 (     )

 (  ) (  )
 

 (       )

 (    ) (    )
 (4.7) 

By following a similar procedure as above, with 

Formulas 4.2 and 4.3 replaced by 4.7, we have, 

  (       )   (    )   (    ) (4.8) 

This formula indicates that when the supporting 

sentences are positively correlated, the posterior 

score of label L w.r.t. term T (given both the sen-

tences) is smaller than the sum of the gains caused 

by one sentence only. In the extreme case that sen-

tence S2 fully depends on E1 (i.e. P(E2|E1)=1), it is 

easy to prove that 

  (       )   (    )  

It is reasonable, since event E2 does not bring in 

more information than E1. 

Formula 4.8 cannot be used directly for compu-

ting the posterior gain. What we really need is a 

function h satisfying 

  (         )   ( (    )    (    )) (4.9) 

and 

  (      )  ∑   
 
     (4.10) 

Shi et al. (2009) discussed other constraints to h 

and suggested the following nonlinear functions, 

   (      )    (  ∑ (     ) 
   )  (4.11) 

                                                           
3 RA is estimated from the labels judged as “Good”; whereas 

the estimation of R is from all judged labels. 
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   (      )  √∑   
  

   

 

           (p>1) (4.12) 

In the next section, we use the above two h func-

tions as basic building blocks to compute label 

scores for terms. 

5 Our Approach 

Multiple types of patterns (Table 1) can be adopted 

to extract term-label pairs. For two supporting sen-

tences the correlation between them may depend 

on whether they correspond to the same pattern. In 

Section 5.1, our nonlinear evidence fusion formu-

las are constructed by making specific assumptions 

about the correlation between intra-pattern sup-

porting sentences and inter-pattern ones. 

Then in Section 5.2, we introduce our evidence 

propagation technique in which the evidence of a 

(T, L) pair is propagated to the terms similar to T. 

5.1 Nonlinear evidence fusion 

For a term-label pair (T, L), assuming K patterns 

are used for hyponymy extraction and the support-

ing sentences discovered with pattern i are, 

                 
  (5.1) 

where mi is the number of supporting sentences 

corresponding to pattern i. Also assume the gain 

score of Si,j is xi,j, i.e., xi,j=G(A|Si,j). 

Generally speaking, supporting sentences corre-

sponding to the same pattern typically have a high-

er correlation than the sentences corresponding to 

different patterns. This can be verified by the data 

in Table-2. By ignoring the inter-pattern correla-

tions, we make the following simplified assump-

tion: 

Assumption: Supporting sentences correspond-

ing to the same pattern are correlated, while those 

of different patterns are independent. 

According to this assumption, our label-scoring 

function is, 

      (   )  ∑  (                
)

 

   

 (5.2) 

In the simple case that         ( ) , if the h 

function of Formula 4.12 is adopted, then, 

      (   )  (∑ √  
 

 

   

)     ( ) (5.3) 

We use an example to illustrate the above for-

mula. 

Example: For term T and label L1, assume the 

numbers of the supporting sentences corresponding 

to the six pattern types in Table 1 are (4, 4, 4, 4, 4, 

4), which means the number of supporting sen-

tences discovered by each pattern type is 4. Also 

assume the supporting-sentence-count vector of 

label L2 is (25, 0, 0, 0, 0, 0). If we use Formula 5.3 

to compute the scores of L1 and L2, we can have 

the following (ignoring IDF for simplicity), 

Score(L1)    √    ; Score(L2)  √     

One the other hand, if we simply count the total 

number of supporting sentences, the score of L2 

will be larger. 

The rationale implied in the formula is: For a 

given term T, the labels supported by multiple 

types of patterns tend to be more reliable than 

those supported by a single pattern type, if they 

have the same number of supporting sentences. 

5.2 Evidence propagation 

According to the evidence fusion algorithm de-

scribed above, in order to extract term labels relia-

bly, it is desirable to have many supporting 

sentences of different types. This is a big challenge 

for rare terms, due to their low frequency in sen-

tences (and even lower frequency in supporting 

sentences because not all occurrences can be cov-

ered by patterns). With evidence propagation, we 

aim at discovering more supporting sentences for 

terms (especially rare terms). Evidence propaga-

tion is motivated by the following two observa-

tions: 

(I) Similar entities or coordinate terms tend to 

share some common hypernyms. 

(II) Large term similarity graphs are able to be 

built efficiently with state-of-the-art techniques 

(Agirre et al., 2009; Pantel et al., 2009; Shi et al., 

2010). With the graphs, we can obtain the similari-

ty between two terms without their hypernyms be-

ing available. 

The first observation motivates us to “borrow” 

the supporting sentences from other terms as auxil-

iary evidence of the term. The second observation 

means that new information is brought with the 

state-of-the-art term similarity graphs (in addition 

to the term-label information discovered with the 

patterns of Table 1). 
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Our evidence propagation algorithm contains 

two phases. In phase I, some pseudo supporting 

sentences are constructed for a term from the sup-

porting sentences of its neighbors in the similarity 

graph. Then we calculate the label scores for terms 

based on their (pseudo and real) supporting sen-

tences. 

Phase I: For every supporting sentence S and 

every similar term T1 of the term T, add a pseudo 

supporting sentence S1 for T1, with the gain score, 

  (      
   )       (    )   (      ) (5.5) 

where         is the propagation factor, and 

   (   ) is the term similarity function taking val-

ues in [0, 1]. The formula reasonably assumes that 

the gain score of the pseudo supporting sentence 

depends on the gain score of the original real sup-

porting sentence, the similarity between the two 

terms, and the propagation factor. 

Phase II: The nonlinear evidence combination 

formulas in the previous subsection are adopted to 

combine the evidence of pseudo supporting sen-

tences. 

Term similarity graphs can be obtained by dis-

tributional similarity or patterns (Agirre et al., 

2009; Pantel et al., 2009; Shi et al., 2010). We call 

the first type of graph DS and the second type PB. 

DS approaches are based on the distributional hy-

pothesis (Harris, 1985), which says that terms ap-

pearing in analogous contexts tend to be similar. In 

a DS approach, a term is represented by a feature 

vector, with each feature corresponding to a con-

text in which the term appears. The similarity be-

tween two terms is computed as the similarity 

between their corresponding feature vectors. In PB 

approaches, a list of carefully-designed (or auto-

matically learned) patterns is exploited and applied 

to a text collection, with the hypothesis that the 

terms extracted by applying each of the patterns to 

a specific piece of text tend to be similar. Two cat-

egories of patterns have been studied in the litera-

ture (Heast 1992; Pasca 2004; Kozareva et al., 

2008; Zhang et al., 2009): sentence lexical patterns, 

and HTML tag patterns. An example of sentence 

lexical patterns is “T {, T}*{,} (and|or) T”. HTML 

tag patterns include HTML tables, drop-down lists, 

and other tag repeat patterns. In this paper, we 

generate the DS and PB graphs by adopting the 

best-performed methods studied in (Shi et al., 

2010). We will compare, by experiments, the prop-

agation performance of utilizing the two categories 

of graphs, and also investigate the performance of 

utilizing both graphs for evidence propagation. 

6 Experiments 

6.1 Experimental setup 

Corpus We adopt a publicly available dataset in 

our experiments: ClueWeb09
4
. This is a very large 

dataset collected by Carnegie Mellon University in 

early 2009 and has been used by several tracks of 

the Text Retrieval Conference (TREC)
5
. The whole 

dataset consists of 1.04 billion web pages in ten 

languages while only those in English, about 500 

million pages, are used in our experiments. The 

reason for selecting such a dataset is twofold: First, 

it is a corpus large enough for conducting web-

scale experiments and getting meaningful results. 

Second, since it is publicly available, it is possible 

for other researchers to reproduce the experiments 

in this paper. 

Term sets Approaches are evaluated by using 

two sets of selected terms: Wiki200, and Ext100. 

For every term in the term sets, each approach 

generates a list of hypernym labels, which are 

manually judged by human annotators. Wiki200 is 

constructed by first randomly selecting 400 Wik-

ipedia
6
 titles as our candidate terms, with the prob-

ability of a title T being selected to be     (  
 ( )), where F(T) is the frequency of T in our data 

corpus. The reason of adopting such a probability 

formula is to balance popular terms and rare ones 

in our term set. Then 200 terms are manually se-

lected from the 400 candidate terms, with the prin-

ciple of maximizing the diversity of terms in terms 

of length (i.e., number of words) and type (person, 

location, organization, software, movie, song, ani-

mal, plant, etc.). Wiki200 is further divided into 

two subsets: Wiki100H and Wiki100L, containing 

respectively the 100 high-frequency and low-

frequency terms. Ext100 is built by first selecting 

200 non-Wikipedia-title terms at random from the 

term-label graph generated by the baseline ap-

proach (Formula 3.1), then manually selecting 100 

terms. 

Some sample terms in the term sets are listed in 

Table 3. 

 

                                                           
4 http://boston.lti.cs.cmu.edu/Data/clueweb09/  
5 http://trec.nist.gov/  
6 http://www.wikipedia.org/  
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Term 

Set 
Sample Terms 

Wiki200 

Canon EOS 400D, Disease management, El Sal-

vador, Excellus Blue Cross Blue Shield, F33, 

Glasstron, Indium, Khandala, Kung Fu, Lake 

Greenwood, Le Gris, Liriope, Lionel Barrymore, 

Milk, Mount Alto, Northern Wei, Pink Lady, 

Shawshank, The Dog Island, White flight, World 

War II… 

Ext100 

A2B, Antique gold, GPTEngine, Jinjiang Inn, 

Moyea SWF to Apple TV Converter, Nanny ser-

vice, Outdoor living, Plasmid DNA, Popon, Spam 

detection, Taylor Ho Bynum, Villa Michelle… 

Table 3. Sample terms in our term sets 

 

Annotation For each term in the term set, the 

top-5 results (i.e., hypernym labels) of various 

methods are mixed and judged by human annota-

tors. Each annotator assigns each result item a 

judgment of “Good”, “Fair” or “Bad”. The annota-

tors do not know the method by which a result item 

is generated. Six annotators participated in the la-

beling with a rough speed of 15 minutes per term. 

We also encourage the annotators to add new good 

results which are not discovered by any method. 

The term sets and their corresponding user anno-

tations are available for download at the following 

links (dataset ID=data.queryset.semcat01): 
http://research.microsoft.com/en-us/projects/needleseek/ 

http://needleseek.msra.cn/datasets/ 

Evaluation We adopt the following metrics to 

evaluate the hypernym list of a term generated by 

each method. The evaluation score on a term set is 

the average over all the terms. 

Precision@k: The percentage of relevant (good 

or fair) labels in the top-k results (labels judged as 

“Fair” are counted as 0.5) 

Recall@k: The ratio of relevant labels in the top-

k results to the total number of relevant labels 

R-Precision: Precision@R where R is the total 

number of labels judged as “Good” 

Mean average precision (MAP): The average of 

precision values at the positions of all good or fair 

results 

Before annotation and evaluation, the hypernym 

list generated by each method for each term is pre-

processed to remove duplicate items. Two hyper-

nyms are called duplicate items if they share the 

same head word (e.g., “military conflict” and “con-

flict”). For duplicate hypernyms, only the first (i.e., 

the highest ranked one) in the list is kept. The goal 

with such a preprocessing step is to partially con-

sider results diversity in evaluation and to make a 

more meaningful comparison among different 

methods. Consider two hypernym lists for “sub-

way”: 
List-1: restaurant; chain restaurant; worldwide chain 

restaurant; franchise; restaurant franchise… 

List-2: restaurant; franchise; transportation; company; 

fast food… 

There are more detailed hypernyms in the first 

list about “subway” as a restaurant or a franchise; 

while the second list covers a broader range of 

meanings for the term. It is hard to say which is 

better (without considering the upper-layer appli-

cations). With this preprocessing step, we keep our 

focus on short hypernyms rather than detailed ones. 
 

Term Set Method MAP R-Prec P@1 P@5 

Wiki200 

Linear 0.357 0.376 0.783 0.547 

Log 
0.371 

 3.92% 

0.384 

 2.13% 

0.803 

 2.55% 

0.561 

 2.56% 

PNorm 
0.372 

 4.20% 

0.384 

 2.13% 

0.800 

 2.17% 

0.562 

 2.74% 

Wiki100H 

Linear 0.363 0.382 0.805 0.627 

Log 
0.393 

 8.26% 

0.402 

 5.24% 

0.845 

 4.97% 

0.660 

 5.26% 

PNorm 
0.395 

 8.82% 

0.403 

 5.50% 

0.840 

 4.35% 

0.662 

 5.28% 

Table 4. Performance comparison among various 

evidence fusion methods (Term sets: Wiki200 and 

Wiki100H; p=2 for PNorm) 

6.2 Experimental results 

We first compare the evaluation results of different 

evidence fusion methods mentioned in Section 4.1. 

In Table 4, Linear means that Formula 3.1 is used 

to calculate label scores, whereas Log and PNorm 

represent our nonlinear approach with Formulas 

4.11 and 4.12 being utilized. The performance im-

provement numbers shown in the table are based 

on the linear version; and the upward pointing ar-

rows indicate relative percentage improvement 

over the baseline. From the table, we can see that 

the nonlinear methods outperform the linear ones 

on the Wiki200 term set. It is interesting to note 

that the performance improvement is more signifi-

cant on Wiki100H, the set of high frequency terms. 

By examining the labels and supporting sentences 

for the terms in each term set, we find that for 

many low-frequency terms (in Wiki100L), there 

are only a few supporting sentences (corresponding 
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to one or two patterns). So the scores computed by 

various fusion algorithms tend to be similar. In 

contrast, more supporting sentences can be discov-

ered for high-frequency terms. Much information 

is contained in the sentences about the hypernyms 

of the high-frequency terms, but the linear function 

of Formula 3.1 fails to make effective use of it. 

The two nonlinear methods achieve better perfor-

mance by appropriately modeling the dependency 

between supporting sentences and computing the 

log-probability gain in a better way. 

The comparison of the linear and nonlinear 

methods on the Ext100 term set is shown in Table 

5. Please note that the terms in Ext100 do not ap-

pear in Wikipedia titles. Thanks to the scale of the 

data corpus we are using, even the baseline ap-

proach achieves reasonably good performance. 

Please note that the terms (refer to Table 3) we are 

using are “harder” than those adopted for evalua-

tion in many existing papers. Again, the results 

quality is improved with the nonlinear methods, 

although the performance improvement is not big 

due to the reason that most terms in Ext100 are 

rare. Please note that the recall (R@1, R@5) in this 

paper is pseudo-recall, i.e., we treat the number of 

known relevant (Good or Fair) results as the total 

number of relevant ones. 
 

Method MAP R-Prec P@1 P@5 R@1 R@5 

Linear 0.384 0.429 0.665 0.472 0.116 0.385 

Log 
0.395 0.429 0.715 0.472 0.125 0.385 

 2.86%  0%  7.52%  0%  7.76%  0% 

PNorm 
0.390 0.429 0.700 0.472 0.120 0.385 

 1.56%  0%   5.26%  0%  3.45%  0% 

Table 5. Performance comparison among various 

evidence fusion methods (Term set: Ext100; p=2 

for PNorm) 

The parameter p in the PNorm method is related 

to the degree of correlations among supporting 

sentences. The linear method of Formula 3.1 corre-

sponds to the special case of p=1; while p=  rep-

resents the case that other supporting sentences are 

fully correlated to the supporting sentence with the 

maximal log-probability gain. Figure 1 shows that, 

for most of the term sets, the best performance is 

obtained for   [2.0, 4.0]. The reason may be that 

the sentence correlations are better estimated with 

p values in this range. 

 

 

Figure 1. Performance curves of PNorm with dif-

ferent parameter values (Measure: MAP) 

The experimental results of evidence propaga-

tion are shown in Table 6. The methods for com-

parison are, 

Base: The linear function without propagation. 

NL: Nonlinear evidence fusion (PNorm with 

p=2) without propagation. 

LP: Linear propagation, i.e., the linear function 

is used to combine the evidence of pseudo support-

ing sentences. 

NLP: Nonlinear propagation where PNorm 

(p=2) is used to combine the pseudo supporting 

sentences. 

NL+NLP: The nonlinear method is used to 

combine both supporting sentences and pseudo 

supporting sentences. 
 

Method MAP R-Prec P@1 P@5 R@5 

Base 0.357 0.376 0.783 0.547 0.317 

NL 
0.372 0.384 0.800 0.562 0.325 

 4.20%  2.13%  2.17%  2.74%  2.52% 

LP 
0.357 0.376 0.783 0.547 0.317 

 0%  0%  0%  0%  0% 

NLP 
0.396 0.418 0.785 0.605 0.357 

 10.9%  11.2%  0.26%  10.6%  12.6% 

NL+NLP 
0.447 0.461 0.840 0.667 0.404 

 25.2%  22.6%  7.28%  21.9%  27.4% 

Table 6. Evidence propagation results (Term set: 

Wiki200; Similarity graph: PB; Nonlinear formula: 

PNorm) 

In this paper, we generate the DS (distributional 

similarity) and PB (pattern-based) graphs by adopt-

ing the best-performed methods studied in (Shi et 

al., 2010). The performance improvement numbers 

(indicated by the upward pointing arrows) shown 

in tables 6~9 are relative percentage improvement 
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over the base approach (i.e., linear function with-

out propagation). The values of parameter   are set 

to maximize the MAP values. 

Several observations can be made from Table 6. 

First, no performance improvement can be ob-

tained with the linear propagation method (LP), 

while the nonlinear propagation algorithm (NLP) 

works quite well in improving both precision and 

recall. The results demonstrate the high correlation 

between pseudo supporting sentences and the great 

potential of using term similarity to improve hy-

pernymy extraction. The second observation is that 

the NL+NLP approach achieves a much larger per-

formance improvement than NL and NLP. Similar 

results (omitted due to space limitation) can be 

observed on the Ext100 term set. 

 

Method MAP R-Prec P@1 P@5 R@5 

Base 0.357 0.376 0.783 0.547 0.317 

NL+NLP 

(PB) 

0.415 0.439 0.830 0.633 0.379 

 16.2%  16.8%  6.00%  15.7%  19.6% 

NL+NLP 

(DS) 

0.456 0.469 0.843 0.673 0.406 

 27.7%  24.7%  7.66%  23.0%  28.1% 

NL+NLP

(PB+DS) 

0.473 0.487 0.860 0.700 0.434 

 32.5%  29.5%  9.83%  28.0%  36.9% 

Table 7. Combination of PB and DS graphs for 

evidence propagation (Term set: Wiki200; Nonlin-

ear formula: Log) 

 

Method MAP R-Prec P@1 P@5 R@5 

Base 0.351 0.370 0.760 0.467 0.317 

NL+NLP 

(PB) 

0.411 0.448 0.770 0.564 0.401 

↑17.1% ↑21.1% ↑1.32% ↑20.8% ↑26.5% 

NL+NLP 

(DS) 

0.469 0.490 0.815 0.622 0.438 

 33.6%  32.4%  7.24%  33.2%  38.2% 

NL+NLP

(PB+DS) 

0.491 0.513 0.860 0.654 0.479 

 39.9%  38.6%  13.2%  40.0%  51.1% 

Table 8. Combination of PB and DS graphs for 

evidence propagation (Term set: Wiki100L) 

Now let us study whether it is possible to com-

bine the PB and DS graphs to obtain better results. 

As shown in Tables 7, 8, and 9 (for term sets 

Wiki200, Wiki100L, and Ext100 respectively, us-

ing the Log formula for fusion and propagation), 

utilizing both graphs really yields additional per-

formance gains. We explain this by the fact that the 

information in the two term similarity graphs tends 

to be complimentary. The performance improve-

ment over Wiki100L is especially remarkable. This 

is reasonable because rare terms do not have ade-

quate information in their supporting sentences due 

to data sparseness. As a result, they benefit the 

most from the pseudo supporting sentences propa-

gated with the similarity graphs. 
 

Method MAP R-Prec P@1 P@5 R@5 

Base 0.384 0.429 0.665 0.472 0.385 

NL+NLP 

(PB) 

0.454 0.479 0.745 0.550 0.456 

 18.3%  11.7%  12.0%  16.5%  18.4% 

NL+NLP 

(DS) 

0.404 0.441 0.720 0.486 0.402 

 5.18%  2.66%  8.27%  2.97%  4.37% 

NL+NLP(P

B+DS) 

0.483 0.518 0.760 0.586 0.492 

 26.0%  20.6%  14.3%  24.2%  27.6% 

Table 9. Combination of PB and DS graphs for 

evidence propagation (Term set: Ext100) 

7 Conclusion 

We demonstrated that the way of aggregating sup-

porting sentences has considerable impact on re-

sults quality of the hyponym extraction task using 

lexico-syntactic patterns, and the widely-used 

counting method is not optimal. We applied a se-

ries of nonlinear evidence fusion formulas to the 

problem and saw noticeable performance im-

provement. The data quality is improved further 

with the combination of nonlinear evidence fusion 

and evidence propagation. We also introduced a 

new evaluation corpus with annotated hypernym 

labels for 300 terms, which were shared with the 

research community. 
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