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Abstract

We investigate the task of unsupervised
constituency parsing from bilingual par-
allel corpora. Our goal is to use bilin-
gual cues to learn improved parsing mod-
els for each language and to evaluate these
models on held-out monolingual test data.
We formulate a generative Bayesian model
which seeks to explain the observed par-
allel data through a combination of bilin-
gual and monolingual parameters. To this
end, we adapt a formalism known as un-
ordered tree alignment to our probabilistic
setting. Using this formalism, our model
loosely binds parallel trees while allow-
ing language-specific syntactic structure.
We perform inference under this model us-
ing Markov Chain Monte Carlo and dy-
namic programming. Applying this model
to three parallel corpora (Korean-English,
Urdu-English, and Chinese-English) we
find substantial performance gains over
the CCM model, a strong monolingual
baseline. On average, across a variety of
testing scenarios, our model achieves an
8.8 absolute gain in F-measure. 1

1 Introduction

In this paper we investigate the task of unsuper-
vised constituency parsing when bilingual paral-
lel text is available. Our goal is to improve pars-
ing performance on monolingual test data for each
language by using unsupervised bilingual cues at
training time. Multilingual learning has been suc-
cessful for other linguistic induction tasks such as
lexicon acquisition, morphological segmentation,
and part-of-speech tagging (Genzel, 2005; Snyder
and Barzilay, 2008; Snyder et al., 2008; Snyder

1Code and the outputs of our experiments are available at
http://groups.csail.mit.edu/rbg/code/multiling induction.

et al., 2009). We focus here on the unsupervised
induction of unlabeled constituency brackets. This
task has been extensively studied in a monolingual
setting and has proven to be difficult (Charniak
and Carroll, 1992; Klein and Manning, 2002).

The key premise of our approach is that am-
biguous syntactic structures in one language may
correspond to less uncertain structures in the other
language. For instance, the English sentence I
saw [the student [from MIT]] exhibits the classic
problem of PP-attachment ambiguity. However,
its Urdu translation, literally glossed as I [[MIT of ]
student] saw, uses a genitive phrase that may only
be attached to the adjacent noun phrase. Know-
ing the correspondence between these sentences
should help us resolve the English ambiguity.

One of the main challenges of unsupervised
multilingual learning is to exploit cross-lingual
patterns discovered in data, while still allowing
a wide range of language-specific idiosyncrasies.
To this end, we adapt a formalism known as un-
ordered tree alignment (Jiang et al., 1995) to
a probabilistic setting. Under this formalism,
any two trees can be embedded in an alignment
tree. This alignment tree allows arbitrary parts
of the two trees to diverge in structure, permitting
language-specific grammatical structure to be pre-
served. Additionally, a computational advantage
of this formalism is that the marginalized probabil-
ity over all possible alignments for any two trees
can be efficiently computed with a dynamic pro-
gram in linear time.

We formulate a generative Bayesian model
which seeks to explain the observed parallel data
through a combination of bilingual and mono-
lingual parameters. Our model views each pair
of sentences as having been generated as fol-
lows: First an alignment tree is drawn. Each
node in this alignment tree contains either a soli-
tary monolingual constituent or a pair of coupled
bilingual constituents. For each solitary mono-
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lingual constituent, a sequence of part-of-speech
tags is drawn from a language-specific distribu-
tion. For each pair of coupled bilingual con-
stituents, a pair of part-of-speech sequences are
drawn jointly from a cross-lingual distribution.
Word-level alignments are then drawn based on
the tree alignment. Finally, parallel sentences are
assembled from these generated part-of-speech se-
quences and word-level alignments.

To perform inference under this model, we use
a Metropolis-Hastings within-Gibbs sampler. We
sample pairs of trees and then compute marginal-
ized probabilities over all possible alignments us-
ing dynamic programming.

We test the effectiveness of our bilingual gram-
mar induction model on three corpora of parallel
text: English-Korean, English-Urdu and English-
Chinese. The model is trained using bilingual
data with automatically induced word-level align-
ments, but is tested on purely monolingual data
for each language. In all cases, our model out-
performs a state-of-the-art baseline: the Con-
stituent Context Model (CCM) (Klein and Man-
ning, 2002), sometimes by substantial margins.
On average, over all the testing scenarios that we
studied, our model achieves an absolute increase
in F-measure of 8.8 points, and a 19% reduction
in error relative to a theoretical upper bound.

2 Related Work

The unsupervised grammar induction task has
been studied extensively, mostly in a monolin-
gual setting (Charniak and Carroll, 1992; Stolcke
and Omohundro, 1994; Klein and Manning, 2002;
Seginer, 2007). While PCFGs perform poorly on
this task, the CCM model (Klein and Manning,
2002) has achieved large gains in performance and
is among the state-of-the-art probabilistic models
for unsupervised constituency parsing. We there-
fore use CCM as our basic model of monolingual
syntax.

While there has been some previous work on
bilingual CFG parsing, it has mainly focused on
improving MT systems rather than monolingual
parsing accuracy. Research in this direction was
pioneered by (Wu, 1997), who developed Inver-
sion Transduction Grammars to capture cross-
lingual grammar variations such as phrase re-
orderings. More general formalisms for the same
purpose were later developed (Wu and Wong,
1998; Chiang, 2005; Melamed, 2003; Eisner,

2003; Zhang and Gildea, 2005; Blunsom et al.,
2008). We know of only one study which eval-
uates these bilingual grammar formalisms on the
task of grammar induction itself (Smith and Smith,
2004). Both our model and even the monolingual
CCM baseline yield far higher performance on the
same Korean-English corpus.

Our approach is closer to the unsupervised
bilingual parsing model developed by Kuhn
(2004), which aims to improve monolingual per-
formance. Assuming that trees induced over paral-
lel sentences have to exhibit certain structural reg-
ularities, Kuhn manually specifies a set of rules
for determining when parsing decisions in the two
languages are inconsistent with GIZA++ word-
level alignments. By incorporating these con-
straints into the EM algorithm he was able to im-
prove performance over a monolingual unsuper-
vised PCFG. Still, the performance falls short of
state-of-the-art monolingual models such as the
CCM.

More recently, there has been a body of work
attempting to improve parsing performance by ex-
ploiting syntactically annotated parallel data. In
one strand of this work, annotations are assumed
only in a resource-rich language and are projected
onto a resource-poor language using the parallel
data (Hwa et al., 2005; Xi and Hwa, 2005). In
another strand of work, syntactic annotations are
assumed on both sides of the parallel data, and a
model is trained to exploit the parallel data at test
time as well (Smith and Smith, 2004; Burkett and
Klein, 2008). In contrast to this work, our goal
is to explore the benefits of multilingual grammar
induction in a fully unsupervised setting.

We finally note a recent paper which uses pa-
rameter tying to improve unsupervised depen-
dency parse induction (Cohen and Smith, 2009).
While the primary performance gains occur when
tying related parameters within a language, some
additional benefit is observed through bilingual ty-
ing, even in the absence of a parallel corpus.

3 Model

We propose an unsupervised Bayesian model for
learning bilingual syntactic structure using paral-
lel corpora. Our key premise is that difficult-to-
learn syntactic structures of one language may cor-
respond to simpler or less uncertain structures in
the other language. We treat the part-of-speech
tag sequences of parallel sentences, as well as their
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(i) (ii) (iii)

Figure 1: A pair of trees (i) and two possible alignment trees. In (ii), no empty spaces are inserted, but
the order of one of the original tree’s siblings has been reversed. In (iii), only two pairs of nodes have
been aligned (indicated by arrows) and many empty spaces inserted.

word-level alignments, as observed data. We ob-
tain these word-level alignments using GIZA++
(Och and Ney, 2003).

Our model seeks to explain this observed data
through a generative process whereby two aligned
parse trees are produced jointly. Though they
are aligned, arbitrary parts of the two trees are
permitted to diverge, accommodating language-
specific grammatical structure. In effect, our
model loosely binds the two trees: node-to-node
alignments need only be used where repeated
bilingual patterns can be discovered in the data.

3.1 Tree Alignments

We achieve this loose binding of trees by adapting
unordered tree alignment (Jiang et al., 1995) to a
probabilistic setting. Under this formalism, any
two trees can be aligned using an alignment tree.
The alignment tree embeds the original two trees
within it: each node is labeled by a pair (x, y),
(λ, y), or (x, λ) where x is a node from the first
tree, y is a node from the second tree, and λ is an
empty space. The individual structure of each tree
must be preserved under the embedding with the
exception of sibling order (to allow variations in
phrase and word order).

The flexibility of this formalism can be demon-
strated by two extreme cases: (1) an alignment be-
tween two trees may actually align none of their
individual nodes, instead inserting an empty space
λ for each of the original two trees’ nodes. (2)
if the original trees are isomorphic to one an-
other, the alignment may match their nodes ex-
actly, without inserting any empty spaces. See
Figure 1 for an example.

3.2 Model overview

As our basic model of syntactic structure, we
adopt the Constituent-Context Model (CCM) of
Klein and Manning (2002). Under this model,
the part-of-speech sequence of each span in a sen-
tence is generated either as a constituent yield
— if it is dominated by a node in the tree —
or otherwise as a distituent yield. For example,
in the bracketed sentence [John/NNP [climbed/VB

[the/DT tree/NN]]], the sequence VB DT NN is gen-
erated as a constituent yield, since it constitutes a
complete bracket in the tree. On the other hand,
the sequence VB DT is generated as a distituent,
since it does not. Besides these yields, the con-
texts (two surrounding POS tags) of constituents
and distituents are generated as well. In this exam-
ple, the context of the constituent VB DT NN would
be (NNP, #), while the context of the distituent VB

DT would be (NNP, NN). The CCM model em-
ploys separate multinomial distributions over con-
stituents, distituents, constituent contexts, and dis-
tituent contexts. While this model is deficient —
each observed subsequence of part-of-speech tags
is generated many times over — its performance
is far higher than that of unsupervised PCFGs.

Under our bilingual model, each pair of sen-
tences is assumed to have been generated jointly in
the following way: First, an unlabeled alignment
tree is drawn uniformly from the set of all such
trees. This alignment tree specifies the structure
of each of the two individual trees, as well as the
pairs of nodes which are aligned and those which
are not aligned (i.e. paired with a λ).

For each pair of aligned nodes, a correspond-
ing pair of constituents and contexts are jointly
drawn from a bilingual distribution. For unaligned
nodes (i.e. nodes paired with a λ in the alignment
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tree), a single constituent and context are drawn,
from language-specific distributions. Distituents
and their contexts are also drawn from language-
specific distributions. Finally, word-level align-
ments are drawn based on the structure of the
alignment tree.

In the next two sections, we describe our model
in more formal detail by specifying the parame-
ters and generative process by which sentences are
formed.

3.3 Parameters
Our model employs a number of multinomial dis-
tributions:

• πC
i : over constituent yields of language i,

• πD
i : over distituent yields of language i,

• φC
i : over constituent contexts of language i,

• φD
i : over distituent contexts of language i,

• ω : over pairs of constituent yields, one from
the first language and the other from the sec-
ond language,

• Gzpair : over a finite set of integer val-
ues {−m, . . . ,−2,−1, 0, 1, 2, . . . ,m}, mea-
suring the Giza-score of aligned tree node
pairs (see below),

• Gznode : over a finite set of integer values
{−m, . . . ,−2,−1, 0}, measuring the Giza-
score of unaligned tree nodes (see below).

The first four distributions correspond exactly to
the parameters of the CCM model. Parameter ω is
a “coupling parameter” which measures the com-
patibility of tree-aligned constituent yield pairs.
The final two parameters measure the compatibil-
ity of syntactic alignments with the observed lexi-
cal GIZA++ alignments. Intuitively, aligned nodes
should have a high density of word-level align-
ments between them, and unaligned nodes should
have few lexical alignments.

More formally, consider a tree-aligned node
pair (n1, n2) with corresponding yields (y1, y2).
We call a word-level alignment good if it aligns
a word in y1 with a word in y2. We call a word-
level alignment bad if it aligns a word in y1 with
a word outside y2, or vice versa. The Giza-
score for (n1, n2) is the number of good word
alignments minus the number of bad word align-
ments. For example, suppose the constituent my

long name is node-aligned to its Urdu translation
mera lamba naam. If only the word-pairs my/mera
and name/naam are aligned, then the Giza-score
for this node-alignment would be 2. If however,
the English word long were (incorrectly) aligned
under GIZA++ to some Urdu word outside the cor-
responding constituent, then the score would drop
to 1. This score could even be negative if the num-
ber of bad alignments exceeds those that are good.
Distribution Gzpair provides a probability for these
scores (up to some fixed absolute value).

For an unaligned node n with corresponding
yield y, only bad GIZA++ alignments are possible,
thus the Giza-score for these nodes will always be
zero or negative. Distribution Gznode provides a
probability for these scores (down to some fixed
value). We want our model to find tree alignments
such that both aligned node pairs and unaligned
nodes have high Giza-score.

3.4 Generative Process
Now we describe the stochastic process whereby
the observed parallel sentences and their word-
level alignments are generated, according to our
model.

As the first step in the Bayesian generative pro-
cess, all the multinomial parameters listed in the
previous section are drawn from their conjugate
priors — Dirichlet distributions of appropriate di-
mension. Then, each pair of word-aligned parallel
sentences is generated through the following pro-
cess:

1. A pair of binary trees T1 and T2 along with
an alignment tree A are drawn according to
P (T1, T2, A). A is an alignment tree for T1

and T2 if it can be obtained by the follow-
ing steps: First insert blank nodes (labeled by
λ) into T1 and T2. Then permute the order
of sibling nodes such that the two resulting
trees T ′

1 and T ′
2 are identical in structure. Fi-

nally, overlay T ′
1 and T ′

2 to obtain A. We ad-
ditionally require that A contain no extrane-
ous nodes – that is no nodes with two blank
labels (λ, λ). See Figure 1 for an example.

We define the distribution P (T1, T2, A) to be
uniform over all pairs of binary trees and their
alignments.

2. For each node in A of the form (n1, λ) (i.e.
nodes in T1 left unaligned by A), draw

(i) a constituent yield according to πC
1 ,
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(ii) a constituent context according to φC
1 ,

(iii) a Giza-score according to Gznode.

3. For each node in A of the form (λ, n2) (i.e.
nodes in T2 left unaligned by A), draw

(i) a constituent yield according to πC
2 ,

(ii) a constituent context according to φC
2 ,

(iii) a Giza-score according to Gznode.

4. For each node in A of the form (n1, n2) (i.e.
tree-aligned node pairs), draw

(i) a pair of constituent yields (y1, y2) ac-
cording to:

φC
1 (y1) · φC

2 (y2) · ω(y1, y2)
Z

(1)

which is a product of experts combining
the language specific context-yield dis-
tributions as well as the coupling distri-
bution ω with normalization constant Z,

(ii) a pair of contexts according to the ap-
propriate language-specific parameters,

(iii) a Giza-score according to Gzpair.

5. For each span in Ti not dominated by a node
(for each language i ∈ {1, 2}), draw a dis-
tituent yield according to πD

i and a distituent
context according to φD

i .

6. Draw actual word-level alignments consis-
tent with the Giza-scores, according to a uni-
form distribution.

In the next section we turn to the problem of
inference under this model when only the part-
of-speech tag sequences of parallel sentences and
their word-level alignments are observed.

3.5 Inference
Given a corpus of paired part-of-speech tag se-
quences (s1, s2) and their GIZA++ alignments
g, we would ideally like to predict the set of
tree pairs (T1,T2) which have highest proba-
bility when conditioned on the observed data:
P

(
T1,T2

∣∣s1, s2,g
)
. We could rewrite this by

explicitly integrating over the yield, context, cou-
pling, Giza-score parameters as well as the align-
ment trees. However, since maximizing this in-
tegral directly would be intractable, we resort to
standard Markov chain sampling techniques. We
use Gibbs sampling (Hastings, 1970) to draw trees
for each sentence conditioned on those drawn for

all other sentences. The samples form a Markov
chain which is guaranteed to converge to the true
joint distribution over all sentences.

In the monolingual setting, there is a well-
known tree sampling algorithm (Johnson et al.,
2007). This algorithm proceeds in top-down fash-
ion by sampling individual split points using the
marginal probabilities of all possible subtrees.
These marginals can be efficiently pre-computed
and form the “inside” table of the famous Inside-
Outside algorithm. However, in our setting, trees
come in pairs, and their joint probability crucially
depends on their alignment.

For the ith parallel sentence, we wish to jointly
sample the pair of trees (T1, T2)i together with
their alignment Ai. To do so directly would in-
volve simultaneously marginalizing over all pos-
sible subtrees as well as all possible alignments
between such subtrees when sampling upper-level
split points. We know of no obvious algorithm
for computing this marginal. We instead first sam-
ple the pair of trees (T1, T2)i from a simpler pro-
posal distribution Q. Our proposal distribution as-
sumes that no nodes of the two trees are aligned
and therefore allows us to use the recursive top-
down sampling algorithm mentioned above. After
a new tree pair T ∗ = (T ∗

1 , T ∗
2 )i is drawn from Q,

we accept the pair with the following probability:

min
{

1,
P (T ∗|T−i,A−i) Q(T |T−i,A−i)
P (T |T−i,A−i) Q(T ∗|T−i,A−i)

}
where T is the previously sampled tree-pair for
sentence i, P is the true model probability, and
Q is the probability under the proposal distribu-
tion. This use of a tractable proposal distribution
and acceptance ratio is known as the Metropolis-
Hastings algorithm and it preserves the conver-
gence guarantee of the Gibbs sampler (Hastings,
1970). To compute the terms P (T ∗|T−i,A−i)
and P (T |T−i,A−i) in the acceptance ratio above,
we need to marginalize over all possible align-
ments between tree pairs.

Fortunately, for any given pair of trees T1 and
T2 this marginalization can be computed using
a dynamic program in time O(|T1||T2|). Here
we provide a very brief sketch. For every pair
of nodes n1 ∈ T1, n2 ∈ T2, a table stores the
marginal probability of the subtrees rooted at n1

and n2, respectively. A dynamic program builds
this table from the bottom up: For each node pair
n1, n2, we sum the probabilities of all local align-
ment configurations, each multiplied by the appro-
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priate marginals already computed in the table for
lower-level node pairs. This algorithm is an adap-
tation of the dynamic program presented in (Jiang
et al., 1995) for finding minimum cost alignment
trees (Fig. 5 of that publication).

Once a pair of trees (T1, T2) has been sam-
pled, we can proceed to sample an alignment tree
A|T1, T2.2 We sample individual alignment deci-
sions from the top down, at each step using the
alignment marginals for the remaining subtrees
(already computed using the afore-mentioned dy-
namic program). Once the triple (T1, T2, A) has
been sampled, we move on to the next parallel sen-
tence.

We avoid directly sampling parameter val-
ues, instead using the marginalized closed forms
for multinomials with Dirichlet conjugate-priors
using counts and hyperparameter pseudo-counts
(Gelman et al., 2004). Note that in the case of
yield pairs produced according to Distribution 1
(in step 4 of the generative process) conjugacy is
technically broken, since the yield pairs are no
longer produced by a single multinomial distribu-
tion. Nevertheless, we count the produced yields
as if they had been generated separately by each
of the distributions involved in the numerator of
Distribution 1.

4 Experimental setup

We test our model on three corpora of bilin-
gual parallel sentences: English-Korean, English-
Urdu, and English-Chinese. Though the model is
trained using parallel data, during testing it has ac-
cess only to monolingual data. This set-up ensures
that we are testing our model’s ability to learn bet-
ter parameters at training time, rather than its abil-
ity to exploit parallel data at test time. Following
(Klein and Manning, 2002), we restrict our model
to binary trees, though we note that the alignment
trees do not follow this restriction.

Data The Penn Korean Treebank (Han et al.,
2002) consists of 5,083 Korean sentences trans-
lated into English for the purposes of language
training in a military setting. Both the Korean
and English sentences are annotated with syntactic
trees. We use the first 4,000 sentences for training
and the last 1,083 sentences for testing. We note
that in the Korean data, a separate tag is given for

2Sampling the alignment tree is important, as it provides
us with counts of aligned constituents for the coupling pa-
rameter.

each morpheme. We simply concatenate all the
morpheme tags given for each word and treat the
concatenation as a single tag. This procedure re-
sults in 199 different tags. The English-Urdu par-
allel corpus3 consists of 4,325 sentences from the
first three sections of the Penn Treebank and their
Urdu translations annotated at the part-of-speech
level. The Urdu side of this corpus does not pro-
vide tree annotations so here we can test parse ac-
curacy only on English. We use the remaining
sections of the Penn Treebank for English test-
ing. The English-Chinese treebank (Bies et al.,
2007) consists of 3,850 Chinese newswire sen-
tences translated into English. Both the English
and Chinese sentences are annotated with parse
trees. We use the first 4/5 for training and the final
1/5 for testing.

During preprocessing of the corpora we remove
all punctuation marks and special symbols, fol-
lowing the setup in previous grammar induction
work (Klein and Manning, 2002). To obtain lex-
ical alignments between the parallel sentences we
employ GIZA++ (Och and Ney, 2003). We use in-
tersection alignments, which are one-to-one align-
ments produced by taking the intersection of one-
to-many alignments in each direction. These one-
to-one intersection alignments tend to have higher
precision.

We initialize the trees by making uniform split
decisions recursively from the top down for sen-
tences in both languages. Then for each pair of
parallel sentences we randomly sample an initial
alignment tree for the two sampled trees.

Baseline We implement a Bayesian version of
the CCM as a baseline. This model uses the same
inference procedure as our bilingual model (Gibbs
sampling). In fact, our model reduces to this
Bayesian CCM when it is assumed that no nodes
between the two parallel trees are ever aligned
and when word-level alignments are ignored. We
also reimplemented the original EM version of
CCM and found virtually no difference in perfor-
mance when using EM or Gibbs sampling. In both
cases our implementation achieves F-measure in
the range of 69-70% on WSJ10, broadly in line
with the performance reported by Klein and Man-
ning (2002).

Hyperparameters Klein (2005) reports using
smoothing pseudo-counts of 2 for constituent

3http://www.crulp.org
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Figure 2: The F-measure of the CCM baseline (dotted line) and bilingual model (solid line) plotted on
the y-axis, as the maximum sentence length in the test set is increased (x-axis). Results are averaged over
all training scenarios given in Table 1.

yields and contexts and 8 for distituent yields and
contexts. In our Bayesian model, these similar
smoothing counts occur as the parameters of the
Dirichlet priors. For Korean we found that the
baseline performed well using these values. How-
ever, on our English and Chinese data, we found
that somewhat higher smoothing values worked
best, so we utilized values of 20 and 80 for con-
stituent and distituent smoothing counts, respec-
tively.

Our model additionally requires hyperparam-
eter values for ω (the coupling distribution for
aligned yields), Gzpair and Gznode (the distribu-
tions over Giza-scores for aligned nodes and un-
aligned nodes, respectively). For ω we used a
symmetric Dirichlet prior with parameter 1. For
Gzpair and Gznode, in order to create a strong bias
towards high Giza-scores, we used non-symmetric
Dirichlet priors. In both cases, we capped the ab-
solute value of the scores at 3, to prevent count
sparsity. In the case of Gzpair we gave pseudo-
counts of 1,000 for negative values and zero, and
pseudo-counts of 1,000,000 for positive scores.
For Gznode we gave a pseudo-count of 1,000,000
for a score of zero, and 1,000 for all nega-
tive scores. This very strong prior bias encodes
our intuition that syntactic alignments which re-
spect lexical alignments should be preferred. Our
method is not sensitive to these exact values and
any reasonably strong bias gave similar results.

In all our experiments, we consider the hyper-
parameters fixed and observed values.

Testing and evaluation As mentioned above,
we test our model only on monolingual data,
where the parallel sentences are not provided to
the model. To predict the bracketings of these
monolingual test sentences, we take the smoothed

counts accumulated in the final round of sampling
over the training data and perform a maximum
likelihood estimate of the monolingual CCM pa-
rameters. These parameters are then used to pro-
duce the highest probability bracketing of the test
set.

To evaluate both our model as well as the base-
line, we use (unlabeled) bracket precision, re-
call, and F-measure (Klein and Manning, 2002).
Following previous work, we include the whole-
sentence brackets but ignore single-word brack-
ets. We perform experiments on different subsets
of training and testing data based on the sentence-
length. In particular we experimented with sen-
tence length limits of 10, 20, and 30 for both the
training and testing sets. We also report the upper
bound on F-measure for binary trees. We average
the results over 10 separate sampling runs.

5 Results

Table 1 reports the full results of our experiments.
In all testing scenarios the bilingual model out-
performs its monolingual counterpart in terms of
both precision and recall. On average, the bilin-
gual model gains 10.2 percentage points in preci-
sion, 7.7 in recall, and 8.8 in F-measure. The gap
between monolingual performance and the binary
tree upper bound is reduced by over 19%.

The extent of the gain varies across pairings.
For instance, the smallest improvement is ob-
served for English when trained with Urdu. The
Korean-English pairing results in substantial im-
provements for Korean and quite large improve-
ments for English, for which the absolute gain
reaches 28 points in F-measure. In the case of Chi-
nese and English, the gains for English are fairly
minimal whereas those for Chinese are quite sub-
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Max Sent. Length Monolingual Bilingual Upper Bound
Test Train Precision Recall F1 Precision Recall F1 F1

E
N

w
ith

K
R 10

10 52.74 39.53 45.19 57.76 43.30 49.50 85.6
20 41.87 31.38 35.87 61.66 46.22 52.83 85.6
30 33.43 25.06 28.65 64.41 48.28 55.19 85.6

20
20 35.12 25.12 29.29 56.96 40.74 47.50 83.3
30 26.26 18.78 21.90 60.07 42.96 50.09 83.3

30 30 23.95 16.81 19.76 58.01 40.73 47.86 82.4

K
R

w
ith

E
N 10

10 71.07 62.55 66.54 75.63 66.56 70.81 93.6
20 71.35 62.79 66.80 77.61 68.30 72.66 93.6
30 71.37 62.81 66.82 77.87 68.53 72.91 93.6

20
20 64.28 54.73 59.12 70.44 59.98 64.79 91.9
30 64.29 54.75 59.14 70.81 60.30 65.13 91.9

30 30 63.63 54.17 58.52 70.11 59.70 64.49 91.9

E
N

w
ith

C
H 10

10 50.09 34.18 40.63 37.46 25.56 30.39 81.0
20 58.86 40.17 47.75 50.24 34.29 40.76 81.0
30 64.81 44.22 52.57 68.24 46.57 55.36 81.0

20
20 41.90 30.52 35.31 38.64 28.15 32.57 84.3
30 52.83 38.49 44.53 58.50 42.62 49.31 84.3

30 30 46.35 33.67 39.00 51.40 37.33 43.25 84.1

C
H

w
ith

E
N 10

10 39.87 27.71 32.69 40.62 28.23 33.31 81.9
20 43.44 30.19 35.62 47.54 33.03 38.98 81.9
30 43.63 30.32 35.77 54.09 37.59 44.36 81.9

20
20 29.80 23.46 26.25 36.93 29.07 32.53 88.0
30 30.05 23.65 26.47 43.99 34.63 38.75 88.0

30 30 24.46 19.41 21.64 39.61 31.43 35.05 88.4

E
N

w
ith

U
R 10

10 57.98 45.68 51.10 73.43 57.85 64.71 88.1
20 70.57 55.60 62.20 80.24 63.22 70.72 88.1
30 75.39 59.40 66.45 79.04 62.28 69.67 88.1

20
20 57.78 43.86 49.87 67.26 51.06 58.05 86.3
30 63.12 47.91 54.47 64.45 48.92 55.62 86.3

30 30 57.36 43.02 49.17 57.97 43.48 49.69 85.7

Table 1: Unlabeled precision, recall and F-measure for the monolingual baseline and the bilingual model
on several test sets. We report results for different combinations of maximum sentence length in both the
training and test sets. The right most column, in all cases, contains the maximum F-measure achievable
using binary trees. The best performance for each test-length is highlighted in bold.

stantial. This asymmetry should not be surprising,
as Chinese on its own seems to be quite a bit more
difficult to parse than English.

We also investigated the impact of sentence
length for both the training and testing sets. For
our model, adding sentences of greater length to
the training set leads to increases in parse accu-
racy for short sentences. For the baseline, how-
ever, adding this additional training data degrades
performance in the case of English paired with Ko-
rean. Figure 2 summarizes the performance of
our model for different sentence lengths on sev-
eral of the test-sets. As shown in the figure, the
largest improvements tend to occur at longer sen-
tence lengths.

6 Conclusion

We have presented a probabilistic model for bilin-
gual grammar induction which uses raw parallel
text to learn tree pairs and their alignments. Our
formalism loosely binds the two trees, using bilin-
gual patterns when possible, but allowing substan-
tial language-specific variation. We tested our
model on three test sets and showed substantial
improvement over a state-of-the-art monolingual
baseline.4

4The authors acknowledge the support of the NSF (CA-
REER grant IIS-0448168, grant IIS-0835445, and grant IIS-
0835652). Thanks to Amir Globerson and members of the
MIT NLP group for their helpful suggestions. Any opinions,
findings, or conclusions are those of the authors, and do not
necessarily reflect the views of the funding organizations
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