

Computational Linguistics and Chinese Language Processing

Vol. 17, No. 4, December 2012, pp. 1-14 1

© The Association for Computational Linguistics and Chinese Language Processing

Detecting and Correcting Syntactic Errors in

Machine Translation Using Feature-Based

Lexicalized Tree Adjoining Grammars

Wei-Yun Ma∗, and Kathleen McKeown∗

Abstract

Statistical machine translation has made tremendous progress over the past ten
years. The output of even the best systems, however, is often ungrammatical
because of the lack of sufficient linguistic knowledge. Even when systems
incorporate syntax in the translation process, syntactic errors still result. To address
this issue, we present a novel approach for detecting and correcting ungrammatical
translations. In order to simultaneously detect multiple errors and their
corresponding words in a formal framework, we use feature-based lexicalized tree
adjoining grammars, where each lexical item is associated with a syntactic
elementary tree, in which each node is associated with a set of feature-value pairs
to define the lexical item’s syntactic usage. Our syntactic error detection works by
checking the feature values of all lexical items within a sentence using a unification
framework. In order to simultaneously detect multiple error types and track their
corresponding words, we propose a new unification method which allows the
unification procedure to continue when unification fails and also to propagate the
failure information to relevant words. Once error types and their corresponding
words are detected, one is able to correct errors based on a unified consideration of
all related words under the same error types. In this paper, we present some simple
mechanism to handle part of the detected situations. We use our approach to detect
and correct translations of six single statistical machine translation systems. The
results show that most of the corrected translations are improved.

Keywords: Machine Translation, Syntactic Error, Post Editing, Tree Adjoining
Grammar, Unification.

∗ Department of Computer Science, Columbia University, New York, USA

E-mail: {ma, kathy}@cs.columbia.edu

2 Wei-Yun Ma and Kathleen McKeown

1. Introduction

Statistical machine translation has made tremendous progress over the past ten years. The
output of even the best systems, however, is often ungrammatical because of the lack of
sufficient linguistic knowledge. Even when systems incorporate syntax in the translation
process, syntactic errors still result. We have developed a novel, post-editing approach which
features: 1) the use of XTAG grammar, a rule-based grammar developed by linguists, 2) the
ability to simultaneously detect multiple ungrammatical types and their corresponding words
by using unification of feature structures, and 3) the ability to simultaneously correct multiple
ungrammatical types based on the detection information. To date, we have developed the
infrastructure for this approach and demonstrated its utility for agreement errors.

As illustrative examples, consider the following three ungrammatical English sentences:

1. Many young student play basketball.

2. John play basketball and Tom also play basketball.

3. John thinks to play basketball.

In 1 and 2 above, number agreement errors between the subjects and verbs (and
quantifier) cause the sentences to be ungrammatical, while in 3, the infinitive following the
main verb makes it ungrammatical. One could argue that an existing grammar checker could
do the error detection for us, but if we use Microsoft Word 2010 (MS Word)’s grammar
checker (Heidorn, 2000) to check the three sentences, the entire first sentence will be
underlined with green wavy lines without any indication of what should be corrected, while no
errors are detected in 2 and 3.

The grammar we use is based on a feature-based lexicalized tree adjoining grammars
(FB-LTAG) English grammar, named XTAG grammar (XTAG group, 2001). In FB-LTAG,
each lexical item is associated with a syntactic elementary tree, in which each node is
associated with a set of feature-value pairs, called Attribute Value Matrices (AVMs). AVMs
define the lexical item’s syntactic usage. Our syntactic error detection works by checking the
AVM values of all lexical items within a sentence using a unification framework. Thus, we
use the feature structures in the AVMs to detect the error type and corresponding words. In
order to simultaneously detect multiple error types and track their corresponding words, we
propose a new unification method which allows the unification procedure to continue when
unification fails and also to propagate the failure information to relevant words. We call the
modified unification a fail propagation unification.

 Detecting and Correcting Syntactic Errors in 3

Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars

2. Related Work

Grammar checking is mostly used in word processors as a writing aid. Three methods are
widely used for grammar checking given a sentence: statistic-based checking, rule-based
checking and syntax-based checking. In statistic-based checking, POS tag sequences (Atwell
& Elliot, 1987) or an N-gram language model (Alam et al., 2006; Wu et al., 2006) is trained
from a training corpus and uncommon sequences in the training corpus are considered
incorrect. Huang et al. (2010) extracted erroneous and correct patterns of consecutive words
from the data of an online-editing diary website. In rule-based checking, a set of hand crafted
rules out of words, POS tags and chucks (Naber, 2003) or parsing results (Heidorn, 2000) are
designed to detect errors. In syntax-based checking, Jensen et al. (1993) utilize a parsing
procedure to detect errors: each sentence must be syntactically parsed; a sentence is
considered incorrect if parsing does not succeed.

Focusing on machine translation’s grammar checking, Stymne and Ahrenberg (2010)
utilized an existing rule-based Swedish grammar checker, as a post-processing tool for their
English-Swedish translation system. They tried to fix the ungrammatical translation parts by
applying the grammar checker’s correction suggestions. In contrast of their using an existing
grammar checker, we developed our own novel grammar checker for translated English in
order to better controlling the quality of error detection, error types, and the directions of error
correction in translation context.

Our approach is a mix of rule-based checking and syntax-based checking: The XTAG
English grammar is designed by linguists while the detecting procedure is based on syntactic
operations which dynamically reference the grammar. The work could be regarded as an
extension of (Ma & McKeown, 2011), in which grammatical error detection based on XTAG
English grammar is carried out to filter out ungrammatical combined translations in their
framework of system combination for machine translation. In contrast of (Ma & McKeown,
2011), our approach is not only capable to detect grammatical errors, but also has the
capability of identifying error types and errors’ causes, and correcting certain cases of errors.

3. Background

We briefly introduce the FB-LTAG formalism and XTAG grammar in this section.

3.1 Feature-Based Lexicalized Tree Adjoining Grammars
FB-LTAG is based on tree adjoining grammar (TAG) proposed in (Joshi et al., 1975). The
TAG formalism is a formal tree rewriting system, which consists of a set of elementary trees,
corresponding to minimal linguistic structures that localize the dependencies, such as
specifying the predicate-argument structure of a lexeme. Elementary trees are divided into

4 Wei-Yun Ma and Kathleen McKeown

initial and auxiliary trees. Initial trees are those for which all non-terminal nodes on the
frontier are substitutable, marked with “↓＂. Auxiliary trees are defined as initial trees,
except that exactly one frontier, nonterminal node must be a foot node, marked with “*”, with
the same label with the root node. Two operations - substitution and adjunction are provided
in TAG to adjoin elementary trees.

FB-LTAG has two important characteristics: First, it is a lexicalized TAG (Schabes,
1988). Thus each elementary tree is associated with at least one lexical item. Second, it is a
feature-based lexicalized TAG (Vijay-Shanker & Joshi, 1988). Each node in an elementary
tree is constrained by two sets of feature-value pairs (two AVMs). One AVM (top AVM)
defines the relation of the node to its super-tree, and the other AVM (bottom AVM) defines
the relation of the node to its descendants. We use Fig1 and Fig21 to illustrate the substitution
and adjunction operations with the unification framework respectively.

Y
tr
br X

Y↓
t

[]

X

Y
t U tr

br

Y
tr
br X

Y↓
t

[]

X

Y
t U tr

br

tf
bf

t
b

Y
tr
br

X X

Y
t U tr

br

Y*

Y

Y
tf

b U bf

tf
bf

t
b

Y
tr
br

X X

Y
t U tr

br

Y*

Y

Y
tf

b U bf

Figure 1. Substitution of FB-LTAG Figure 2. Adjunction of FB-LTAG

In Fig 1, we can see that the feature structure of a new node created by substitution
inherits the union of the features of the original nodes. The top feature of the new node is the
union of the top features of the two original nodes, while the bottom feature of the new node is
simply the bottom feature of the top node of the substituting tree. In Fig 2, we can see that the
node being adjoined into splits, and its top feature unifies with the top feature of the root
adjoining node, while its bottom feature unifies with the bottom feature of the foot adjoining
node.

3.2 XTAG English Grammar
XTAG English grammar (XTAG group, 2001) is designed using the FB-LTAG formalism,
released2 by UPENN in 2001. The range of syntactic phenomena that can be handled is large.
It defines 57 major elementary trees (tree families) and 50 feature types, such as agreement,
case, mode (mood), tense, passive, etc, for its 20027 lexical entries. Each lexical entry is

1 The two figures and their descriptions are based on the XTAG technical report (XTAG group, 2001)
2 http://www.cis.upenn.edu/~xtag/gramrelease.html

 Detecting and Correcting Syntactic Errors in 5

Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars

associated with at least one elementary tree, and each elementary tree is associated with at
least one AVM. For example, Fig 3 shows the simplified elementary tree of “saw”.
“<number>” indicates the same feature value. For example, the feature – “arg_3rdsing” in
bottom AVM of root S should have the same feature value of “arg_3rdsing” in top AVM of
VP. In our implementation, it is coded using the same object in an object-oriented
programming language. Since the feature value of mode in top AVM of “S↓” is “base”, we
know that “saw” can only be followed by a sentence with a base verb. For example, “He saw
me do that” shown in Fig 4(a) is a grammatical sentence while “He saw me to do that” shown
in Fig 4(b) is an ungrammatical sentence because “saw” is not allowed to be followed by an
infinitive sentence.

S

NP↓ VP

saw S↓
⎥
⎦

⎤
⎢
⎣

⎡
><

><
2:mode

1:gagr_3rdsin

⎥
⎦

⎤
⎢
⎣

⎡ −+
ind:mode

/:gagr_3rdsin []
[]base:mode

⎥
⎦

⎤
⎢
⎣

⎡
><

><
2:mode

1:gagr_3rdsin

⎥
⎦

⎤
⎢
⎣

⎡
><

><
4:mode

3:gagr_3rdsin

⎥
⎦

⎤
⎢
⎣

⎡
><

><
4:mode

3:gagr_3rdsin
[]

⎥
⎦

⎤
⎢
⎣

⎡
><

><
4:mode

3:gagr_3rdsin

[]

Figure 3. Elementary tree for “saw”

Figure 4(a). Grammatical sentence of “saw” (b) Ungrammatical sentence of “saw”

6 Wei-Yun Ma and Kathleen McKeown

But if we look at the simplified elementary tree of “asked” shown in Fig 5, we can find
that “asked” can only be followed by a sentence with an infinitive sentence (inf). For example,
“He asked me to do that” shown in Fig 6(a) is a grammatical sentence while “He asked me do
that” shown in Fig 6(b) is an ungrammatical sentence because “asked” is not allowed to be
followed by a sentence with a base verb.

S

NP↓ VP

asked S↓⎥
⎦

⎤
⎢
⎣

⎡
><

><
2:mode

1:gagr_3rdsin

⎥
⎦

⎤
⎢
⎣

⎡ −+
ind:mode

/:gagr_3rdsin
[]
[]inf:mode

⎥
⎦

⎤
⎢
⎣

⎡
><

><
2:mode

1:gagr_3rdsin

⎥
⎦

⎤
⎢
⎣

⎡
><

><
4:mode

3:gagr_3rdsin⎥
⎦

⎤
⎢
⎣

⎡
><

><
4:mode

3:gagr_3rdsin
[]

⎥
⎦

⎤
⎢
⎣

⎡
><

><
4:mode

3:gagr_3rdsin

[]

NP↓[]
[]

Figure 5. Elementary tree for “asked”

Figure 6(a). Grammatical sentence of “asked”(b) Ungrammatical sentence of “asked”

 Detecting and Correcting Syntactic Errors in 7

Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars

4. Syntactic Error Detection

Our procedure for syntactic error detection includes 1. decomposing each sentence hypothesis
parse tree into elementary trees, 2. associating each elementary tree with AVMs through
look-up in the XTAG grammar, and 3. reconstructing the original parse tree out of the
elementary trees using substitution and adjunction operations along with AVM unifications.

When unification of the AVMs fails, a grammatical error has been detected and its error
type is also identified by the corresponding feature in the AVM. In order to simultaneously
detect multiple error types and their corresponding words, we adjust the traditional unification
definition to allow the unification procedure to continue after an AVM failure occurs and also
propagate the failure information to relevant words. We call the modified unification fail
propagation unification.

Each step is illustrated in this section.

4.1 Decomposing to Elementary trees
Given a translation sentence, we first get its syntactic parse using the Stanford parser (Klein &
Manning, 2003) and then decompose the parse to multiple elementary trees by using an
elementary tree extractor, a modification of (Chen & Vijay-Shanker, 2000). After that, each
lexical item in the sentence will be assigned one elementary tree. Taking the sentence –
“Many young student play basketball” as an example, its parse and extracted elementary trees
are shown in Fig 7 and Fig 8, respectively. In Fig 8, the arrows represent relations among the
elementary trees and the relations are either substitution or adjunction. In this example, the
two upper arrows are substitutions and the two bottom arrows are adjunctions.

Figure 7. Parse of “Many young student play basketball”

8 Wei-Yun Ma and Kathleen McKeown

NP

many NP*

NP

young NP*

NP

student

S

NP1↓ VP

play NP2↓

NP

basketball

NP

many NP*

NP

young NP*

NP

student

S

NP1↓ VP

play NP2↓

NP

basketball

Figure 8. The elementary trees of ‘Many young student play basketball” and their
relations

4.2 Associating AVMs to Elementary trees
Each elementary tree is associated with AVMs through look-up in the XTAG English
grammar. Using the same example of the sentence – “Many young student play basketball”, its
elementary trees, relations and one set of AVMs (simplified version) are shown in Fig 9. To
keep tracing what word(s) that a feature value relates to for the next step of reconstruction, we
design a new data structure of word set, named “word trace”. It is represented by “{…}” and
attached with each feature value except the value of “null”, such as “agr_num:pl{play}” in Fig
9.

NP

many NP*
[]}pl{:agr_num many

[]

[] []

NP

young NP*

[]><1:agr_num
[]

[] []

[]

[]><1:agr_num

NP

student
[]>< 2:agr_num

[]

[]>< 2:agr_num

⎥
⎦

⎤
⎢
⎣

⎡
}ind{:mode
}pl{:agr_num

play
play

S

NP1↓ VP

play NP2↓⎥
⎦

⎤
⎢
⎣

⎡
><
><

4:mode
3:agr_num

⎥
⎦

⎤
⎢
⎣

⎡
><
><

4:mode
3:agr_num

[]
[]

⎥
⎦

⎤
⎢
⎣

⎡
><
><

6:mode
5:agr_num

[]

⎥
⎦

⎤
⎢
⎣

⎡
><
><

6:mode
5:agr_num

[]
[]>< 5:agr_num

NP

basketball
[]>< 7:agr_num

[]

[]}sing{:agr_num basketball

[]}sing{:agr_num student

[]}pl{:agr_num many
[]}pl{:agr_num many

[]>< 7:agr_num

NP

many NP*
[]}pl{:agr_num many

[]

[] []

NP

young NP*

[]><1:agr_num
[]

[] []

[]

[]><1:agr_num

NP

student
[]>< 2:agr_num

[]

[]>< 2:agr_num

⎥
⎦

⎤
⎢
⎣

⎡
}ind{:mode
}pl{:agr_num

play
play

S

NP1↓ VP

play NP2↓⎥
⎦

⎤
⎢
⎣

⎡
><
><

4:mode
3:agr_num

⎥
⎦

⎤
⎢
⎣

⎡
><
><

4:mode
3:agr_num

[]
[]

⎥
⎦

⎤
⎢
⎣

⎡
><
><

6:mode
5:agr_num

[]

⎥
⎦

⎤
⎢
⎣

⎡
><
><

6:mode
5:agr_num

[]
[]>< 5:agr_num

NP

basketball
[]>< 7:agr_num

[]

[]}sing{:agr_num basketball

[]}sing{:agr_num student

[]}pl{:agr_num many
[]}pl{:agr_num many

[]>< 7:agr_num

Figure 9. The elementary trees of ‘Many young student play basketball”, their

relations and AVMs (simplified version).

 Detecting and Correcting Syntactic Errors in 9

Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars

When we loop up the XTAG English Grammar, sometimes one elementary tree could
have multiple possible AVM associations. For example, for the verb “are”, one of its
elementary trees is associated with three different AVMs, one for 2nd person singular, one for
2nd person plural, and one for 3rd person plural. Unless we can reference the context for “are”
(e.g., its subject), we are not sure which AVM should be used in the reconstruction. So we
postpone this decision until later in the reconstruction process. At this point, we associate each
elementary tree with its all possible AVMs defined in the XTAG English Grammar.

4.3 Reconstruction Framework
Once the elementary trees are associated with AVMs, they will be used to reconstruct the
original parse tree through substitution and adjunction operations which are indicated during
the process of decomposing a parse tree to elementary trees. The reconstruction process is able
to decide if there is any conflict with the AVMs values. When a conflict occurs, it will cause
an AVM unification failure, referring to a certain grammatical error.

We already illustrated how substitution and adjunctions along with AVM unifications
work in section 3.1; one implementation complement is, once the original parse is constructed,
it is necessary to unify every node’s top and bottom AVMs in the constructed tree. This is
because, in XTAG grammar, most AVM values are assigned in the anchor nodes of
elementary trees and were not unified with others yet. This end step will assure that all related
AVMs are unified.

As we stated in Section 4.2, sometimes we are not sure which AVM association for one
elementary tree should be used in the reconstruction. So our strategy is to carry out
reconstruction process for all sets out of every elementary tree’s each possible AVM
association. We choose the set that causes the minimal grammatical errors as the detection
result.

4.4 Fail Propagation Unification
Our system detects grammatical errors by identifying unification fails. However, traditional
unification does not define how to proceed after fails occur, and also lacks an appropriate
structure to record error traces. So we extend it as follows:

10 Wei-Yun Ma and Kathleen McKeown

[f=x] {t1} U [f=x] {t2} => [f=x] {t1} union {t2} (1)
[f=x] {t1} U [f=null] => [f=x] {t1} (2)
[f=null] U [f=null] => [f=null] (3)
[f=x] {t1} U [f=y] {t2} => [f=fail] {t1} union {t2} (4)
[f=fail] {t1} U [f=null] => [f=fail] {t1} (5)
[f=fail] {t1} U [f=y] {t2} => [f=fail] {t1} union {t2} (6)
[f=fail] {t1} U [f=fail] {t2} => [f=fail] {t1} union {t2} (7)

Where f is a feature type, such as “arg_num”; x and y are two different feature values; U
represents the “unify” operation; t1 and t2 are word traces introduced in section 4.2. “fail” is
also defined as a kind of value.

(1)~(4) are actually traditional unification definitions except that the word trace union
operations and the characteristic of fail have been added. When a unification failure occurs in
(4), the unification procedure does not halt but only assigns f a value of fail and proceeds.
(5)~(7) propagate the fail value to the related words’ AVMs. We use the following two
unifications occurring in order in Fig 9’s adjoining operations to illustrate the procedure of fail
propagation unification:

[arg_num=pl]{many} U [arg_num=sing]{student}
=> [arg_num =fail]{many,student}

[arg_num=fail]{many, student} U [arg_num=pl]{play}
=> [arg_num =fail]{many,student,play}

By the feature value of “fail” and the word trace, we identify that there is an agr_num error
related to three words – “many”, “student” and “play”.

All AVMs in Fig 9 after unifications along with reconstruction operations are shown in
Fig 10.

 Detecting and Correcting Syntactic Errors in 11

Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars

NP

A
young

NP[]

S

NP

D
Many

NN
student

VP

V
play

NP
basketball

[]}{sing arg_num basketball=

[]

[]},,{fail arg_num playstudentmany=

[]}{sing arg_num basketball=

[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

NP

A
young

NP[]

S

NP

D
Many

NN
student

VP

V
play

NP
basketball

[]}{sing arg_num basketball=

[]

[]},,{fail arg_num playstudentmany=

[]}{sing arg_num basketball=

[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

[]},,{fail arg_num playstudentmany=
[]},,{fail arg_num playstudentmany=

Figure 10. Reconstructed parse of the sentence- “Many young student play
basketball” after unifications with fail propagation

5. Syntactic Error Correction

Once error types and their corresponding words are detected, one is able to correct errors
based on an unified consideration of all related words under the same error types.

Given a set of related ungrammatical words, there are two tasks for the correction
process: which words should be corrected and how to correct them? To date, we have
developed the following simple mechanism to handle the agreement problem: First, the words
whose feature value is in the minority will be selected to be corrected. We call this
feature-value voting. Take the above example: “student” should be corrected since its
agr_num is “sing” and the other two words’ agr_num is “plural”. When facing cases of equal
votes, we tend to correct nouns if there are nouns.

Once the corrected words are selected, we replace them with their variations but with the
same elementary tree type, such as replacing the above “student” with “students.”

6. Experiment

Among the 57 major elementary trees and 50 feature types that XTAG defines, we have
implemented 26 major elementary trees and 4 feature types – agr_pers, arg_num, arg_3rdsing
and several cases of mode/mood at this point (The first three belong to agreement features.)
We apply our syntactic error detection and correction on 422 translation sentences of six
Chinese-English machine translation systems A~F from the DARPA Global Autonomous
Language Exploitation (GALE) 2008 evaluation. Every source sentence is provided along

12 Wei-Yun Ma and Kathleen McKeown

with four target references. The six systems are described in Table 1, and the results of
syntactic error detection for agreement and mode errors and correction for agreement errors
are shown in Table 2.

Table 1. Six MT systems

 System name Approach

A NRC phrase-based SMT

B RWTH-PBT phrase-based SMT

C RWTH-PBT-AML phrase-based SMT + source reordering

D RWTH-PBT-JX phrase-based SMT + Chinese word segmentation

E RWTH-PBT-SH phrase-based SMT + source reordering + rescoring

F SRI-HPBT hierarchical phrase-based SMT

Table 2. The results of syntactic error detection and correction

 Detected
sentences
(arg error +
mode error)

Corrected
sentences
(arg error)

Bleu for all
sentences
(before)

Bleu for all
sentences
(after)

Bleu for
corrected
sentences
(before)

Bleu for
corrected
sentences
(after)

A 23 9 32.99 32.99 26.75 27.80

B 23 14 27.95 27.97 22.08 23.03

C 18 7 34.40 34.41 32.13 32.67

D 25 14 32.96 32.99 31.49 32.17

E 30 11 34.64 34.68 29.31 30.61

F 18 8 34.13 34.14 29.15 28.83

From Table 2, even the overall Bleu score for all sentences is not significantly improved,
but if we take a close look at those corrected sentences for agreement errors and calculate their
Bleu scores, we can see the corrected translations are improved for every system except for
one (F), which shows the effectiveness and potential of our approach.

7. Conclusion

This paper presents a new FB-LTAG-based syntactic error detection and correction
mechanism along with a novel AVM unification method to simultaneously detect multiple
ungrammatical types and their corresponding words for machine translation. The mechanism
can also be applied to other languages if the grammar is well defined in the FB-LTAG
structure of certain languages.

 Detecting and Correcting Syntactic Errors in 13

Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars

While the basic design philosophy and algorithm are fully described in this paper, we are
continuing to implement more elementary trees and feature types defined in the XTAG
grammar, and we are extending our correction mechanism as our future work.

Acknowledgments
We would like to thank the anonymous reviewers for their helpful comments. This work is
supported by the National Science Foundation via Grant No. 0910778 entitled “Richer
Representations for Machine Translation”. All views expressed in this paper are those of the
authors and do not necessarily represent the view of the National Science Foundation.

Reference
Alam, M. J., UzZaman, N. & Khan, M. (2006). N-gram based Statistical Grammar Checker

for Bangla and English. In Proceedings of ninth International Conference on Computer
and Information Technology (ICCIT 2006), Dhaka, Bangladesh.

Atwell, E. S. & Elliot, S. (1987). Dealing with Ill-formed English Text. In: R. Garside, G.
Leech and G. Sampson (Eds.) The Computational Analysis of English: A Corpus-based
Approach. London: Longman.

Chen, J. & Vijay-Shanker, K. (2000). Automated extraction of TAGs from the Penn treebank.
In Proceedings of the Sixth International Workshop on Parsing Technologies.

Heidorn, G. E. (2000). Intelligent writing assistance. In R. Dale, H. Moisl and H. Somers
(eds.), A Handbook of Natural Language Processing: Techniques and Applications for
the Processing of Language as Text. Marcel Dekker, New York. 181-207.

Huang, A., Kuo, T. T., Lai, Y. C. & Lin, S. D. (2010). Identifying Correction Rules for Auto
Editing. In Proceedings of the 22nd Conference on Computational Linguistics and
Speech Processing (ROCLING), 251-265.

Jensen, K., Heidorn, G. E. & Richardson, S. D. (Eds.) (1993). Natural Language Processing:
The PLNLP Approach, Kluwer Academic Publishers.

Joshi, A. K., Levy, L. S. & Takahashi M. (1975). Tree Adjunct Grammars. Journal of
Computer and System Science, 10, 136-163.

Klein, D. & Manning, C. D. (2003). Accurate Unlexicalized Parsing. In Proceedings of the
41st Meeting of the Association for Computational Linguistics, 423-430.

Ma, W. Y. & McKeown, K. (2011). System Combination for Machine Translation Based on
Text-to-Text Generation. In Proceedings of Machine Translation Summit XIII. Xiamen,
China.

Naber, D. (2003). A Rule-Based Style and Grammar Checker. Diploma Thesis. University of
Bielefeld, Germany.

14 Wei-Yun Ma and Kathleen McKeown

Schabes, Y., Abeille, A. & Joshi, A. K. (1988). Parsing strategies with 'lexicalized' grammars:
Application to tree adjoining grammars. In Proceeding of 12th International Conference
on Computational Linguistics (COLING'88), Budapest, Hungary.

Stymne, S. & Ahrenberg, L. (2010). Using a Grammar Checker for Evaluation and
Postprocessing of Statistical Machine Translation. In Proceedings of International
Conference on Language Resources and Evaluation (LREC).

Vijay-Shanker, K. & Joshi, A. K. (1988). Feature structure based tree adjoining grammar, In
Proceeding of 12th International Conference on Computational Linguistics
(COLING'88), 714-719.

Wu, S. H., Su, C. Y., Jiang, T. J. & Hsu, W. L. (2006). An Evaluation of Adopting
Language Model as the Checker of Preposition Usage. In Proceedings of the Conference
on Computational Linguistics and Speech Processing (ROCLING).

XTAG Group. (2001). A Lexicalized Tree Adjoining Grammar for English. Technical Report
IRCS 01-03, University of Pennsylvania.

