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Abstract 

How far can we get with unsupervised 

parsing if we make our training corpus 

several orders of magnitude larger than has 

hitherto be attempted? We present a new 

algorithm for unsupervised parsing using 

an all-subtrees model, termed U-DOP*, 

which parses directly with packed forests 

of all binary trees. We train both on Penn’s 

WSJ data and on the (much larger) NANC 

corpus, showing that U-DOP* outperforms 

a treebank-PCFG on the standard WSJ test 

set. While U-DOP* performs worse than 

state-of-the-art supervised parsers on hand-

annotated sentences, we show that the 

model outperforms supervised parsers 

when evaluated as a language model in 

syntax-based machine translation on 

Europarl. We argue that supervised parsers 

miss the fluidity between constituents and 

non-constituents and that in the field of 

syntax-based language modeling the end of 

supervised parsing has come in sight. 

1    Introduction 
 

A major challenge in natural language parsing is 

the unsupervised induction of syntactic structure. 

While most parsing methods are currently 

supervised or semi-supervised (McClosky et al. 

2006; Henderson 2004; Steedman et al. 2003), they 

depend on hand-annotated data which are difficult 

to come by and which exist only for a few 

languages. Unsupervised parsing methods are 

becoming increasingly important since they 

operate with raw, unlabeled data of which 

unlimited quantities are available. 

There has been a resurgence of interest in 

unsupervised parsing during the last few years. 

Where van Zaanen (2000) and Clark (2001) 

induced unlabeled phrase structure for small 

domains like the ATIS, obtaining around 40% 

unlabeled f-score, Klein and Manning (2002) 

report 71.1% f-score on Penn WSJ part-of-speech 

strings ≤ 10 words (WSJ10) using a constituent-

context model called CCM. Klein and Manning 

(2004) further show that a hybrid approach which 

combines constituency and dependency models, 

yields 77.6% f-score on WSJ10. 

While Klein and Manning’s approach may 

be described as an “all-substrings” approach to 

unsupervised parsing, an even richer model 

consists of an “all-subtrees” approach to 

unsupervised parsing, called U-DOP (Bod 2006). 

U-DOP initially assigns all unlabeled binary trees 

to a training set, efficiently stored in a packed 

forest, and next trains subtrees thereof on a held-

out corpus, either by taking their relative 

frequencies, or by iteratively training the subtree 

parameters using the EM algorithm (referred to as 

“UML-DOP”). The main advantage of an all-

subtrees approach seems to be the direct inclusion 

of discontiguous context that is not captured by 

(linear) substrings. Discontiguous context is 

important not only for learning structural 

dependencies but also for learning a variety of non-

contiguous constructions such as nearest … to… or 

take … by surprise. Bod (2006) reports 82.9% 

unlabeled f-score on the same WSJ10 as used by 

Klein and Manning (2002, 2004). Unfortunately, 

his experiments heavily depend on a priori 

sampling of subtrees, and the model becomes 

highly inefficient if larger corpora are used or 

longer sentences are included. 

In this paper we will also test an 

alternative model for unsupervised all-subtrees 
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parsing, termed U-DOP*, which is based on the 

DOP* estimator by Zollmann and Sima’an (2005), 

and which computes the shortest derivations for 

sentences from a held-out corpus using all subtrees 

from all trees from an extraction corpus. While we 

do not achieve as high an f-score as the UML-DOP 

model in Bod (2006), we will show that U-DOP* 

can operate without subtree sampling, and that the 

model can be trained on corpora that are two 

orders of magnitude larger than in Bod (2006). We 

will extend our experiments to 4 million sentences 

from the NANC corpus (Graff 1995), showing that 

an f-score of 70.7% can be obtained on the 

standard Penn WSJ test set by means of 

unsupervised parsing. Moreover, U-DOP* can be 

directly put to use in bootstrapping structures for 

concrete applications such as syntax-based 

machine translation and speech recognition. We 

show that U-DOP* outperforms the supervised 

DOP model if tested on the German-English 

Europarl corpus in a syntax-based MT system. 

In the following, we first explain the 

DOP* estimator and discuss how it can be 

extended to unsupervised parsing. In section 3, we 

discuss how a PCFG reduction for supervised DOP  

can be applied to packed parse forests. In section 4, 

we will go into an experimental evaluation of U-

DOP* on annotated corpora, while in section 5 we 

will evaluate U-DOP* on unlabeled corpora in an 

MT application.  

 

2     From DOP* to U-DOP* 
 

DOP* is a modification of the DOP model in Bod 

(1998) that results in a statistically consistent 

estimator and in an efficient training procedure 

(Zollmann and Sima’an 2005). DOP* uses the all-

subtrees idea from DOP: given a treebank, take all 

subtrees, regardless of size, to form a stochastic 

tree-substitution grammar (STSG). Since a parse 

tree of a sentence may be generated by several 

(leftmost) derivations, the probability of a tree is 

the sum of the probabilities of the derivations 

producing that tree. The probability of a derivation 

is the product of the subtree probabilities. The 

original DOP model in Bod (1998) takes the 

occurrence frequencies of the subtrees in the trees 

normalized by their root frequencies as subtree 

parameters. While efficient algorithms have been 

developed for this DOP model by converting it into 

a PCFG reduction (Goodman 2003), DOP’s 

estimator was shown to be inconsistent by Johnson 

(2002). That is, even with unlimited training data, 

DOP's estimator is not guaranteed to converge to 

the correct distribution.  

Zollmann and Sima’an (2005) developed a 

statistically consistent estimator for DOP which is 

based on the assumption that maximizing the joint 

probability of the parses in a treebank can be 

approximated by maximizing the joint probability 

of their shortest derivations (i.e. the derivations 

consisting of the fewest subtrees). This assumption 

is in consonance with the principle of simplicity, 

but there are also empirical reasons for the shortest 

derivation assumption: in Bod (2003) and Hearne 

and Way (2006), it is shown that DOP models that 

select the preferred parse of a test sentence using 

the shortest derivation criterion perform very well. 

On the basis of this shortest-derivation 

assumption, Zollmann and Sima’an come up with a 

model that uses held-out estimation: the training 

corpus is randomly split into two parts proportional 

to a fixed ratio: an extraction corpus EC and a 

held-out corpus HC. Applied to DOP, held-out 

estimation would mean to extract fragments from 

the trees in EC and to assign their weights such 

that the likelihood of HC is maximized. If we 

combine their estimation method with Goodman’s 

reduction of DOP, Zollman and Sima’an’s 

procedure operates as follows: 

 

(1) Divide a treebank into an EC and HC 

(2) Convert the subtrees from EC into a PCFG 

reduction 

(3) Compute the shortest derivations for the 

sentences in HC (by simply assigning each 

subtree equal weight and applying Viterbi 

1-best) 

(4) From those shortest derivations, extract the 

subtrees and their relative frequencies in 

HC to form an STSG 

 

Zollmann and Sima’an show that the resulting 

estimator is consistent. But equally important is the 

fact that this new DOP* model does not suffer 

from a decrease in parse accuracy if larger subtrees 

are included, whereas the original DOP model 

needs to be redressed by a correction factor to 

maintain this property (Bod 2003). Moreover, 

DOP*’s estimation procedure is very efficient, 

while the EM training procedure for UML-DOP 
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proposed in Bod (2006) is particularly time 

consuming and can only operate by randomly 

sampling trees. 

 Given the advantages of DOP*, we  will 

generalize this model in the current paper to 

unsupervised parsing. We will use the same all-

subtrees methodology as in Bod (2006), but now 

by applying the efficient and consistent DOP*-

based estimator. The resulting model, which we 

will call U-DOP*, roughly operates as follows: 

 

(1) Divide a corpus into an EC and HC 

(2) Assign all unlabeled binary trees to the 

sentences in EC, and store them in a 

shared parse forest 

(3) Convert the subtrees from the parse forests 

into a compact PCFG reduction (see next 

section) 

(4) Compute the shortest derivations for the 

sentences in HC (as in DOP*) 

(5) From those shortest derivations, extract the 

subtrees and their relative frequencies in 

HC to form an STSG 

(6) Use the STSG to compute the most 

probable parse trees for new test data by 

means of Viterbi n-best (see next section) 

 

We will use this U-DOP* model to investigate our 

main research question: how far can we get with 

unsupervised parsing if we make our training 

corpus several orders of magnitude larger than 

has hitherto be attempted?  

 

3  Converting shared parse forests into 

PCFG reductions 
 

The main computational problem is how to deal 

with the immense number of subtrees in U-DOP*. 

There exists already an efficient supervised 

algorithm that parses a sentence by means of all 

subtrees from a treebank. This algorithm was 

extensively described in Goodman (2003) and 

converts a DOP-based STSG into a compact PCFG 

reduction that generates eight rules for each node 

in the treebank. The reduction is based on the 

following idea: every node in every treebank tree is 

assigned a unique number which is called its 

address. The notation A@k denotes the node at 

address k where A is the nonterminal labeling that 

node. A new nonterminal is created for each node 

in the training data. This nonterminal is called Ak. 

Let aj represent the number of subtrees headed by 

the node A@j, and let a represent the number of 

subtrees headed by nodes with nonterminal A, that 

is a = Σj aj. Then there is a PCFG with the 

following property: for every subtree in the 

training corpus headed by A, the grammar will 

generate an isomorphic subderivation. For 

example, for a node (A@j (B@k, C@l)), the 

following eight PCFG rules in figure 1 are 

generated, where the number following a rule is its 

weight.  

 
Aj → BC       (1/aj) A → BC        (1/a) 

Aj → BkC      (bk/aj) A → BkC      (bk/a) 

Aj → BCl      (cl/aj) A → BCl         (cl/a) 

Aj → BkCl     (bkcl/aj) A → BkCl       (bkcl/a) 

 

Figure 1. PCFG reduction of supervised DOP 

 

By simple induction it can be shown that this 

construction produces PCFG derivations 

isomorphic to DOP derivations (Goodman 2003: 

130-133). The PCFG reduction is linear in the 

number of nodes in the corpus. 

While Goodman’s reduction method was 

developed for supervised DOP where each training 

sentence is annotated with exactly one tree, the 

method can be generalized to a corpus where each 

sentence is annotated with all possible binary trees 

(labeled with the generalized category X), as long 

as we represent these trees by a shared parse forest. 

A shared parse forest can be obtained by adding 

pointers from each node in the chart (or tabular 

diagram) to the nodes that caused it to be placed in 

the chart. Such a forest can be represented in cubic 

space and time (see Billot and Lang 1989). Then, 

instead of assigning a unique address to each node 

in each tree, as done by the PCFG reduction for 

supervised DOP, we now assign a unique address 

to each node in each parse forest for each sentence. 

However, the same node may be part of more than 

one tree. A shared parse forest is an AND-OR 

graph where AND-nodes correspond to the usual 

parse tree nodes, while OR-nodes correspond to 

distinct subtrees occurring in the same context. The 

total number of nodes is cubic in sentence length n. 

This means that there are O(n
3
) many nodes that 

receive a unique address as described above, to 

which next our PCFG reduction is applied. This is 

a huge reduction compared to Bod (2006) where 

402



the number of subtrees of all trees increases with 

the Catalan number, and only ad hoc sampling 

could make the method work. 

Since U-DOP* computes the shortest 

derivations (in the training phase) by combining 

subtrees from unlabeled binary trees, the PCFG 

reduction in figure 1 can be represented as in 

figure 2, where X refers to the generalized category 

while B and C either refer to part-of-speech 

categories or are equivalent to X. The equal 

weights follow from the fact that the shortest 

derivation is equivalent to the most probable 

derivation if all subtrees are assigned equal 

probability (see Bod 2000; Goodman 2003). 

 
Xj → BC        1  X → BC        0.5 

Xj → BkC      1  X → BkC       0.5 

Xj → BCl       1  X → BCl         0.5 

Xj → BkCl      1  X → BkCl       0.5 

 

Figure 2. PCFG reduction for U-DOP* 

 

Once we have parsed HC with the shortest 

derivations by the PCFG reduction in figure 2, we 

extract the subtrees from HC to form an STSG. 

The number of subtrees in the shortest derivations 

is linear in the number of nodes (see Zollmann and 

Sima’an 2005, theorem 5.2). This means that U-

DOP* results in an STSG which is much more 

succinct than previous DOP-based STSGs. 

Moreover, as in Bod (1998, 2000), we use an 

extension of Good-Turing to smooth the subtrees 

and to deal with ‘unknown’ subtrees. 

Note that the direct conversion of parse 

forests into a PCFG reduction also allows us to 

efficiently implement the maximum likelihood 

extension of U-DOP known as UML-DOP (Bod 

2006). This can be accomplished by training the 

PCFG reduction on the held-out corpus HC by 

means of the expectation-maximization algorithm, 

where the weights in figure 1 are taken as initial 

parameters. Both U-DOP*’s and UML-DOP’s 

estimators are known to be statistically consistent. 

But while U-DOP*’s training phase merely 

consists of the computation of the shortest 

derivations and the extraction of subtrees, UML-

DOP involves iterative training of the parameters. 

Once we have extracted the STSG, we 

compute the most probable parse for new 

sentences by Viterbi n-best, summing up the 

probabilities of derivations resulting in the same 

tree (the exact computation of the most probable 

parse is NP hard – see Sima’an 1996). We have 

incorporated the technique by Huang and Chiang 

(2005) into our implementation which allows for 

efficient Viterbi n-best parsing.  

 

4    Evaluation on hand-annotated corpora 
 

To evaluate U-DOP* against UML-DOP and other 

unsupervised parsing models, we started out with 

three corpora that are also used in Klein and 

Manning (2002, 2004) and Bod (2006): Penn’s 

WSJ10 which contains 7422 sentences ≤ 10 words 

after removing empty elements and punctuation, 

the German NEGRA10 corpus and the Chinese 

Treebank CTB10 both containing 2200+ sentences 

≤ 10 words after removing punctuation. As with 

most other unsupervised parsing models, we train 

and test on p-o-s strings rather than on word 

strings. The extension to word strings is 

straightforward as there exist highly accurate 

unsupervised part-of-speech taggers (e.g. Schütze 

1995) which can be directly combined with 

unsupervised parsers, but for the moment we will 

stick to p-o-s strings (we will come back to word 

strings in section 5). Each corpus was divided into 

10 training/test set splits of 90%/10% (n-fold 

testing), and each training set was randomly 

divided into two equal parts, that serve as EC and 

HC and vice versa. We used the same evaluation 

metrics for unlabeled precision (UP) and unlabeled 

recall (UR) as in Klein and Manning (2002, 2004). 

The two metrics of UP and UR are combined by 

the unlabeled f-score F1 = 2*UP*UR/(UP+UR). 

All trees in the test set were binarized beforehand, 

in the same way as in Bod (2006). 

 For UML-DOP the decrease in cross-

entropy became negligible after maximally 18 

iterations. The training for U-DOP* consisted in 

the computation of the shortest derivations for the 

HC from which the subtrees and their relative 

frequencies were extracted. We used the technique 

in Bod (1998, 2000) to include ‘unknown’ 

subtrees. Table 1 shows the f-scores for U-DOP* 

and UML-DOP against the f-scores for U-DOP 

reported in Bod (2006), the CCM model in Klein 

and Manning (2002), the DMV dependency model 

in Klein and Manning (2004) and their combined 

model DMV+CCM.  
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Model English 

(WSJ10) 

German 

(NEGRA10) 

Chinese 

(CTB10) 

CCM 71.9 61.6 45.0 

DMV 52.1 49.5 46.7 

DMV+CCM 77.6 63.9 43.3 

U-DOP 78.5 65.4 46.6 

U-DOP* 77.9 63.8 42.8 

UML-DOP 79.4 65.2 45.0 

 

Table 1. F-scores of U-DOP* and UML-DOP 

compared to other models on the same data. 
 

It should be kept in mind that an exact comparison 

can only be made between U-DOP* and UML-

DOP in table 1, since these two models were tested 

on 90%/10% splits, while the other models were 

applied to the full WSJ10, NEGRA10 and CTB10 

corpora. Table 1 shows that U-DOP* performs 

worse than UML-DOP in all cases, although the 

differences are small and was statistically 

significant only for WSJ10 using paired t-testing. 

As explained above, the main advantage of 

U-DOP* over UML-DOP is that it works with a 

more succinct grammar extracted from the shortest 

derivations of HC. Table 2 shows the size of the 

grammar (number of rules or subtrees) of the two 

models for resp. Penn WSJ10, the entire Penn WSJ 

and the first 2 million sentences from the NANC 

(North American News Text) corpus which 

contains a total of approximately 24 million 

sentences from different news sources. 

 

Model Size of 

STSG 

for WSJ10 

Size of 

STSG 

for Penn 

WSJ 
 

Size of STSG 

for 2,000K 

NANC  

U-DOP* 2.2 x 104 9.8 x 105 7.2 x 106 

UML-DOP 1.5 x 106 8.1 x 107 5.8 x 109 

 

Table 2. Grammar size of U-DOP* and UML-DOP 

for WSJ10 (7,7K sentences), WSJ (50K sentences) 

and the first 2,000K sentences from NANC. 

 

Note that while U-DOP* is about 2 orders of 

magnitudes smaller than UML-DOP for the 

WSJ10, it is almost 3 orders of magnitudes smaller 

for the first 2 million sentences of the NANC 

corpus. Thus even if U-DOP* does not give the 

highest f-score in table 1, it is more apt to be 

trained on larger data sets. In fact, a well-known 

advantage of unsupervised methods over 

supervised methods is the availability of almost 

unlimited amounts of text. Table 2 indicates that 

U-DOP*’s grammar is still of manageable size 

even for text corpora that are (almost) two orders 

of magnitude larger than Penn’s WSJ. The NANC 

corpus contains approximately 2 million WSJ 

sentences that do not overlap with Penn’s WSJ and 

has been previously used by McClosky et al. 

(2006) in improving a supervised parser by self-

training. In our experiments below we will start by 

mixing subsets from the NANC’s WSJ data with 

Penn’s WSJ data. Next, we will do the same with 2 

million sentences from the LA Times in the NANC 

corpus, and finally we will mix all data together for 

inducing a U-DOP* model. From Penn’s WSJ, we 

only use sections 2 to 21 for training (just as in 

supervised parsing) and section 23 (≤100 words) 

for testing, so as to compare our unsupervised 

results with some binarized supervised parsers. 

The NANC data was first split into 

sentences by means of a simple discriminitive 

model. It was next p-o-s tagged with the the TnT 

tagger (Brants 2000) which was trained on the 

Penn Treebank such that the same tag set was used. 

Next, we added subsets of increasing size from the 

NANC p-o-s strings to the 40,000 Penn WSJ p-o-s 

strings. Each time the resulting corpus was split 

into two halfs and the shortest derivations were 

computed for one half by using the PCFG-

reduction from the other half and vice versa. The 

resulting trees were used for extracting an STSG 

which in turn was used to parse section 23 of 

Penn’s WSJ. Table 3 shows the results. 

 

# sentences added  f-score by 

adding WSJ 

data 

f-score by 

adding LA 

Times data 

0 (baseline) 62.2 62.2 

100k 64.7 63.0 

250k 66.2 63.8 

500k 67.9 64.1 

1,000k 68.5 64.6 

2,000k 69.0 64.9 

 

Table 3. Results of U-DOP* on section 23 from 

Penn’s WSJ by adding sentences from NANC’s 

WSJ and NANC’s LA Times 
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Table 3 indicates that there is a monotonous 

increase in f-score on the WSJ test set if NANC 

text is added to our training data in both cases, 

independent of whether the sentences come from 

the WSJ domain or the LA Times domain. 

Although the effect of adding LA Times data is 

weaker than adding WSJ data, it is noteworthy that 

the unsupervised induction of trees from the LA 

Times domain still improves the f-score even if the 

test data are from a different domain.  

We also investigated the effect of adding 

the LA Times data to the total mix of Penn’s WSJ 

and NANC’s WSJ. Table 4 shows the results of 

this experiment, where the baseline of 0 sentences 

thus starts with the 2,040k sentences from the 

combined Penn-NANC WSJ data. 

 

Sentences added 

from LA Times to 

Penn-NANC WSJ 

f-score by 

adding LA 

Times data 

0 69.0 

100k 69.4 

250k 69.9 

500k 70.2 

1,000k 70.4 

2,000k 70.7 

 

Table 4. Results of U-DOP* on section 23 from 

Penn’s WSJ by mixing sentences from the 

combined Penn-NANC WSJ with additions from 

NANC’s LA Times. 

 

As seen in table 4, the f-score continues to increase 

even when adding LA Times data to the large 

combined set of Penn-NANC WSJ sentences. The 

highest f-score is obtained by adding 2,000k 

sentences, resulting in a total training set of 4,040k 

sentences. We believe that our result is quite 

promising for the future of unsupervised parsing.  

In putting our best f-score in table 4 into 

perspective, it should be kept in mind that the gold 

standard trees from Penn-WSJ section 23 were 

binarized. It is well known that such a binarization 

has a negative effect on the f-score. Bod (2006) 

reports that an unbinarized treebank grammar 

achieves an average 72.3% f-score on WSJ 

sentences ≤ 40 words, while the binarized version 

achieves only 64.6% f-score. To compare U-

DOP*’s results against some supervised parsers, 

we additionally evaluated a PCFG treebank 

grammar and the supervised DOP* parser using 

the same test set. For these supervised parsers, we 

employed the standard training set, i.e. Penn’s WSJ 

sections 2-21, but only by taking the p-o-s strings 

as we did for our unsupervised U-DOP* model. 

Table 5 shows the results of this comparison. 

 

Parser f-score 

U-DOP* 70.7 

Binarized treebank PCFG 63.5 

Binarized DOP* 80.3 

 

Table 5. Comparison between the (best version of) 

U-DOP*, the supervised treebank PCFG and the 

supervised DOP* for section 23 of Penn’s WSJ 

 

As seen in table 5, U-DOP* outperforms the 

binarized treebank PCFG on the WSJ test set. 

While a similar result was obtained in Bod (2006), 

the absolute difference between unsupervised 

parsing and the treebank grammar was extremely 

small in Bod (2006): 1.8%, while the difference in 

table 5 is 7.2%, corresponding to 19.7% error 

reduction. Our f-score remains behind the 

supervised version of DOP* but the gap gets 

narrower as more training data is being added to 

U-DOP*.  

 

5   Evaluation on unlabeled corpora in a 

practical application 
 

Our experiments so far have shown that despite the 

addition of large amounts of unlabeled training 

data, U-DOP* is still outperformed by the 

supervised DOP* model when tested on hand-

annotated corpora like the Penn Treebank. Yet it is 

well known that any evaluation on hand-annotated 

corpora unreasonably favors supervised parsers. 

There is thus a quest for designing an evaluation 

scheme that is independent of annotations. One 

way to go would be to compare supervised and 

unsupervised parsers as a syntax-based language 

model in a practical application such as machine 

translation (MT) or speech recognition.  

 In Bod (2007), we compared U-DOP* and 

DOP* in a syntax-based MT system known as 

Data-Oriented Translation or DOT (Poutsma 2000; 

Groves et al. 2004). The DOT model starts with a 

bilingual treebank where each tree pair constitutes 

an example translation and where translationally 

equivalent constituents are linked. Similar to DOP, 
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the DOT model uses all linked subtree pairs from 

the bilingual treebank to form an STSG of linked 

subtrees, which are used to compute the most 

probable translation of a target sentence given a 

source sentence (see Hearne and Way 2006).   

What we did in Bod (2007) is to let both 

DOP* and U-DOP* compute the best trees directly 

for the word strings in the German-English 

Europarl corpus (Koehn 2005), which contains 

about 750,000 sentence pairs. Differently from U-

DOP*, DOP* needed to be trained on annotated 

data, for which we used respectively the Negra and 

the Penn treebank. Of course, it is well-known that 

a supervised parser’s f-score decreases if it is 

transferred to another domain: for example, the 

(non-binarized) WSJ-trained DOP model in Bod 

(2003) decreases from around 91% to 85.5% f-

score if tested on the Brown corpus. Yet, this score 

is still considerably higher than the accuracy 

obtained by the unsupervised U-DOP model, 

which achieves 67.6% unlabeled f-score on Brown 

sentences. Our main question of interest is in how 

far this difference in accuracy on hand-annotated 

corpora carries over when tested in the context of a 

concrete application like MT. This is not a trivial 

question, since U-DOP* learns ‘constituents’ for 

word sequences such as Ich möchte (“I would like 

to”) and There are (Bod 2007), which are usually 

hand-annotated as non-constituents. While U-

DOP* is punished for this ‘incorrect’ prediction if 

evaluated on the Penn Treebank, it may be 

rewarded for this prediction if evaluated in the 

context of machine translation using the Bleu score 

(Papineni et al. 2002). Thus similar to Chiang 

(2005), U-DOP can discover non-syntactic 

phrases, or simply “phrases”, which are typically 

neglected by linguistically syntax-based MT 

systems. At the same time, U-DOP* can also learn 

discontiguous constituents that are neglected by 

phrase-based MT systems (Koehn et al. 2003). 

In our experiments, we used both U-DOP* 

and DOP* to predict the best trees for the German-

English Europarl corpus. Next, we assigned links 

between each two nodes in the respective trees for 

each sentence pair. For a 2,000 sentence test set 

from a different part of the Europarl corpus we 

computed the most probable target sentence (using 

Viterbi n best). The Bleu score was used to 

measure translation accuracy, calculated by the 

NIST script with its default settings. As a baseline 

we compared our results with the publicly 

available phrase-based system Pharaoh (Koehn et 

al. 2003), using the default feature set. Table 6 

shows for each system the Bleu score together with 

a description of the productive units. ‘U-DOT’ 

refers to ‘Unsupervised DOT’ based on U-DOP*, 

while DOT is based on DOP*. 

 

System Productive Units Bleu-score 

U-DOT / U-DOP* Constituents and Phrases 0.280 

DOT / DOP* Constituents only 0.221 

Pharaoh Phrases only 0.251 

 

Table 6. Comparing U-DOP* and DOP* in syntax-

based MT on the German-English Europarl corpus 

against the Pharaoh system. 

 

The table shows that the unsupervised U-DOT 

model outperforms the supervised DOT model 

with 0.059. Using Zhang’s significance tester 

(Zhang et al. 2004), it turns out that this difference 

is statistically significant (p < 0.001). Also the 

difference between U-DOT and the baseline 

Pharaoh is statistically significant (p < 0.008). 

Thus even if supervised parsers like DOP* 

outperform unsupervised parsers like U-DOP* on 

hand-parsed data with >10%, the same supervised 

parser is outperformed by the unsupervised parser 

if tested in an MT application. Evidently, U-DOP’s 

capacity to capture both constituents and phrases 

pays off in a concrete application and shows the 

shortcomings of models that only allow for either 

constituents (such as linguistically syntax-based 

MT) or phrases (such as phrase-based MT). In Bod 

(2007) we also show that U-DOT obtains virtually 

the same Bleu score as Pharaoh after eliminating 

subtrees with discontiguous yields. 

 

6    Conclusion: future of supervised parsing 
 

In this paper we have shown that the accuracy of 

unsupervised parsing under U-DOP* continues to 

grow when enlarging the training set with 

additional data. However, except for the simple 

treebank PCFG, U-DOP* scores worse than 

supervised parsers if evaluated on hand-annotated 

data. At the same time U-DOP* significantly 

outperforms the supervised DOP* if evaluated in a 

practical application like MT. We argued that this 

can be explained by the fact that U-DOP learns 
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both constituents and (non-syntactic) phrases while 

supervised parsers learn constituents only. 

What should we learn from these results? 

We believe that parsing, when separated from a 

task-based application, is mainly an academic 

exercise. If we only want to mimick a treebank or 

implement a linguistically motivated grammar, 

then supervised, grammar-based parsers are 

preferred to unsupervised parsers. But if we want 

to improve a practical application with a syntax-

based language model, then an unsupervised parser 

like U-DOP* might be superior. 

 The problem with most supervised (and 

semi-supervised) parsers is their rigid notion of 

constituent which excludes ‘constituents’ like the 

German Ich möchte or the French Il y a. Instead, it 

has become increasingly clear that the notion of 

constituent is a fluid which may sometimes be in 

agreement with traditional syntax, but which may 

just as well be in opposition to it. Any sequence of 

words can be a unit of combination, including non-

contiguous word sequences like closest X to Y. A 

parser which does not allow for this fluidity may 

be of limited use as a language model. Since 

supervised parsers seem to stick to categorical 

notions of constituent, we believe that in the field 

of syntax-based language models the end of 

supervised parsing has come in sight. 
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