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Abstract 

In recent years, the hierarchical taxonomy integration problem has obtained 
considerable attention in many research studies. Many types of implicit information 
embedded in the source taxonomy are explored to improve the integration 
performance. The semantic information embedded in the source taxonomy, 
however, has not been discussed in previous research. In this paper, an enhanced 
integration approach called SFE (Semantic Feature Expansion) is proposed to 
exploit the semantic information of the category-specific terms. From our 
experiments on two hierarchical Web taxonomies, the results show that the 
integration performance can be further improved with the SFE scheme. 
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1. Introduction 

In many daily information processing tasks, merging two classified information sources to 
create a larger taxonomy with abundant information is in great demand. For example, an 
e-commerce service provider may merge various catalogs from other vendors into its local 
catalog to provide customers with versatile contents. A Web user may also want to integrate 
different blog catalogs from Web 2.0 portals to organize a personal information management 
library. In these examples, people may need an efficient automatic integration approach to 
process the huge amount of information. 

In recent years, the taxonomy integration problem has obtained much attention in many 
research studies (e.g. Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; 
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Zhang & Lee, 2004a; Zhang & Lee, 2004b; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 
2005; Wu, Tsai, & Hsu, 2005; Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007; Cheng & 
Wei, 2008; Wu, Tsai, Lee, & Hsu, 2008). As pointed out in these studies, the integration work 
is more subtle than traditional classification work because the integration accuracy can be 
further improved with different kinds of implicit information embedded in the source or 
destination taxonomy. A taxonomy, or catalog, usually contains a set of objects divided into 
several categories according to some classified characteristics. In the taxonomy integration 
problem, the objects in a taxonomy, the source taxonomy S, are integrated into another 
taxonomy, the destination taxonomy D. As shown in earlier research, this problem is more 
than a traditional document classification problem because different kinds of implicit 
information in the source taxonomy are explored to greatly help integrate source documents 
into the destination taxonomy. For example, a Naive Bayes classification approach (Agrawal 
& Srikan, 2001) with the classification relationship information implicitly existing in the 
source catalog can achieve integration accuracy improvement. Several SVM (Support Vector 
Machines) approaches (Chen, Ho, & Yang, 2005) can also have similar improvement with 
other implicit source information. 

The implicit source information studied in previous enhanced approaches generally 
includes the following features: (1) co-occurrence relationships of source objects (Agrawal & 
Srikan, 2001; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2005), (2) latent 
source-destination mappings (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004b; 
Cheng & Wei, 2008), (3) inter-category centroid information (Zhang & Lee, 2004a), and (4) 
parent-children relationships in the source hierarchy (Wu, Tsai, & Hsu, 2005; Ho, Chen, & 
Yang, 2006; Wu, Tsai, Lee, & Hsu, 2008). In our survey, however, the semantic information 
embedded in the source taxonomy has not been discussed. Since different applications have 
shown that the semantic information can benefit the task performance (Krikos, Stamou, 
Kokosis, Ntoulas, & Christodoulakis, 2005; Hsu, Tsai, & Chen, 2006), such information 
should be able to achieve similar improvements for taxonomy integration. In addition, we 
further study the hierarchical taxonomy integration problem because many taxonomies, such 
as Web catalogs, existing in the real world are hierarchical. 

In this paper, we propose an enhanced integration approach by exploiting the implicit 
semantic information in the source taxonomy with a semantic feature expansion (SFE) 
mechanism. The basic idea behind SFE is that some semantically related terms can be found to 
represent a source category, and these representative terms can be further viewed as the 
additional common category labels for all documents in the category. Augmented with these 
additional semantic category labels, the source documents should be more precisely integrated 
into the correct destination category. The semantic expanding scheme, however, needs to 
consider the polysemy situation to avoid introducing many topic-irrelevant features. Therefore, 
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SFE employs an efficient correlation coefficient method to select representative 
semantically-related terms. 

To study the effectiveness of SFE, we implemented it based on a hierarchical taxonomy 
integration approach (EHCI) proposed in Ho et al. (2006) and Chen et al. (2007) with the 
Maximum Entropy (ME) model classifiers. We have conducted experiments with real-world 
Web catalogs from Yahoo! and Google, and measured the integration performance with 
precision, recall, and F1 measures. The results show that the SFE mechanism consistently can 
improve the integration performance of the EHCI approach. 

The rest of the paper is organized as follows. Section 2 describes the problem definition 
and Section 3 reviews previous related research. Section 4 elaborates the proposed semantic 
feature expansion approach and the hierarchical integration process. Section 5 presents the 
experimental results, and discusses the factors that influence the experiments. Section 6 
concludes the paper and discusses some future directions of our work. 

2. Problem Statement 

Following the definitions in Ho et al. (2006), we assume that two homogeneous hierarchical 
taxonomies, the source taxonomy S and the destination taxonomy D, participate in the 
integration process. The taxonomies are said to be homogeneous if the topics of the two 
taxonomies are similar. In addition, the taxonomies under consideration are required to 
overlap with a significant number of common documents. For example, in our experimental 
data sets, 20.6% of the total documents (436/2117) in the Autos directory of Yahoo! also 
appear in the corresponding Google directory. 

The source taxonomy S has a set of m categories, or directories, S1, S2, …, Sm. These 
categories may have subcategories, such as S1,1 and S2,1. Similarly, the destination catalog D 
has a set of n categories. The integration process is to directly decide the destination category 
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Figure 1. A typical integration scenario for two hierarchical taxonomies.  
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in D for each document dx in S. In this study, we allow that dx can be integrated into multiple 
destination categories because a document commonly appears in several different directories 
in a real-world taxonomy. 

Figure 1 depicts a typical scenario of the integration process on two hierarchical 
taxonomies. For illustration, we assume that the source category S1,1 has a significant number 
of overlapped documents with the destination categories D1,1 and D2,2. This means that the 
documents appearing in S1,1 should have similar descriptive information as the documents in 
D1,1 and D2,2. Therefore, a non-overlapped document 1

xd  in category S1,1 should be 
intensively integrated into both two destination categories D1,1 and D2,2. 

3. Previous Work 

3.1 Integration Techniques 
In previous studies, different sorts of implicit information embedded in the source taxonomy 
are explored to help the integration process. These implicit source features can be mainly 
categorized into four types: (1) co-occurrence relationships of source objects, (2) latent 
source-destination mappings, (3) inter-category centroid information, and (4) parent-children 
relationships in the source hierarchy. The co-occurrence relationships of source objects are 
first studied to enhance a Naive Bayes classifier based on the concept that if two documents 
are in the same source category, they are more likely to be in the same destination category 
(Agrawal & Srikan, 2001). The enhanced Naïve Bayes classifier (ENB) is shown to have more 
than 14% accuracy improvement on average. The work in Chen et al. (2005) also has the 
similar concept in its iterative pseudo relevance feedback approach. As reported in Chen et al. 
(2005), the enhanced SVM classifiers consistently achieve improvement. 

Latent source-destination mappings are explored in Sarawagi et al. (2003) and Zhang and 
Lee (2004b). The cross-training (CT) approach (Sarawagi, Chakrabarti, & Godbole, 2003) 
extracts the mappings from the first semi-supervised classification phase using the source 
documents as the training sets. Then, the destination documents are augmented with the latent 
mappings for the second semi-supervised classification phase to complete the integration. The 
co-bootstrapping (CB) approach (Zhang & Lee, 2004b) exploits the predicted 
source-destination mappings to repeatedly refine the classifiers. The experimental results 
show that both CT and CB outperform ENB (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang 
& Lee, 2004b). 

In Zhang and Lee (2004a), a cluster shrinkage (CS) approach, in which the feature 
weights of all objects in a document category are shrunk toward the category centroid, is 
proposed. Therefore, the cluster-binding relationships among all documents of a category are 
strengthened. The experimental results show that the CS-enhanced Transductive SVMs give 
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significant improvement to the original T-SVMs and consistently outperform ENB. 

In Wu et al. (2005) and Ho et al. (2006), the parent-children information embedded in 
hierarchical taxonomies is intentionally extracted. Based on the hierarchical characteristics, 
Wu et al. extend the CS and CB approach to improve the integration performance. In Ho et al. 
(2006), an enhanced approach called EHCI is proposed to further extract the hierarchical 
relationships as a conceptual thesaurus. Their results show that the implicit hierarchical 
information can be effectively used to boost the accuracy performance. 

The semantic information embedded in the source taxonomy has not been discussed in 
past studies. This observation motivates us to study the embedded taxonomical semantic 
information and its effectiveness. 

3.2 Overview of the Maximum Entropy Model Classifiers 
In our proposed SFE scheme, we use the Maximum Entropy (ME) model classifiers to 
perform the main integration task. Here, we provide a brief overview of the ME model as the 
background of our work. More details can be found in Berger et al. (1996). In ME, the entropy 

( )H p  for a conditional distribution ( | )p y x  is used to measure the uniformity of ( | )p y x , 
where y is an instance of all outcomes Y in a random process and x denotes a contextual 
environment of the contextual space X, or the history space. To express the relationship 
between x and y, we can have an indicator function ( , )f x y  (usually known as feature 
function) defined as: 

1           if ( ) has the defined relationship
( , )

0 else                                       
x, y

f x y ⎧
= ⎨
⎩

  (1) 

The entropy ( )H p  is defined by: 
( ) ( | ) log ( | )

x X
H p p y x p y x

∈
= − ∑   (2) 

The Maximum Entropy Principle is to find a probability model *p C∈  such that: 
* arg max ( )

p C
p H p

∈
=  (3) 

where C is a set of allowed conditional probabilities. There are, however, two constraints: 
{ } { }p pE f E f=  (4) 

and 
( | ) 1

y Y
p y x

∈
=∑  (5) 

where { }pE f  is the expected value of f with the empirical distribution ( , )p x y as defined in 
Equation 6 and { }pE f  is the observed expectation of f with the observed distribution ( )p x  
from the training data as defined in Equation 7. 
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,
{ } ( , ) ( , )p

x y
E f p x y f x y≡ ∑  (6) 

,
{ } ( ) ( | ) ( , )p

x y
E f p x p y x f x y≡ ∑  (7) 

As indicated in [10], the conditional probability ( | )p y x  can be computed by: 

1( | ) exp ( , )
( ) i i

i
p y x f x y

z x
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (8) 

where iλ  is the Lagrange multiplier for feature if , and ( )z x  is defined as 

( ) exp ( , )i i
y i

z x f x yλ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑ ∑  (9) 

With the improved iterative scaling (IIS) algorithm (Darroch & Ratcliff, 1972; Berger, Pietra, 
& Pietra, 1996), the iλ  values can be estimated. Then, the classifiers are built according to 
the ME model and the training data. 

3.3 Hierarchical Taxonomy Integration 
Previous integration research for hierarchal taxonomy integration mainly can be classified into 
two categories: clustering-based (Cheng & Wei, 2008) and classification-based (Ho, Chen, & 
Yang, 2006; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2007). The clustering-based 
approach has the advantage in handling manifold taxonomies which may even have small 
overlaps and in performing integration without a priori training work. Therefore, the 
application of the clustering-based approach is much more general. The effectiveness of the 
clustering-based approach, however, depends on the clustering parameters. For inexperienced 
users, finding optimal clustering parameters will be very challenging. 

Although the classification-based approach is more appropriate for handling taxonomies 
which have significant overlaps, it cannot handle the subtle relationships embedded in 
categories. For example, CatRelate uses five types of hierarchical relationships in a taxonomy 
to help catalog integration (Zhu, Yang, & Lam, 2004), and an integration scheme called EHCI 
uses a hierarchical weighting mechanism to strengthen the integration effectiveness (Ho, Chen, 
& Yang, 2006; Chen, Ho, & Yang, 2007). Nonetheless, CatRelate only discusses the 
hierarchical relationships on a category basis with a set of simple rules. It may suffer from 
complicated hierarchical relationships when handling large taxonomies. In contrast, EHCI’s 
hierarchical weighting mechanism considers the influences of category labels of more 
comprehensive neighboring levels on a document basis. The experimental results reported in 
Ho et al. (2006) and Chen et al. (2007) also show that EHCI is effective for handling large 
taxonomies. Therefore, we use EHCI as our baseline to study the effectiveness of the proposed 
SFE approach. The following gives a brief overview for EHCI. 
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In EHCI, the conceptual relationships (category labels) are first extracted from the 
hierarchical taxonomy structure as a thesaurus (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 
2007). Then, the features of each document are extended with the thesaurus by adding the 
weighted label features. A weighting formula is designed to control the impact of the semantic 
concepts of each hierarchical level. Equation 10 calculates the EHCI feature weight ,

e
x df of 

each term x in document d, where Li is the relevant label weight assigned as 1 2i  with an 
i-level depth, ,x df is the original weight, and λ  is used to control the magnitude relation. 
The weight ,x df  is assigned by x iTF TF∑ , where xTF is the term frequency of x, and i 
denotes the number of the stemmed terms in each document. The label weight Li of each 
thesaurus is exponentially decreased and accumulated based on the increased levels. 

, ,
0

(1 )e x
x d x dn

ii

L
f f

L
λ λ

=
= × + − ×

∑
 (10) 

Table 1 shows the label weights of different levels, where L0 is the document level, L1 is 
one level upper, and so on to Ln for n levels upper. The label weighting scheme uses a 
power-law distribution to avoid over-emphasis on the least related hierarchical levels. To 
build the enhanced classifiers for destination categories, the same enhancement on hierarchical 
label information is also applied to the destination taxonomy to strengthen the discriminative 
power of the classifiers. 

Although the EHCI approach employs only the embedded hierarchical information with a 
simple power-law distribution, the integration accuracy performance can be effectively 
improved. As reported in Chen et al. (2007), the EHCI approach outperforms a 
straightforward classification scheme that does not employ any embedded information to help 
hierarchical taxonomy integration. 

 

 

Table 1. The label weights assigned for different levels. 

Hierarchical Level Label Weight 

Document Level (L0) 1/20 

One Level Upper (L1) 1/21 

Two Levels Upper (L2) 1/22 

… … 

n Levels Upper (Ln) 1/2n 
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4. Hierarchical Taxonomy Integration with Semantic Feature Expansion 

The proposed semantic feature expansion (SFE) approach is to use extracted representative 
terms of a category as the implicit semantic information to help the corresponding integration 
process. In the following, the overall processing flow of SFE is presented first. Related 
approaches incorporated in the integration process are then described. Finally, the SFE 
approach is elaborated. 

4.1 Integration Process 
To apply SFE to hierarchical taxonomies, a hierarchical taxonomy integration approach 
(EHCI) (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) is considered as the baseline. 
Currently, classifiers based on the Maximum Entropy (ME) model are used because of its 
prominent performance in many tasks, such as natural language processing (Berger, Pietra, & 
Pietra, 1996) and flattened taxonomy integration (Wu, Tsai, & Hsu, 2005). Figure 2 shows the 
entire integration process flow of the SFE approach. 
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Figure 2. The processing flow for hierarchical taxonomy integration with 

semantic feature expansion. 
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4.2 Semantic Feature Expansion 
To further improve the integration performance, the semantic information of inter-taxonomy 
documents is explored in the proposed approach to perform semantic feature expansion (SFE). 
The main idea is to augment the feature space of each document with representative topic 
words. As noted in Tseng et al. (2006), the hypernyms of documents can be considered as the 
candidates of the representative topic words for the documents. Hereby, SFE adopts a similar 
approach to Tseng et al. (2006) to first select important term features from the documents and 
then decide the representative topic terms from hypernyms. 

Since feature expansion with hypernyms intends to introduce features that are not related 
to the document topic, these irrelevant features need to be filtered out before the final 
integration work. From the aspect of improving integration accuracy, the expanded features 
that have little discriminative power among categories are considered to be removed. 
According to previous studies (Ng, Goh, & Low, 1997; Yang & Pedersen, 1997; Tseng, Lin, 
Chen, & Lin, 2006), although the 2χ -test (chi-square) method is very effective in feature 
selection for text classification, it cannot differentiate negatively related terms from positively 
related ones. For a term t and a category c, their 2χ  measure is defined as: 

( )( )( )( )
2

2 ( )
( , ) T T F F

T F F T T F F T

N N N N N
t c

N N N N N N N N
χ

+ − + −

+ − + − + + − −

× × − ×
=

+ + + +
 (11) 

where N is the total number of the documents, TN + ( FN + ) is the number of the documents of 
category c (other categories) containing the term t, and TN − ( FN − ) is the number of the 
documents of category c (other categories) not containing the term t. 

Therefore, the correlation coefficient (CC) method is suggested to filter out the 
negatively related terms (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006). Since N is 
the same for each term, we can omit it and get the following equation to calculate the CC 
value for each term: 

( )( )( )( )
( )

( , ) T T F F

T F F T T F F T

N N N N
CC t c

N N N N N N N N

+ − + −

+ − + − + + − −

× − ×
=

+ + + +
 (12) 

Since the categories in a taxonomy are in a hierarchical relationship, SFE only considers the 
categories of the same parent in the CC method. 

Then, the five terms with the highest CC values are selected to perform semantic feature 
expansion. As indicated by (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006), the 
terms selected with CC are highly representative for a category. The category-specific terms 
of a source category, however, may not be topic-genetic to the corresponding destination 
category. Therefore, SFE uses them as the basis to find more topic-indicative terms for each 
category. 
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Some lexical dictionaries, such as InfoMap (http://infomap.stanford.edu/) and WordNet 
(http://wordnet.princeton.edu/), can be used to extract the hypernyms of the category-specific 
terms to get the topic indicative features of a category. For example, if a category has the 
following five category-specific terms: output, signal, circuit, input, and frequency, SFE gets 
the following hypernyms from InfoMap: signal, signaling, sign, communication, abstraction, 
relation, etc. These hypernyms are more topic-generic than the category specific terms. Then, 
SFE calculates the weight xHW  of each extracted hypernym x by: 

1

x
x n

ii

HF
HW

HF=
=
∑

 (13) 

where xHF is the term frequency of x, and i denotes the number of the hypernyms in each 
category. 

For each document kd , its SFE feature vector ksf  is changed by extending Equation 
10 as follows: 

[ ](1 ) (1 )k k k kλ λ α α= × + − × × + − ×sf l h f  (14) 

where kl  denotes the feature vector of the hierarchical thesaurus information computed from 
the left term of Equation 10, kh denotes the feature vector of the topic-generic terms of the 
category computed from Equation 13, and kf  denotes the original feature vector of the 
document derived from the right term of Equation 10. 

5. Experimental Analysis 

We have conducted experiments with real-world catalogs from Yahoo! and Google to study 
the performance of the SFE scheme with a Maximum Entropy classification tool from 
Edinburgh University (ver. 20041229) (Zhang, 2004). Two integration procedures were 
implemented. The baseline is ME with EHCI (EHCI-ME), and the other is ME with EHCI and 
SFE (SFE-ME). We measured three scores with different λ and α values: precision, recall, and 
F1 measures. Both integration directions were evaluated: from Google to Yahoo! and from 
Yahoo! to Google. The experimental results show that SFE-ME can effectively improve the 
integration performance. For recall measures, SFE-ME outperforms EHCI-ME in more than 
60% of all cases. For precision measures, SFE-ME outperforms EHCI-ME in more than 90% 
of all cases. SFE-ME can also achieve the best recall and precision performance. For F1 
measures, SFE-ME outperforms EHCI-ME in nearly 95% of all the cases. The experimental 
results are detailed in the following. 
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5.1 Data Sets 
In the experiments, five directories from Yahoo! and Google were extracted to form two 
experimental taxonomies (Y and G). Table 2 shows these directories and the number of the 
extracted documents after ignoring the documents that could not be retrieved. As in previous 
studies (Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; Ho, Chen, & 
Yang, 2006), the documents appearing in only one category were used as the training data 
(|Y-G| and |G-Y|), and the common documents were used as the testing data (|Y Test| and |G 
Test|). Since some documents may appear in more than one category in a taxonomy, |Y Test| is 
slightly different from |G Test|. For simplicity consideration, the level of each hierarchy was 
controlled to be at most three in the experiments. If the number of the documents of a certain 
subcategory was less than 10, the subcategory would be merged upward to its parent category. 

Table 2. The experimental categories and the numbers of documents. 
Category Google |G-Y| |G Class| |G Test| Yahoo! |Y-G| |Y Class| |Y Test| 
Autos /autos/… 1096 12 427 /automotive/… 1681 24 436 
Movies /movies/… 5188 26 1422 /movies_Film/… 7255 27 1344 
Outdoors /outdoors/… 2396 16 208 /outdoors/… 1579 19 210 
Photo /photography/… 615 9 235 /photography/… 1304 23 218 
Software /software/… 5829 27 641 /software/… 1876 25 691 
Total   15124 90 2932   13695 108 2918 

Before the integration, we used the stopword list in Frakes and Baeza-Yates (1992) to 
remove the stopwords, and the Porter algorithm (Porter, 1980) for stemming. In the integration 
process, we allow that each source document xd can be integrated into multiple destination 
categories (one-to-many) as we find in real-world taxonomies. Different λ  values from 0.1 
to 1.0 were applied to the source taxonomy ( sλ ) and the destination taxonomy ( dλ ). To both 
taxonomies, the same α value ranging from 0.1 to 1.0 was applied for semantic feature 
expansion. The lexical dictionary used in the experiments was InfoMap to get hypernyms. As 
reported in Tseng et al. (2006), we believe that WordNet will result in similar hypernym 
performance. 

In the experiments, we measured the integration performance of EHCI-ME and SFE-ME 
in six scores: macro-averaged recall (MaR), micro-averaged recall (MiR), macro-averaged 
precision (MaP), micro-averaged precision (MiP), macro-averaged F1 measure (MaF), and 
micro-averaged F1 measure (MiF). The standard F1 measure is defined as the harmonic mean 
of   recall   and   precision:   1 2F rp r p= + ,   where   recall   is  computed  as 

 correctly integrated documents
all test documents

r =       and     precision     is     computed     as 

 correctly integrated documents
all predicted positive documents

p = .  The  micro-averaged  scores  were  measured by 
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computing the scores globally over all categories in five directories. The macro-averaged 
scores were measured by first computing the scores for each individual category, then 
averaging these scores. The recall measures are used to reflect the traditional performance 
measurements on integration accuracy. The precision measures show the degrees of false 
integration. The standard F1 measures show the compromised scores between recall and 
precision. 

5.2 Experimental Results and Discussion 
Although we have measured the integration performance with different λ  values, this paper 
only lists part of the results in five different dλ values, which are 0.1, 0.3, 0.5, 0.7, and 0.9. 
Considering α, we have also measured the integration performance with different values 
ranging from 0.1 to 1.0. When α is between 0.1 and 0.4, SFE-ME is superior to EHCI-ME. For 
different integration directions, we found that the optimal α value may be also different. Here, 
we only report two cases, α = 0.4 for integrating documents from Google to Yahoo! and α = 
0.1 for integrating documents from Yahoo! to Google, in which the SFE approach can show 
its effectiveness. 

Table 3 and Table 4 show the macro-averaged and micro-averaged recall results of 
EHCI-ME and SFE-ME. The macro-averaged and micro-averaged precision results of 
EHCI-ME and SFE-ME are listed in Table 5 and Table 6. In Table 7 and Table 8, the 
macro-averaged and micro-averaged F1 measure results of EHCI-ME and SFE-ME are listed, 
respectively. 

From Table 3 (a), we can notice that SFE-ME is superior to EHCI-ME in more than 75% 
of all MaR scores for the integrations from Google to Yahoo!. Although Table 3 (b) shows 
that SFE-ME can only achieve nearly 40% improvements for the integration from Yahoo! to 
Google, SFE-ME has consistent MaR performance. Two reasons cause this 
lower-than-average MaR performance. First, the recall performance of SFE-ME is not as good 
as EHCI-ME for categories with few positive examples in the Y→G integration process. This 
can be justified from the superior MiR performance of SFE-ME. Second, the dλ  weight 
increasingly mitigates the improvements of SFE in the MaR measures of SFE-ME in a 
consistent way in the Y→G integration process. The MiR performance of SFE-ME also has 
the similar mitigation. 

From Table 3, we can also notice that SFE-ME achieves the best MaR of 0.8935 when 

sλ = 0.1 and dλ  = 0.1 for the G→Y integration process. Although Table 3 (b) shows that 
EHCI-ME achieves the best MaR for the Y→G integration process, SFE-ME indeed achieves 
higher MaR of 0.9501 in our experiment while sλ = 0.1, dλ  = 0.1, and α = 0.4. 
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Table 3. The macro-averaged recall (MaR) measures of EHCI-ME and SFE-ME. 

 EHCI-ME SFE-ME (α = 0.4) 

λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.8023 0.7419 0.7320 0.7334 0.7175 0.8935 0.8618 0.8500 0.8489 0.8678 

0.20 0.7636 0.7342 0.7274 0.7331 0.7192 0.7867 0.7845 0.7769 0.7742 0.7950 

0.30 0.7481 0.7336 0.7315 0.7333 0.7210 0.7347 0.7501 0.7511 0.7476 0.7539 

0.40 0.7422 0.7329 0.7283 0.7313 0.7197 0.7185 0.7367 0.7403 0.7374 0.7398 

0.50 0.7362 0.7299 0.7272 0.7301 0.7204 0.7085 0.7310 0.7340 0.7337 0.7346 

0.60 0.7317 0.7261 0.7262 0.7292 0.7207 0.7081 0.7284 0.7338 0.7338 0.7338 

0.70 0.7262 0.7242 0.7233 0.7263 0.7191 0.6941 0.7227 0.7333 0.7338 0.7338 

0.80 0.7231 0.7205 0.7232 0.7253 0.7235 0.6922 0.7208 0.7277 0.7304 0.7338 

0.90 0.7192 0.7205 0.7191 0.7262 0.7243 0.6922 0.7146 0.7224 0.7275 0.7304 

1.00 0.7186 0.7200 0.7181 0.7216 0.7211 0.7020 0.7138 0.7214 0.7223 0.7243 

(a) The results of the integration from Google to Yahoo! 
 

 EHCI-ME SFE-ME (α = 0.1) 

λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.9022 0.7937 0.8287 0.8312 0.8290 0.8833 0.8285 0.8165 0.8079 0.8059 

0.20 0.8798 0.7817 0.8205 0.8258 0.8242 0.8514 0.8261 0.8138 0.8124 0.8069 

0.30 0.8294 0.7787 0.8185 0.8254 0.8228 0.8394 0.8240 0.8138 0.8117 0.8059 

0.40 0.8256 0.7777 0.8177 0.8269 0.8214 0.8357 0.8237 0.8144 0.8121 0.8079 

0.50 0.8200 0.7769 0.8169 0.8226 0.8201 0.8350 0.8237 0.8141 0.8124 0.8090 

0.60 0.8180 0.7761 0.8169 0.8223 0.8217 0.8357 0.8233 0.8141 0.8127 0.8097 

0.70 0.8165 0.7771 0.8198 0.8212 0.8204 0.8350 0.8233 0.8144 0.8127 0.8100 

0.80 0.8162 0.7768 0.8157 0.8205 0.8189 0.8350 0.8233 0.8151 0.8131 0.8107 

0.90 0.8161 0.7735 0.8103 0.8184 0.8157 0.8340 0.8230 0.8151 0.8138 0.8117 

1.00 0.8202 0.8585 0.8640 0.8638 0.8633 0.8449 0.8425 0.8367 0.8367 0.8360 

(b) The results of the integration from Yahoo! to Google 
 
From table 4, we can notice that SFE-ME is superior to EHCI-ME in more than 60% of 

all MiR scores for the G→Y integration process and in nearly 75% of all MiR scores for the 
Y→G integration process. Among these cases, SFE-ME can achieve the best G→Y MiR of 
0.9301 and the best Y→G MiR of 0.9055 when sλ = 0.1 and dλ  = 0.1. When dλ  = 0.1 
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and ≥sλ  0.3, EHCI-ME outperforms SFE-ME for both MaR and MiR in the G→Y 
integration process. Considering the dλ  influences of Google’s hierarchical thesaurus 
information shown in Table 3 (b), the experimental results suggest that over-emphasizing the 
weight of Google’s hierarchical thesaurus information will impair the effectiveness of SFE. 

Table 4. The micro-averaged recall (MiR) measures of EHCI-ME and SFE-ME. 

 EHCI-ME SFE-ME (α = 0.4) 

   λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.8561 0.7999 0.7873 0.7945 0.7718 0.9301 0.9096 0.8972 0.8969 0.9109 

0.20 0.8174 0.7807 0.7770 0.7934 0.7732 0.8369 0.8400 0.8325 0.8133 0.8284 

0.30 0.7989 0.7797 0.7787 0.7907 0.7746 0.7838 0.8030 0.8058 0.7921 0.7962 

0.40 0.7921 0.7797 0.7777 0.7873 0.7742 0.7698 0.7831 0.7917 0.7835 0.7849 

0.50 0.7866 0.7787 0.7773 0.7862 0.7746 0.7640 0.7804 0.7821 0.7814 0.7825 

0.60 0.7801 0.7773 0.7770 0.7859 0.7742 0.7650 0.7790 0.7818 0.7818 0.7818 

0.70 0.7780 0.7766 0.7760 0.7831 0.7739 0.7585 0.7756 0.7814 0.7818 0.7818 

0.80 0.7763 0.7739 0.7760 0.7828 0.7763 0.7575 0.7746 0.7780 0.7790 0.7818 

0.90 0.7736 0.7739 0.7732 0.7831 0.7766 0.7575 0.7715 0.7760 0.7777 0.7790 

1.00 0.7729 0.7736 0.7725 0.7801 0.7749 0.7619 0.7715 0.7753 0.7753 0.7766 

(a) The results of the integration from Google to Yahoo! 
 
 EHCI-ME SFE-ME (α = 0.1) 

  λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.8952  0.8620 0.8535  0.8559 0.8545 0.9055 0.8713 0.8699  0.8696  0.8679  

0.20 0.8709  0.8504 0.8490  0.8535 0.8538 0.8768 0.8590 0.8572  0.8613  0.8610  

0.30 0.8613  0.8480 0.8487  0.8538 0.8535 0.8651 0.8555 0.8538  0.8579  0.8548  

0.40 0.8583  0.8473 0.8477  0.8545 0.8531 0.8610 0.8552 0.8542  0.8572  0.8528  

0.50 0.8524  0.8470 0.8473  0.8528 0.8528 0.8596 0.8548 0.8528  0.8552  0.8446  

0.60 0.8501  0.8466 0.8473  0.8531 0.8535 0.8593 0.8559 0.8524  0.8531  0.8442  

0.70 0.8473  0.8473 0.8504  0.8524 0.8531 0.8579 0.8555 0.8514  0.8453  0.8439  

0.80 0.8470  0.8470 0.8483  0.8521 0.8524 0.8572 0.8552 0.8483  0.8432  0.8425  

0.90 0.8466  0.8459 0.8442  0.8514 0.8511 0.8562 0.8548 0.8473  0.8429  0.8425  

1.00 0.8518  0.8562 0.8624  0.8627 0.8620 0.8552 0.8545 0.8463  0.8425  0.8418  

(b) The results of the integration from Yahoo! to Google 
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From Table 5, we can notice that SFE-ME is superior to EHCI-ME in more than 80% of 
all MaP for the G→Y integration process, and in all cases for the Y→G integration process. In 
addition, SFE-ME achieves the best G→Y MaP of 0.6662 when sλ  = 1.0 and dλ  = 0.1, 
and the best Y→G MaP of 0.4663 when sλ  = 0.7 and dλ  = 0.9. 

Table 5. The macro-averaged precision (MaP) measures of EHCI-ME and SFE-ME.  

 EHCI-ME SFE-ME (α = 0.4) 

    λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.1936 0.3273 0.3356 0.3426 0.3425 0.2122 0.2980 0.3139 0.3158 0.3557 

0.20 0.3491 0.3482 0.3475 0.3459 0.3559 0.3664 0.3696 0.3572 0.3477 0.3510 

0.30 0.3890 0.3537 0.3486 0.3460 0.3547 0.4707 0.3960 0.3793 0.3523 0.3486 

0.40 0.4090 0.3613 0.3497 0.3482 0.3543 0.5794 0.4137 0.3797 0.3723 0.3531 

0.50 0.4253 0.3657 0.3515 0.3521 0.3560 0.6279 0.4649 0.3971 0.3778 0.3552 

0.60 0.4373 0.3734 0.3565 0.3588 0.3603 0.6613 0.4918 0.4192 0.3556 0.3624 

0.70 0.4455 0.3811 0.3611 0.3681 0.3655 0.6600 0.5592 0.4397 0.3663 0.3916 

0.80 0.4532 0.3876 0.3686 0.3735 0.3559 0.6607 0.6403 0.4872 0.3876 0.3333 

0.90 0.4548 0.3904 0.3747 0.3853 0.3607 0.6636 0.6543 0.5738 0.4321 0.3548 

1.00 0.4565 0.4125 0.3862 0.4070 0.3625 0.6662 0.6575 0.5955 0.5043 0.4304 

(a) The results of the integration from Google to Yahoo! 
 
 EHCI-ME SFE-ME (α = 0.1) 

    λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.0565  0.1643 0.1952  0.1985 0.2004 0.0969 0.3236 0.3816  0.4159  0.4198  

0.20 0.0963  0.1969 0.2090  0.2070 0.2090 0.1744 0.3439 0.3997  0.4362  0.4498  

0.30 0.1171  0.2047 0.2080  0.2097 0.2120 0.2051 0.3566 0.4041  0.4470  0.4575  

0.40 0.1279  0.2050 0.2085  0.2100 0.2126 0.2190 0.3749 0.4083  0.4510  0.4640  

0.50 0.1345  0.2032 0.2096  0.2105 0.2145 0.2231 0.3785 0.4100  0.4525  0.4642  

0.60 0.1375  0.2034 0.2104  0.2100 0.2164 0.2273 0.3827 0.4106  0.4544  0.4646  

0.70 0.1375  0.2042 0.2128  0.2106 0.2153 0.2318 0.3854 0.4120  0.4551  0.4663  

0.80 0.1378  0.2052 0.2138  0.2109 0.2149 0.2354 0.3854 0.4132  0.4555  0.4651  

0.90 0.1382  0.2055 0.2132  0.2102 0.2121 0.2366 0.3840 0.4147  0.4534  0.4636  

1.00 0.1018  0.1012 0.1024  0.1019 0.1017 0.1661 0.1797 0.1847  0.1876  0.1881  

(b) The results of the integration from Yahoo! to Google 



 

 

436                                                      Cheng-Zen Yang et al. 

From Table 6, SFE-ME achieves the best G→Y MiP of 0.6078 when sλ = 0.9 and dλ  
= 0.1, and the best Y→G MiP of 0.2988 when sλ  = 0.7 and dλ  = 0.9. In addition, 
SFE-ME achieves MiP improvements in 90% of all cases for the G→Y integration process 
and in all cases for the Y→G integration process. These results show that the number of 
incorrectly integrated documents in SFE-ME is much lower. With high precision performance, 
SFE-ME may reduce a lot of time for users in manually verifying the integration correctness. 

Table 6. The micro-averaged precision (MiP) measures of EHCI-ME and SFE-ME. 
 EHCI-ME SFE-ME (α = 0.4) 

   λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.1156 0.2504 0.2715 0.2740 0.2817 0.1205 0.2835 0.3099 0.2782 0.3687 

0.20 0.2253 0.3018 0.2947 0.2822 0.3080 0.1569 0.3661 0.3570 0.3504 0.3629 

0.30 0.2741 0.3170 0.2984 0.2858 0.3107 0.2737 0.3777 0.3946 0.3515 0.3642 

0.40 0.3136 0.3329 0.3002 0.2897 0.3115 0.4721 0.3834 0.3776 0.3866 0.3688 

0.50 0.3494 0.3390 0.3033 0.2695 0.3135 0.5581 0.4556 0.3862 0.3879 0.3666 

0.60 0.3763 0.3475 0.3101 0.3101 0.3199 0.6061 0.4663 0.4032 0.3147 0.3700 

0.70 0.3906 0.3583 0.3192 0.3336 0.3317 0.6041 0.4924 0.3952 0.3180 0.4151 

0.80 0.3966 0.3759 0.3334 0.3485 0.3414 0.6016 0.5824 0.4335 0.3229 0.3452 

0.90 0.3987 0.3826 0.3402 0.3734 0.3540 0.6078 0.5871 0.4726 0.3509 0.3800 

1.00 0.3992 0.4332 0.3772 0.4198 0.3568 0.5999 0.5894 0.4937 0.3879 0.3974 

(a) The results of the integration from Google to Yahoo! 
 
 EHCI-ME SFE-ME (α = 0.1) 

     λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.0677 0.1269 0.1172  0.1118 0.1111 0.0943 0.1818 0.2089  0.2344  0.2686  

0.20 0.0999 0.1226 0.1145  0.1121 0.1120 0.1183 0.1903 0.2184  0.2485  0.2829  

0.30 0.1087 0.1186 0.1137  0.1123 0.1122 0.1269 0.1929 0.2278  0.2534  0.2860  

0.40 0.1125 0.1158 0.1131  0.1124 0.1119 0.1318 0.1948 0.2299  0.2585  0.2909  

0.50 0.1142 0.1152 0.1127  0.1122 0.1121 0.1365 0.1984 0.2303  0.2606  0.2943  

0.60 0.1147 0.1131 0.1123  0.1121 0.1118 0.1418 0.2042 0.2304  0.2612  0.2983  

0.70 0.1147 0.1128 0.1122  0.1119 0.1117 0.1469 0.2131 0.2301  0.2597  0.2988  

0.80 0.1150 0.1134 0.1121  0.1118 0.1116 0.1503 0.2152 0.2312  0.2591  0.2985  

0.90 0.1151 0.1127 0.1116  0.1117 0.1110 0.1522 0.2154 0.2340  0.2581  0.2988  

1.00 0.0979 0.0867 0.0865  0.0870 0.0865 0.1190 0.1388 0.1417  0.1468  0.1573  

(b) The results of the integration from Yahoo! to Google 
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For many applications, a compromised performance may be required with a high F1 score. 
From Table 7 and Table 8, we can notice that SFE-ME is superior to EHCI-ME in nearly 90% 
of all MaF and MiF scores for the G→Y integration process, and it has consistent 
improvements in all cases for the Y→G integration process. In our experiments with α = 0.4, 
SFE-ME achieves the highest MaF (0.6839) and the highest MiF (0.6764) when sλ  = 0.6 
and dλ  = 0.1 for the G→Y integration process. For the Y→G integration process, SFE-ME 
achieves the highest MaF (0.5919) and the highest MiF (0.4413) when α = 0.1, sλ  = 0.7, and 

dλ  = 0.9. These two tables show that the SFE scheme can mostly get more balanced 
improvements in both recall and precision considerations. 

Table 7. The macro-averaged F1 (MaF) measures of EHCI-ME and SFE-ME. 
 EHCI-ME SFE-ME (α = 0.4) 

λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.3119 0.4556 0.4602 0.4670 0.4637 0.3430 0.4428 0.4585 0.4603 0.5046 

0.20 0.4792 0.4724 0.4703 0.4700 0.4761 0.5000 0.5025 0.4894 0.4799 0.4870 

0.30 0.5118 0.4773 0.4722 0.4702 0.4755 0.5738 0.5184 0.5041 0.4789 0.4767 

0.40 0.5274 0.4840 0.4725 0.4718 0.4748 0.6415 0.5299 0.5020 0.4948 0.4780 

0.50 0.5391 0.4872 0.4739 0.4751 0.4765 0.6658 0.5684 0.5154 0.4988 0.4789 

0.60 0.5475 0.4932 0.4782 0.4810 0.4804 0.6839 0.5871 0.5336 0.4790 0.4852 

0.70 0.5522 0.4994 0.4817 0.4886 0.4847 0.6766 0.6305 0.5497 0.4887 0.5106 

0.80 0.5572 0.5040 0.4884 0.4931 0.4771 0.6761 0.6782 0.5836 0.5065 0.4584 

0.90 0.5572 0.5064 0.4927 0.5035 0.4816 0.6776 0.6831 0.6396 0.5422 0.4776 

1.00 0.5583 0.5245 0.5022 0.5205 0.4825 0.6836 0.6845 0.6525 0.5939 0.5399 

(a) The results of the integration from Google to Yahoo! 
 
 EHCI-ME SFE-ME (α = 0.1) 

λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.1064 0.2723 0.3160 0.3205 0.3227 0.1746 0.4654 0.5201 0.5492 0.5521 

0.20 0.1737 0.3145 0.3332 0.3310 0.3334 0.2895 0.4856 0.5361 0.5676 0.5776 

0.30 0.2053 0.3242 0.3317 0.3344 0.3372 0.3296 0.4978 0.5400 0.5765 0.5837 

0.40 0.2215 0.3245 0.3322 0.3349 0.3378 0.3471 0.5153 0.5439 0.5800 0.5895 

0.50 0.2311 0.3221 0.3336 0.3352 0.3400 0.3521 0.5187 0.5454 0.5813 0.5899 

0.60 0.2355 0.3223 0.3346 0.3345 0.3426 0.3574 0.5225 0.5459 0.5829 0.5904 

0.70 0.2354 0.3234 0.3379 0.3352 0.3411 0.3629 0.5251 0.5472 0.5834 0.5919 

0.80 0.2358 0.3247 0.3388 0.3356 0.3405 0.3672 0.5251 0.5484 0.5839 0.5911 

0.90 0.2364 0.3248 0.3376 0.3345 0.3367 0.3686 0.5236 0.5497 0.5823 0.5902 

1.00 0.1811 0.1810 0.1831 0.1823 0.1820 0.2776 0.2962 0.3026 0.3064 0.3071 

(b) The results of the integration from Yahoo! to Google 
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We have also measured these six scores for the sλ  = 0.0, dλ  = 0.0, and α = 0.0 cases, 
which means that the integration is performed by only ME without EHCI and SFE 
enhancements. In this configuration, for the G→Y integration process, ME can achieve very 
prominent recall performance in MaR (0.9578) and MiR (0.9616) but with poor precision 
performance in MaP (0.0111) and MiP (0.0111). Its MaF and MiF are 0.022 and 0.0219, 
respectively. For the Y→G integration process, ME has similar performance. Although ME 
can attain the best recall performance, these results show that it allows many documents of 
other categories to be incorrectly integrated. 

Table 8. The micro-averaged F1 (MiF) measures of EHCI-ME and SFE-ME. 
 EHCI-ME SFE-ME (α = 0.4) 

  λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.2037 0.3814 0.4037 0.4075 0.4128 0.2133 0.4322 0.4607 0.4246 0.5249 

0.20 0.3533 0.4353 0.4273 0.4163 0.4406 0.2642 0.5099 0.4997 0.4897 0.5047 

0.30 0.4082 0.4508 0.4314 0.4199 0.4435 0.4058 0.5138 0.5298 0.4869 0.4998 

0.40 0.4493 0.4666 0.4332 0.4236 0.4443 0.5852 0.5148 0.5113 0.5177 0.5018 

0.50 0.4838 0.4723 0.4363 0.4306 0.4463 0.6450 0.5753 0.5170 0.5184 0.4993 

0.60 0.5077 0.4803 0.4433 0.4447 0.4527 0.6764 0.5834 0.5320 0.4487 0.5023 

0.70 0.5201 0.4904 0.4523 0.4679 0.4644 0.6725 0.6024 0.5249 0.4521 0.5422 

0.80 0.5250 0.5060 0.4664 0.4823 0.4742 0.6706 0.6649 0.5568 0.4565 0.4789 

0.90 0.5262 0.5121 0.4725 0.5057 0.4863 0.6744 0.6668 0.5874 0.4835 0.5108 

1.00 0.5264 0.5554 0.5069 0.5458 0.4887 0.6713 0.6682 0.6032 0.5171 0.5257 

(a) The results of the integration from Google to Yahoo! 
 

 EHCI-ME SFE-ME (α = 0.1) 

  λd 

λs 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.1258  0.2212 0.2061 0.1977 0.1967 0.1707 0.3009 0.3369 0.3692  0.4102  

0.20 0.1792  0.2142 0.2017 0.1981 0.1980 0.2085 0.3115 0.3481 0.3857  0.4259  

0.30 0.1930  0.2081 0.2005 0.1986 0.1983 0.2213 0.3148 0.3596 0.3913  0.4286  

0.40 0.1989  0.2038 0.1995 0.1986 0.1978 0.2287 0.3174 0.3623 0.3972  0.4338  

0.50 0.2014  0.2028 0.1989 0.1983 0.1982 0.2355 0.3220 0.3627 0.3995  0.4365  

0.60 0.2021  0.1996 0.1983 0.1981 0.1977 0.2434 0.3298 0.3627 0.4000  0.4408  

0.70 0.2021  0.1991 0.1982 0.1978 0.1975 0.2508 0.3413 0.3623 0.3973  0.4413  

0.80 0.2025  0.2000 0.1980 0.1976 0.1974 0.2558 0.3439 0.3633 0.3964  0.4408  

0.90 0.2027  0.1989 0.1972 0.1975 0.1964 0.2584 0.3441 0.3667 0.3952  0.4412  

1.00 0.1757  0.1575 0.1572 0.1580 0.1572 0.2089 0.2387 0.2428 0.2501  0.2650  

(b) The results of the integration from Yahoo! to Google 
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The experimental results show that SFE-ME can get more improved integration 
performance with the SFE scheme. Compared with EHCI-ME, SFE-ME shows that the 
semantic information of the hypernyms of the category-specific terms can be used to facilitate 
the integration process between two hierarchical taxonomies. 

6. Conclusion 

In recent years, the taxonomy integration problem has been progressively studied for 
integrating two homogeneous hierarchical taxonomies. Many types of implicit information 
embedded in the source taxonomy are explored to improve the integration performance. The 
semantic information embedded in the source taxonomy, however, has not been discussed in 
previous research. 

In this paper, an enhanced integration approach (SFE) is proposed to exploit the semantic 
information of the hypernyms of the category-specific terms. Augmented with these additional 
semantic category features, the source documents can be more precisely integrated into the 
correct destination category in the experiments. The experimental results show that SFE-ME 
can achieve the best macro-averaged F1 score and the best micro-averaged F1 score. The 
results also show that the SFE scheme can get precision and recall enhancements in a 
significant portion of all cases. 

There are still some issues left for future study. For example, the effectiveness of SFE on 
other classification schemes, such as SVM and NB, may need to be investigated to decide 
which one has the best integration performance. In addition, deciding the optimal parameter 
configuration is a classical classification problem which is also important to the taxonomy 
integration problem. Although mining more valuable implicit information can be a tough 
challenge, we believe that the integration performance can be further improved with 
appropriate assistance of more effective auxiliary information and advanced classifiers. 
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