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 Abstract 

We propose a novel statistical translation model to improve translation selection of 
collocation. In the statistical approach that has been popularly applied for 
translation selection, bilingual corpora are used to train the translation model. 
However, there exists a formidable bottleneck in acquiring large-scale bilingual 
corpora, in particular for language pairs involving Chinese. In this paper, we 
propose a new approach to training the translation model by using unrelated 
monolingual corpora. First, a Chinese corpus and an English corpus are parsed 
with dependency parsers, respectively, and two dependency triple databases are 
generated. Then, the similarity between a Chinese word and an English word can 
be estimated using the two monolingual dependency triple databases with the help 
of a simple Chinese-English dictionary. This cross-language word similarity is 
used to simulate the word translation probability. Finally, the generated translation 
model is used together with the language model trained with the English 
dependency database to realize translation of Chinese collocations into English. To 
demonstrate the effectiveness of this method, we performed various experiments 
with verb-object collocation translation. The experiments produced very promising 
results. 

Keywords: Translation selection, Statistical machine translation, Chinese-English 
machine translation, Cross language word similarity 

1. Introduction 

Selecting the appropriate word translation among several options is a key technology of 
machine translation. For example, the Chinese verb �“䅶�” is translated in different ways in 
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terms of objects, as shown in the following:  

   䅶 㒌 ШVXEVFULEH�WR�D�QHZVSDSHU�
�� �䅶�䅵٪�ШPDNH�D�SODQ�

�� �䅶�ᮙ佚�ШERRN�D�KRWHO�

�� �䅶�䔺⼼�ШUHVHUYH�D�WLFNHW�

�� �䅶�ᯊ䯈�ШGHWHUPLQH�WKH�WLPH��

 In recent years, there has been increasing interest in applying statistical approaches to 
various machine translation tasks, from MT system mechanisms to translation knowledge 
acquisition. For translation selection, most researches applied statistical translation models. In 
such statistical translation models, to get the word translation probability as well as translation 
templates, bilingual corpora are needed. However, for quite a few languages, large bilingual 
corpora rarely exist, while large monolingual corpora are easy to acquire. It will be helpful to 
alleviate the burden of collecting bilingual corpus if we can use monolingual corpora to 
estimate the translation model and find alternative to translation selection. 

 We propose a novel approach to this problem in the Chinese-English machine 
translation module which is to be used for cross-language information retrieval. Our method is 
based on the intuition that although the Chinese language and the English language have 
different definitions of dependency relations, the main dependency relations like subject-verb, 
verb-object, adjective-noun and adverb-verb tend to have strongly direct correspondence. This 
assumption can be used to estimate the word translation probability. Our proposed method 
works as follows. First, a Chinese corpus and an English corpus are parsed, respectively, with 
a Chinese dependency parser and an English dependency parser, and two dependency triple 
databases are generated as the result. Second, the word similarity between a Chinese word and 
an English word are estimated with these two monolingual dependency triple databases with 
the help of a simple Chinese-English dictionary. This cross-language word similarity is used 
as the succedaneum of the word translation model. At the same time, the probability of a triple 
in English can be estimated with the English triple database. Finally, the word translation 
model, working together with the triple probability, can realize a new translation framework. 
Our experiments showed that this new translation model achieved promising results in 
improving translation selection. The unique characteristics of our method include: 1) use of 
two monolingual corpora to estimate the translation model. 2) use of dependency triples as 
basis for our method. 

The remainder of this paper is organized as follows. In Section 2, we give a detailed 
description to our new translation model. In section 3, we describe the training process of our 
new model, focusing on the process of constructing the dependency triple database for English 
and Chinese. The experiments and evaluation of this new method are reported in Section 4. In 
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Section 5, some related works are introduced. Finally in Section 6, we draw conclusions and 
discuss future work. 

2. A New Statistical Machine Translation Model 

In this section, we will describe the proposed translation model. First, we will report our 
observations from a sample word-aligned bilingual corpus in order to verify our assumption. 
After that, we will introduce the method for estimating the cross-language word similarity by 
means of two monolingual corpora. Finally, we will give a formal description of the new 
translation model.  

2. 1 Dependency Correspondence between Chinese and English 

A dependency triple consists of a head, a dependant, and a dependency relation between the 
head and the dependant. Using a dependency parser, a sentence can be analyzed to obtain a set 
of dependency triples in the following form: 

),,( 21 wrelwtrp , 

which means that word 1w  has a dependency relation of rel with word 2w . 

For example, for the English sentence “I have a brown dog”, a dependency parser 
obtains a set of triples as follows: 

(1) 
 

 

 

a.   
 I     have     a      brown       dog   

b. (have, sub, I), (I, sub-of, have), (have, obj, dog), (dog, obj-of, have), (dog, adj, brown), 
(brown, adj-of, dog), (dog, det, a), (a, det-of, dog)2 

Similarly, for the Chinese sentence �“ᆊ乕Ꮧњ䅵ߦ�”, we can get the following 
dependency triples with a dependency parser:  

 

 

                                                 
2 The standard expression of the dependency parsing result is: (have, sub, I), (have, obj, dog), (dog, adj, 

brown), (dog, det, a). 

det 
adj 

obj 

sub 
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(2)  
 

 

a 
�

 ᆊ��������乕Ꮧ����������њ�������������䅵ߦ 
.b.   (乕Ꮧ, sub, ᆊ), (ᆊ, sub-of, 乕Ꮧ), (乕Ꮧ, obj, 䅵ߦ), (䅵ߦ, obj-of, 乕Ꮧ), (乕

Ꮧ, comp, њ), (њ,comp-of,�乕Ꮧ)3 

Among all the dependency relations in Chinese and in English, the key dependency 
relations are subject-verb (denoted as sub), verb-object (denoted as obj), 
adjective-noun(denoted as adj) and adverb-verb(denoted as adv). Our intuitive assumption is 
that although Chinese language and English language have different schemes of dependency 
relations, these key dependency relations tend to have strong correspondence. For instance, 
normally, a word pair with subject-verb relation in Chinese can be translated into a 
subject-verb relation pair in English. Formally speaking, for a triple (A, D, B) in Chinese, 
where A and B are words, and D is one of the key dependency relations mentioned above, the 
translation of the triple (A, D, B) in English, can be expressed as (A’, D’, B’), where A’ and B’ 
are the translations of A and B, respectively, and D’ is the dependency relation between A’ and 
B’ in the English language4. Our assumption is that although D and D�’ may be different in 
denotation, they can be mapped directly in most cases.  

In order to verify our assumption, we conducted an investigation with a Chinese-English 
bilingual corpus5. The bilingual corpus, consisting of 60,000 pairs of Chinese sentences and 
English sentences selected from newspapers, novels, general bilingual dictionaries and 
software product manuals, was aligned manually at the word level. An example of the word 
aligned corpus is given in Table 1. Each word is identified with a number in order to indicate 
the word alignment information. 

 

 

 

                                                 
3 The standard expression of the dependency parsing result is: (乕Ꮧ, sub, ᆊ), (乕Ꮧ, obj, 䅵ߦ), 

(乕Ꮧ, comp, њ). 
4 Sometimes to get a better translation, a triple in one language is not translated into a triple in other 

language, but except in very extreme cases, it will still be acceptable if it is translated into a triple.  
5 This corpus, produced by Microsoft Research Asia, is currently reserved for Microsoft internal use 

only.  
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Table 1. The word aligned bilingual corpus 

Chinese sentence 
ᔧ/1 ᮃ⾥⡍/2 ᢉ䖒/3 फᵕ/4 ⱘ/5 ᯊ7/ˈ 6/ Ҫ/8 থ⦄/9 䰓㩭Ể/10 
↨/11 Ҫ/12 乚13/ܜ Ǆ/14 

English sentence When/1 Scott/2 reached/3 the/4 South/5 Pole/6 , /7 he/8 found/9  
Amundsen/10 had/11 anticipated/12 him/13 ./14 

Aligned word  
pair 

(1,5,6:1); (2:2); (3:3); (4:4,5,6); (7:7); (8:8); (9:9); (10:10); (11:nil); 
(12:13); (13:12); (14:14); 

To obtain statistics of the dependency relation correspondence, we parsed 10,000 
sentence pairs with the English parser Minipar [Lin 1993, Lin 1994] and the Chinese parser 
BlockParser [Zhou 2000]. The parsing results were expressed in dependency triples. We then 
mapped the dependency relations so that we could count the correspondences between an 
English dependency relation and a Chinese dependency relation. More than 80% of 
subject-verb, adjective-noun and adv-verb dependency relations could be mapped, while 
verb-object correspondence was not so high. We show the verb-object correspondence results 
in Table 2. 

Table 2. Triple correspondence between Chinese and English. 
Dependency  
Type 

E-C 
Positive 

E-C 
Negative 

Mapping 
Rate 

C-E 
Positive 

C-E 
Negative 

Mapping  
Rate 

Verb-Object 7,832 4,247 64.8% 6,769 3,751 64.3% 

 �“E-C Positive�” means an English verb-object was translated into a Chinese verb-object. 
�“E-C Negative�” means an English verb-object was not translated into a Chinese verb-object. 
The E-C Positive Rate reached 64.8% and the C-E Positive Rate reached 64.3%. These 
statistics show that our correspondence assumption is reasonable but not strong. Now we will 
examine the reasons why some of the dependency relations cannot be mapped directly.  

Table 3. Negative examples of triple mapping. 
Chinese verb-object triple English translation 
 ᓔ䫔 be enough for 
⫼ ᭄ᄫ in numeral characters 
⫼ 䋻Ꮥ Change to currency 
ৡি ࿕ᒝ_g_㔫 an Englishman, Willian Low 
�…㾝ᕫ䗗䙓ࠄ⫳⌏㱑㡄㢺Ԛ↨䕗ㅔᴈⱘᑈҷ
䞠ᰃӊᛝᖿⱘџǄ 

�…found it pleasant to escape to a time when 
life, though hard, was relatively simple. 

From Table 3, we can see that �“negative�” mapping has several causes. The most 
important reasons are: a Chinese verb-object can be translated into a single English verb (e.g., 
an intransitive verb) or can be translated into verb+prep+obj. If these two mappings (as shown 
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in Table 4) are also considered reasonable correspondences, then the mapping rate will 
increase significantly. As seen in Table 5, the E-C Positive rate and the C-E Positive rate 
reached 82.71% and 83.87% respectively. 

Table 4. Extended mapping. 
Chinese triple English triple Examples  
Verb-Object Verb(usually intransitive verb) 䇏-к ėUHDG 
Verb-Object Verb+Prep-Object ⫼-䋻Ꮥėchange to �– currency 

 

Table 5. Triple correspondence between Chinese and English. 
Type E-C 

Positive 
E-C 
Negative 

Mapping 
rate 

C-E 
Positive 

C-E 
Negative 

Mapping  
Rate 

Verb-Object 9991 2088 82ˊ71% 8823 1697 83ˊ87% 

This implies that all four key dependency relations can be mapped very well, showing 
that our assumption is correct. This fact will be used to estimate the word translation model 
using two monolingual corpora. The method will be given in the following subsections. 

2.2 Cross-Language Word Similarity 

We will next describe our approach to estimating the word translation likelihood based on the 
triple correspondence assumption with the help of a simple Chinese-English dictionary. The 
key idea is to calculate �“cross-language similarity�”, which is an extension of word similarity 
within one language.  

Several statistical approaches to computing word similarity have been proposed. In these 
approaches, a word is represented by a word co-occurrence vector in which each feature 
corresponds to one word in the lexicon. The value of a feature specifies the frequency of joint 
occurrence of the two words in some particular relations and/or in a certain window size in the 
text. The degree of similarity between a pair of words is computed using a certain similarity 
(or distance) measure that is applied to the corresponding pairs of vectors. This similarity 
computation method relies on the assumption that the meanings of the words are related to 
their co-occurrence patterns with other words in the text. Given this assumption, we can 
expect that words which have similar co-occurrence patterns will resemble each other in 
meaning.   

Different types of word co-occurrences have been examined with respect to computing 
word similarity. They can in general be classified into two types, which refer to the 
co-occurrence of words within the specified syntactic relations, and the co-occurrence of 
words that have non-grammatical relations in a certain window in the text. The set of 
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co-occurrences of a word within syntactic relations strongly reflects its semantic properties. 
Lin [1998b] defined lexical co-occurrences within syntactic relations, such as subject-verb, 
verb-object, adj-noun, etc. These types of co-occurrences can be used to compute the 
similarity of two words.  

While most methods proposed up to now are for computing the word similarity within 
one language, we believe that some of these ideas can be extended to computation of 
�“cross-language word similarity�”. Cross-language word similarity denotes the commonality 
between one word in a language and one word in another language. In each language, a word 
is represented by a vector of features in which each feature corresponds to one word in the 
lexicon. The key to computing cross-language similarity is to determine how to calculate the 
similarity of two vectors which are represented by words in different languages.   

Based on the triple correspondence assumption which we have made in 2.1, dependency 
triples can be used to compute the cross language similarity. In each language, a word is 
represented by a vector of dependency triples which co-occur with the word in the sentence. 
Our approach assumes that a word in one language is similar to a word in another language if 
their vectors are similar in some sense. In addition, we can use a bilingual lexicon to bridge 
the words in the two vectors to compute cross-language similarity.  

Our similarity measure is an extension of the measure proposed in [Lin, 1998b], where 
the similarity between two words is defined as the amount of information contained in the 
commonality between the words and is divided by the sum of information in the descriptions 
of the two words in each language respectively.  

In Lin [1998b]�’s work, a dependency parser was used to extract dependency triples. For a 
word 1w , a triple ),,( 21 wrelw represents a feature of 1w , which means 1w  can be used in 
relation of rel with word 2w . The description of a word w consists of the frequency counts 
of all the dependency triples that match the pattern (w,* , *). 

An occurrence of a dependency triple ),,( 21 wrelw  can be regarded as the co-occurrence 
of three events [Lin, 1998b]: 

A: a randomly selected word is 1w ; 

B: a randomly selected dependency type is rel ; 

C: a randomly selected word is 2w . 

According to Lin [1998b], if we assume that A and C are conditionally independent 
given B, then the information contained in cwrelwfwrelw ),,(||,,|| 2121  can be 
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computed as follows6: 

)),,(log())|()|()(log(),,( 21 CBAPBCPBAPBPwrelwI MLEMLEMLEMLE ; (1) 

where: 

,*)(*,
,*),(

)|( 1

relf
relwfBAPMLE ;  

(2) 

,*)(*,
),(*,

)|( 2

relf
wrelfBCPMLE ;  

(3) 

(*,*,*)
,*)(*,)(

f
relfBPMLE ;  

(4) 

(*,*,*)
),,(),,( 21

f
wrelwfCBAPMLE ;  

(5) 

where )(xf denotes the frequency of x ; * is a wildcard for all possible combinations. 

Finally, we have [Lin, 1998b] 

),(*,,*),(
,*)(*,),,(log),,(

21

21
221 wrelfrelwf

relfwrelwfwrelwI    
(6) 

Let )(wT ʳ be the set of ),( 'wrel  such that 
)',(*,,*),(

,*)(*,)',,(log2 wrelfrelwf
relfwrelwf  is positive.  

Then the similarity between two words, 1w and 2w , within one language is defined as follows 
[Lin, 1998b]: 

),,(),,(

)),,(),,((
),(

2
)(),(

1
)(),(

21
)()(),(

21

21

21

wrelwIwrelwI

wrelwIwrelwI
wwSim

wTwrelwTwrel

wTwTwrel  

  
(7) 

Now, let us see how we can extend to cross language. Similarly, for a Chinese word Cw  and an English 

word Ew , let )( CwT be the set of pairs ),( '
CC wrel  such that 

)',(*,,*),(
,*)(*,)',,(

log2
cccc

cccc

wrelfrelwf
relfwrelwf  

is positive, and let )( EwT be the set of pairs ),( '
EE wrel  such that 

)',(*,,*),(
,*)(*,)',,(

log2
EEEE

EEEE

wrelfrelwf
relfwrelwf is positive. Then we can similarly define cross-language word 

similarity as follows: 

                                                 
6 Please see [Lin, 1998b] for the detailed derivation process of this formula.  
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)',,()',,(
),(),(

)()',()()',(
EEE

wTwrel
CCC

wTwrel

ECcommon
EC wrelwIwrelwI

wwIwwSim
EEECCC

 
  
(8) 

where ),( ECcommon wwI  denotes the total information contained in the commonality of the 
features of Cw  and Ew . Actually, we have three different methods for 
calculating ),( ECcommon wwI . 

1) Map Chinese into English 

We define 

)}'('),(),()',(|)',{(
)(

)()',(),()}'('),(|)',{(
)(

CECEEEECC

CEC

CCCECECEEE

EEC

wTranwrelencecorrespondrelwherewTwrelwrel
wT

wTwrelwherewTwTranwrelencecorrespondrelwrel
wT

 

Here,  
)(xTran denotes the set of possible translations of word x  which are defined in the bilingual 

lexicon and )( CE relncecorreponderel is the English dependency type corresponding to a 
Chinese dependency type Crel . 

2) Map English into Chinese 

Similarly, we define 

)}'('),(),()',(|)',{(
)(

)()',(),()}'('),(|)',{(
)(

ECECCCCEE

ECE

EEECECECCC

CCE

wTranwrelencecorrespondrelwherewTwrelwrel
wT

wTwrelwherewTwTranwrelencecorrespondrelwrel
wT

 

Here, 

)( EC relncecorreponderel is the Chinese triple type with Crel corresponding to an English 
triple type Erel .  

3) Map both English into Chinese and Chinese into English 

Similarly, we define 

)()()(
)()()(

EECECEEEC

CECCCECEC

wTwTwT
wTwTwT
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Then, we can define the cross-language word similarity of Cw  and Ew  in the following 
three ways: 

 

)()',()()',(

)(),()()',(

)',,()',,(

)',,()',,(
),(

'

EEECCC

EECEECECCC

wTwrel
EEE

wTwrel
CCC

wTwrel
EEE

wTwrel
CCC

ECEC

wrelwIwrelwI

wrelwIwrelwI
wwSim

                             (9) 

)()',()()',(

)(),()()',(

)',,()',,(

)',,()',,(
),(

'

EEECCC

ECEEECCECC

wTwrel
EEE

wTwrel
CCC

wTwrel
EEE

wTwrel
CCC

ECCE

wrelwIwrelwI

wrelwIwrelwI
wwSim

ʳ ʳ ʳ ʳ ʳ         ʳ ʳ ʳ  (10) 

)()',()()',(

)(),()()',(

)',,()',,(

)',,()',,(
),(

'

EEECCC

ECEEECCECC

wTwrel
EEE

wTwrel
CCC

wTwrel
EEE

wTwrel
CCC

ECCE

wrelwIwrelwI

wrelwIwrelwI
wwSim

                           (11) 

Similarity (9) can be seen as the likelihood of translating a Chinese word into an English word, 
similarity (10) can be seen as the likelihood of translating an English word into a Chinese 
word, and similarity (11), a balanced and asymmetry formula, can be seen the �“neural�” 
similarity of a Chinese word and an English word.  

2.3 Translation Selection Model Based on Cross-Language Similarity 

We will next discuss how we can build a translation model in order to solve the translation 
selection problem in dependency triple translation. Suppose we want to translate a Chinese 
dependency triple ),,( 21 CCC wrelwc into an English dependency triple 

),,( 21 EEE wrelwe ; this is equivalent to finding maxe  that will maximize the value 
)|( ceP according to the statistical translation model [Brown, 1993].  

 Using Bayes’ theorem, we can write 

)(
)|()()|(

cP
ecPePceP  

(12) 
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Since the denominator )(cP  is independent of e and is a constant for a given Chinese triple, 
we have 

))|()((maxargmax ecPePe
e

 
(13) 

Here, the )(eP  factor is a measure of the likelihood of the occurrence of a dependency 
triple e  in the English language. It makes the output of e  natural and grammatical. )(eP is 
usually called the language model, which depends only on the target language. )|( ecP  is 
usually called the translation model.  

In single triple translation, )(eP  can be estimated using formula (5), which can be 
rewritten as 

(*,*,*)
),,(),,( 21

21 f
wrelwfwrelwP EEE

EEEMLE  
 
 

 

In addition, we have 

  )|(),|(),|()|( 21 erelPerelwPerelwPecP CCCCC  

We suppose that the selection of a word in translation is independent of the type of 
dependency relation, therefore we can assume that 1Cw  is only related to 1Ew , and that 2Cw  
is only related to 2Ew . Here, we use cross-language word similarity CESim  (see formula 
10) to simulate the translation probability from an English word into a Chinese word.  
Using )|( ecLikelihood 7to replace )|( ecP , we define 

)|(),(),()|( 2211 erelPwwSimwwSimecLikelihood CECCEECCE  
(14) 

 )|( erelP C is a parameter which mostly depends on specific word. But this can be 
simplified as 

)|( erelP C = )|( EC relrelP  

Then we have 

 )|(),(),()|( 2211 ECECCEECCE relrelPwwSimwwSimecLikelihood  

 According to our assumption of correspondence between Chinese dependency relations 
and English dependency relations, we have 1)|( EC relrelP . Then we have 

                                                 
7 Since Likelihood is not normalized in [0,1], we do not call it probability to avoid confusion. 
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  ),(),()|( 2211 ECCEECCE wwSimwwSimecLikelihood  

Therefore, we have 

),(),()((maxarg

))|()((maxarg

))|()((maxarg

2211
,

max

21

ECCEECCE
ww

e

e

wwSimwwSimeP

ecLikelyhoodeP

ecPePe

EE

 
(15) 

In this formula, we use the English dependency triple sets to estimate )(eP , and use the 
English dependency sets and Chinese dependency sets which are independent of each other, to 
estimate the translation model based on our dependency correspondence assumption. In the 
whole process, no manually aligned or tagged corpus is needed. 

3. Model Training  

To estimate the cross-language similarity and the target language triple probability, both 
Chinese and English dependency triple sets are required to build. Similar to [Lin 1998b], we 
also use parsers to extract dependency triples from the text corpus. The workflow of 
constructing the dependency triple databases is depicted in Fig 1. 

  

Figure 1 The flowchart of constructing the dependency triple database. 

As shown in Fig. 1, each sentence from the text corpus is parsed by a dependency parser, 
and a set of dependency triples is generated. Each triple is put into the triple database. If an 
instantiation of a type of triple already exists in the triple database, then the frequency of this 
triple will increase one time. After all the sentences are parsed, we can get a triple database 
with a large number of triples. Since the parser can not be expected to be 100% correct, some 
parsing mistakes will inevitably be introduced into the triple database. It is necessary to 
remove the noisy triples as Lin did [1998a], but in our experiment, we did not apply any noise 
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filtering technique.  

Our English text corpus consists of 750 M (byte) of text from the Wall�’ Street 
Journal(1980-1990), and our Chinese text corpus contains 1,200 M(byte) of text from 
People�’s Daily (1980-1998). The English parser we used was Minipar [Lin 1993, Lin 1994]. 
Minipar is a broad-coverage, principle-based parser with a lexicon of more than 90,000 words. 
The Chinese parser we used here was BlockParser [Zhou 2000]. This is a robust rule parser 
that breaks up Chinese sentences into “blocks”, which are represented by headwords. Then 
syntactical dependency analysis was applied to the “blocks”. 17 POS tags and 19 grammatical 
relations were recognized by this parser, and 220,000 entries were registered in the parsing 
lexicon.  

The 750M (byte) English newspaper corpus was parsed within 50 hours on a machine 
with 4 Pentium�™ III 800 CPU, and the 1200 M (byte) Chinese newspaper corpus was parsed 
in 110 hours on the same machine. We extracted the dependency triples from the parsed 
corpus. There were 19 million occurrences of dependency triple in the English parsed corpus, 
and 33 million occurrences of dependency triples in the Chinese parsed corpus. As a result, 
we acquired two databases of dependency triples of the two languages. These two databases 
served as the information source for the translation model training and triple probability, 
which we have described in the above sections.  

Table 6. shows a summary of the corpora and parsers in Chinese and English. 
Language Description Size(bytes) #Triple Parser 
Chinese People�’s Daily 1980~1998 1,200M 33,000,000 Block Parser 
English Wall�’s Street Journal 1980-1990 750M 19,000,000 Minipar 

 The E-C and C-E dictionaries used here are the bilingual lexicon used in machine 
translation systems developed by Harbin Institute of Technology8. The E-C lexicon contains 
78,197 entries, and C-E dictionary contains 74,299 entries.  

 Since in this paper, we are primarily interested in the selection of translations of verbs, 
we utilized only three types of dependency relations for similarity estimation, i.e., verb-object, 
verb-adverb and subject-verb. The symmetric triples �“object-of�”, �“adverb-of�” and �“subject-of�” 
were also used in calculating the translation model and the triple probability. Table 7 shows 
the statistics of occurrences of the three kinds of dependency relations.  

 

 

                                                 
8 These two lexicons are not publicly available. 
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Table 7. Statistics of the three main triples 
Language Verb-Object Verb-Adverb Subject-Verb
Chinese 14,327,358 10,783,139 8,729,639 
English 6,438,398 3,011,767 5,282,866 

Therefore, a word w  is represented by a co-occurrence 
vector )...}#,,(),#,,{( '

2
'

1 wrelwrel , where },,{ verbsubjadverbverbobjectverbrel 9 
in which each feature )#,,( '

1wrel  consists of the dependency relation ,rel another word '
1w  

that constructs the dependency relation, and the frequency count #. Then we extracted the 
word lists from the Chinese triple sets and the English triple sets, and calculated the similarity 
of each Chinese word and each English word. For similarity, we only calculated the similarity 
between verbs and between nouns of the two languages. As a result, a large table was 
constructed recording the cross-language similarity as shown in table 8. S (i,j) is the similarity 
between a Chinese word iC and an English word jE . Please note that we only apply 
similarity formula (10) since we were interested in the translation likelihood from an English 
word to a Chinese word, as explained in the previous section. 

Table 8. Cross-language word similarity matrix 
 

1E  2E  �… 
mE  

1C  11S  12S  �… 
mS1  

2C  21S  22S  �… 
mS2  

�… �… �… �… �… 

nC  1nS  2nS  �… 
nmS  

4. Translation Experiments  

Please note that in this paper, we only focus on the verb-object triple translation experiments 
to demonstrate how to improve translation selection. We conducted a set of experiments with 
several translation models on the verb-object translation. As the baseline experiment, Model A 
selected the translation of a verb and its object with the highest frequency as the translation 
output. Model B utilized the target language triple probability but did not apply the translation 
model. Model C utilized both the target language triple probability and the translation model.  

The verb-object translation answer sets were built manually by English experts from the 
Department of Foreign Languages of Beijing University. For a certain triple, all the plausible 
translations are given in building the translation evaluation set. Samples of the evaluation sets 
are shown in Table 9. 

                                                 
9 We didn�’t use the dependency relation of adj-noun.  
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Table 9. Evaluation sets prepared by human translators 
Verb Noun Translation 
䇈  џ  talk business 
⫼   use hand 
ⳟ ⬉ᕅ see film, see movie 
ⳟ ⬉㾚 watch TV 
 䋵⤂ make contribution 

The performance was evaluated based on precision, which is defined as 

  %100
#

#
triplesobjverbtotal

translaioncorrectprecision  

4.1 Various Translation Models 

Suppose we want to translate the Chinese dependency triple ),,( 21 CCC wrelwc into the 
English dependency triple ),,( 21 EEE wrelwe ; this is equivalent to finding maxe  that 
would maximize translation model we have proposed. To test our method, we conducted a 
series of translation experiments with incrementally enhanced resources. All the translation 
experiments reported in this paper were conducted with Chinese-English verb-object triple 
translation. 
Model A (selecting the highest-frequency translation) 

As the baseline for our experiment, Model A simply selected the translation word in the 
bilingual lexicon which had the highest frequency in the English corpus. It translated verb and 
object separately. Model A did not utilize the triple probability or the translation model. 
Formally, Model A can be expressed as 

 ))((maxarg,)),((maxarg( 2
)()(

max
22

1
11

E
wTransWwTransew

wfreqobjectverbwfreqe
Ce

E
ce

  

 
Model B (selecting the translation with the maximal triple probability) 

Model B only used the triple probability in target language, neglecting the translation 
model. It selected the translation of the triple which was most likely to occur in the target 
language. We have 

),,(maxarg)(maxarg 21

)(
),(

max

22

1

EE

wTransw
wTranswe

wobjverbwPePe
CE
CqE
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Model C (selecting the translation which fits both the triple probability and the 
translation model best)   

In Model C, both the translation model and triple probability were considered. We have 

),(),(),,(maxarg

)|()(maxarg

221121

)(
)(

max

22
11

ECCEECCEEE

wTranw
wTranw

e

wwsimwwsimwobjverbwP

ecLikelyhoodePe

CE
CE

 

4.2 Evaluation 

We designed a series of evaluations to test the above models. In this subsection, the evaluation 
results will be reported. To achieve an objective evaluation, we designed three kinds of testing 
set, 1) high frequency verb and its object, 2) a low frequency verb and its object, and 3) a low 
frequency verb-object triple. Please note that each selected verb should take a simple noun as 
its object, the verbs like �“ᰃ�”(be)ˈ�”Փ�”(make), �“䇋�”(invite), �“䅸Ў�” were not used since their 
translations were not directly relied on their objects. 

Case-I: High-frequency verbs with their objects 

We wanted to observe the performance of these models in the translation of verb-objects 
in which the verbs were high frequency ones. We randomly selected 53 high-frequency verbs 
(see Appendix I), and randomly extracted certain number of triples of verb-object relation 
from the Chinese triple database. Totally 730 triples are extracted. The translation results 
obtained using the various models are shown in Table 10.  

Table 10. Evaluation on verbs of high frequency 
Model #Correct Percentage 
Model A 393  53.8% 
Model B 512 70.1% 
Model C 519 71.1% 

From these results, we can see that Model B and Model C achieved considerably better 
translation precision than did Model A. Model C worked a little better than Model B.  

Case-II: Translation of low-frequency verbs with their objects 

We tested the translation of the triples composed of low-frequency verbs and a noun. We 
randomly selected 23 low frequency verbs (see Appendix II) and randomly extracted 108 
verb-object triples containing these words from the Chinese triple database. The translation 
results obtained using the various models are shown in Table 11. 
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Table 11. Evaluation of verbs of low frequency 
Model #Correct Percentage 
Model A 61 56.5% 
Model B 85 78.7% 
Model C 88 81.5% 

Case III: Translation of low-frequency triples 

We also tested the translation of low-frequency triples. First we selected the following 
objects: �“ᆊ, ৠᖫ, ӕϮ, ᬓᑰ, 䆄㗙, Ӯ䆂, 㒣⌢, 㕸ӫ, ݰ⇥, Ꮦഎ, ᬓㄪ, ݀ৌ, ᆊ,
ᴵӊ, ഄऎ, ⸔, к, ᯊ䯈, 乍Ⳃ, Ҏਬ, ߽Ⲟ�”. Then we selected triples which contained 
the above words and occurred less than 5 times. Since the set of such low-frequency triples 
was very large, we randomly selected 340 triples as the evaluation sets. The results are shown 
in Table 12.  

Table 12. Evaluation of triples of low frequency 
Model #Correct Percentage 
Model A 182 53.5% 
Model B 283 83.2% 
Model C 289 85.0% 

We can see that our methods obtained very promising results in all the cases.  

4.3 Accommodating Lexical Gaps (OOV) 

One of the reasons for translation mistakes is the OOV problem, i.e., the best translation is out 
of vocabulary. Therefore, the translation quality is seriously affected. For example, �“ሩᓔ�” 
has two translations in the translation lexicon: �“unfold�” and �“develop�”. However, the triple�
�“ሩᓔ, verb-object, 䖯ᬏ�”, which should be translated as �“launch, verb-object, attack�”, cannot 
be properly produced with the translations given by the dictionary. To solve this problem, we 
used new methods to get a number of possible translations based on the translations defined in 
the dictionary and obtained very interesting results.  
Model D (Translation expansion using a bilingual lexicon) 

For the Chinese verb-object triple ),,( 21 CC wobjectverbwc , we can expand new 
translations by employing an E-C lexicon and the C-E lexicon circles:  

)()}('),'(''),''('''|'''{)(1 xTranxTranxxTranxxTranxxxTran  

Let x  be a Chinese words, let 'x  be the English translation of x  defined in the C-E 
lexicon, let ''x  be the Chinese translation of 'x  defined in E-C lexicon, and let '''x  be the 
English translation of ''x  defined in C-E lexicon. Taking �“䇈�” as an example, �“talk�” is one 
translation based on the C-E lexicon. Then looking up in the E-C lexicon, �“䇈䆱�” is one 
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translation of �“talk�”. Looking up in the C-E dictionary again, �“speak�” is one translation of �“䇈
䆱�”. In this way, �“䇈�” is translated as �“speak�” in addition to the original translation �“talk�”. 
Model D can be described formally as follows: 

),(),(),,(maxarg

)|()(maxarg

221121

)(1
)(1

max

22
11

ECCEECCEEE

wTranw
wTranw

e

wwsimwwsimwobjverbwP

ecLikelyhoodePe

CE
CE

 

 

Model E (Translation expansion using dependency triple database) 

For a Chinese verb-object triple ),,( 21 CC wobjectverbwc , we assume that the 
translation of object 2Cw is expanded by Model D, i.e.,  

)()}('),'(''),''('''|'''{)(1 222 CCC wTranwTranxxTranxxTranxxwTran  

However, we expand the verb 1Cw  translation in a new way as shown 
below:

)()}(1,0),(|{)(2 1222,111 CCEEEEC wTranwTranwwherewobjectverbwIwwTran  

To reduce the bad impact of the blind translation expansion of Model E, we try to assign 
lower probability to the verbs that are expanded out of the bilingual lexicon. We use the 
following method: the translations given by the bilingual lexicon share a probability of 0.6 
and the other possible translations that are expanded using Model E share a probability of 0.4. 
Suppose *P  is the additionally assigned probability, and suppose there are m  translations 
given by the bilingual lexicon and n  translations expanded by model E. We have the 
following: 

m
P 6.0*  If the translation is obtained from the C-E lexicon 

n
P 4.0*  If the translation is obtained through expansion of Model E 

Then Model E can be described as: 

*
22

*
1121

)(1
)(2

max

),(),(),,(maxarg

)|()(maxarg

22
11

PwwsimPwwsimwobjverbwP

ecLikelyhoodePe

ECCEECCEEE

wTranw
wTranw

e

CE
CE

 

The evaluation results obtained using Case-I testing set are shown in Table 13. We can find 
that both Model D and Model E improved the translation precision. Model E is more powerful 
than Model D.  
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Table 13. Evaluation on verbs of high frequency 
Model #Correct Percentage 
Model D 526 71.8% 
Model E 587 80.1% 

Using Model C, �“ሩᓔ䖯ᬏ�” could not be translated correctly, while Model E correctly gave 
the answer �“launch attack�”. In table 14 and Appendix III, there are more examples showing 
the cases in which Model E correctly selected translations. (The English translations marked 
with * are cases where the translations could not be found in the translation lexicon but were 
generated with Model E only.) 

Table 14. The translation result overcoming OOV 
ሩᓔ䖯ᬏ� launch* attack ᠧЏᛣ make plan 
䞛প㸠ࡼ Take action� ᠧ⸔ make foundation 
䞛পࡲ⊩� adopt* method ᠧ⧗ play ball 
ⳟ⬉㾚� watch television ᠧ⋲ make hole 
ⳟк Read book ᠧᡬᠷ offer* discount 
ⳟ㡖Ⳃ See program ᠧ䫷 strike gong 
ᠧ⬉ send telegram मপৠᚙ evoke* sympathy 

We also found that the translation performance was influenced by data sparseness of the triple 
database. Typically, when an English counterpart for a verb-object triple in Chinese could not 
be found, Model E will yielded 0 for ),,( 21 EE wobjectverbwP . For example, �“eat twisted 
crullers�”, which corresponds to �“ৗ⊍ᴵ�” did not appeared anywhere in the English triple set. 
This will generate very big influence. We shall tackle this problem in the future. 

5. Related Works 

The key to improving translation selection is to incorporate human translation knowledge into 
a computer system. One way is for translation experts to handcraft the translation selection 
knowledge in the form of selection rules and lexicon features. However, this method is 
time-consuming and cannot ensure high quality in a consistent way. Current commercial MT 
systems mainly rely on this method. Another way is to let the computer learn the translation 
selection knowledge automatically by using a large parallel text. A good survey on this 
research is that of McKeown & Radev [2000]. Some of the contents are quoted here in a 
condensed way. Smadja et al. [1996] created a system called Champolion, which is based on 
Smadja�’s collocation extractor, Xtract. Champollion uses a statistical method to translate both 
flexible and rigid collocations between English and French using the Canadian Hansard 
corpus. Champollion�’s output is a bilingual list of collocations ready for use in a machine 
translation system. Smadja et al. indicated that 78% of the French translations of valid English 
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collocations were judged to be correct based on three evaluations by human experts. Kupiec 
[1993] described an algorithm for the translation of a specific kind of collocations, namely, 
noun phrases. An evaluation of his algorithm has shown that 90% of the 100 highest ranking 
correspondences are correct. 

 Selecting the right word translation is related to word sense disambiguation. Most of the 
research has reported on using supervised methods, which use sense-tagged corpora. Mooney 
[1996] gave a good quantitative comparison of various methods. Yarowsky [1995] reported an 
impressive unsupervised-learning result that trains decision lists for binary sense 
disambiguation. Schutze [1998] also proposed an unsupervised method, which in essence 
clusters usages of a word. However, although both Yarowsky and Schutze minimized the 
amount of supervision, their reported results only for very few examples.  

 Another related field is computer assisted bilingual lexicon (term) construction. A tool 
for semi-automatic translation of collocations, Termight, wa described by Dagan and Church 
[1994]. It can be used to aid translators in finding technical term correspondences in bilingual 
corpora. The method proposed by Dagan and Church uses extraction of noun phrases in 
English and word alignment to align the head and tail words of noun phrases with words in 
the other language. A word sequence of words corresponding to the head and tail is produced 
as the translation. Because it does not rely on statistical correlation metrics to identify the 
words of the translation, this method allows the identification of infrequent terms that would 
otherwise be missed owing to their low statistical significance. Fung [1995] used a 
pattern-matching algorithm to compile a lexicon of nouns and noun phrases between English 
and Chinese. Wu and Xia [1994] computed a bilingual Chinese-English lexicon. They used 
the EM algorithm to produce word alignment across parallel corpora and then applied various 
linguistic filtering techniques to improve the results.  

 Since large aligned bilingual corpora are hard to acquire due to copyright restrictions 
and construction expenses, some researchers have proposed methods which do not rely on 
parallel corpora. Tanaka and Iwasaki [1996] demonstrated how to use nonparallel corpora to 
choose the best translations among a small set of candidates. Fung [1997] used similarities in 
the collocates of a given word to find its translation in the other language. Fung [1998] also 
explored using an IR approach to get translations of new words using non-parallel but 
comparable corpora. Dagan and Itai [1994] use a second language monolingual corpus for 
word sense disambiguation. They used a target language model to find the correct word 
translations.  

 Most of the methods for statistical machine translation obtain word translation 
probability by learning from large parallel corpora [Brown et al., 1993]. Very few researchers 
have tried to use monolingual corpora to train word translation probability. The most similar 
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work to our approach is that of [Koehn and Knight. 2000]. Using two completely unrelated 
monolingual corpora and a bilingual lexicon, they constructed a word translation model for 
3830 German and 6147 English noun tokens by estimating word translation probabilities 
using the EM algorithm. In their experiment, they assumed that the word sequence of English 
and German was the same, so that in the EM iteration step, the language model of the target 
language could be used. However, their model was only used to test the translation of nouns; 
they did not conduct experiments on verb translation. They also did not consider syntactic 
relations. In addition, it is hard to extend their model to other language pair like Chinese and 
English.   

6. Conclusion 

We have proposed a new statistical translation model. The unique characteristics of our model 
are:  

 1) The translation model is trained using two unrelated monolingual corpora. We have 
defined the cross- lingual word similarity, which enable us to compute the similarity between 
a source language word and a target language word with a simple bilingual lexicon, without 
using bilingual corpora.  

 2) The translation model is based on dependency triples, not on word level, which is 
typically used. It can overcome the long distance dependence problem to some extent. Since 
the translation of a word is often decided based on a syntactic member that may not be 
adjacent to the word, this method can hopefully improve translation precision compared with 
the existing word-based model.  

 3) Based on the new translation model, we have further proposed new models for 
tackling OOV issue. The experiments showed that Model E, which expands translations using 
an English triple database, is a promising model for solving the OOV issue. This is very 
promising too for the application of cross language information retrieval. 

 Our approach is completely unsupervised, so it is not necessary for the two corpora to 
be aligned in any way or to be tagged manually with any information. Such monolingual 
corpora are readily available for most languages, while parallel corpora rarely exist even for 
common language pairs. So our method can help overcome the bottleneck of acquiring 
large-scale parallel corpora. Since this method does not rely on specific dependency triples, it 
can be used to translate other types of triples such as adjective-noun, adverb-verb and 
verb-complement in the same way. In addition, our method can be used to build a collocation 
translation lexicon for an automatic translation system.  

 This triple based translation approach can be further extended to sentence level 
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translation. Given a sentence, the main dependency triple can be extracted with a parser, and 
then each triple can be translated using our method. Then, for dependency triples which are 
specific to the source language, we can apply a rule-based approach. After all the main triples 
are correctly translated, a target language grammar can be introduced to realize target 
language generation. This hopefully will enable us to realize sentence skeleton translation 
system.  

There are some interesting topics for future research. First, since we use parsers which 
inevitably introduce some parsing mistakes into the generated dependency triple databases, we 
need to find an effective way to filter out mistakes and perform necessary automatic 
correction. Second, we need to find a more precise translation expansion method to overcome 
the OOV issue which is caused by the limited coverage of the lexicon. For instance, we can 
try using translation expansion by employing a thesaurus that is trained automatically with a 
large corpus or employ a pre-defined thesaurus like WORDNET. Third, triple data sparseness 
is a big problem; to solve it, we need to apply some approaches used in statistical language 
models, such as smoothing methods and the class based models.  
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Appendix I High frequency verb list 
Frequency Word Frequency Word Frequency Word Frequency Word 
������� 䇈� ������� ᴹ� ������� ⫼� ������� এ�

������� ⳟ� ������� � ������� �خ ������� ᛇ�

������� �ߎ ������� 㽕� ������� ऴ� ������� Ϟ�

������� 䍄� ������� 䯂� ������ ᠧ� ������ ি�

������ ᓔ� ������ ৗ� ������ ϟ� ������ ᧲�

������ 䆆� ������ �ࡲ ������ 䗕� ������ ᡒ�

������ থ� ������ ᡧ� ������ � ������ ф�

������ ԣ� ������ ܹ� ������ ᢝ� ������ 䅶�

������� 䖯㸠� ������� থሩ� ������� В㸠� ������� খࡴ�

������� 䗮䖛� ������� �ᔎࡴ ������� ᦤߎ� ������� 㾷އ�

������� 㒘㒛� ������� 䞛প� ������� ᓔሩ� ������� থ�

������� 䖒ࠄ� ������ ᅠ៤� ������ ҟ㒡� ������ ᠽ�

������ 䅵ߦ� ������ ᓩ䍋� ������ ᘶ� ������ �ᇥޣ

������ �ᅮࠊ � � � � � �

 

Appendix II Low frequency verb list 
Frequency Word Frequency Word Frequency Word Frequency Word 
2108 䏉䏣 2087 ᮑ2056 ࡴ 䘐䖥 1555 䇗䜡 
1549 ݅ѿ 1498 ᠷᢐ 1420 ড假 1402 催ଅ 
1389 䗋ᚥ 1368 し 460 䘼␌ 458 㾘ࡱ 
457 㚕䖿 439 ׂ438 ࠾ ᡘ㺁 304 偃᳡ 
294 䇗䘷 278 ᦣᩍ 270 ࡑし 262 ਂ 
158 䌢ಲ 156 ᱫ㮣 153 मপ   
 

Appendix III Some translation results obtained with model E 
 ᠧ|䫷 strike|gong   䅶|㑺Ӯ order|appointment 㗏䆥|خ make|translation 

× ᠧ|哧 have|drummer   䅶|ᴵ㑺 sign|pact × ⓨਬ|خ do|actor 
 ᠧ|䩳 play|bell  䅶|䅵ߦ make|plan × ྚֱ|خ get|housekeeper 
 ᠧ|䪗 play|bell  䅶|ᮑ order|measure × ᬭᏜ|خ give|teacher 
 ᠧ|䪕 produce|iron  × 䅶|᮹ᳳ order|date × ॼ᠓|خ do|kitchen 
 ᠧ|Ҏ beat|person   䅶|ᣛᷛ order|target خ|㒌 make|paper 
 ᠧ|ҫ do|fight  × 䅶|ࠊᑺ order|system ⳟ|⬉ᕅ see|film 

× ᠧ|ᶊ buy|shelf   䅶|ড়ৠ sign|contract ⳟ|⬉㾚 watch|television 
 ᠧ|㜌 beat|face   䅶|༥㑺 sign|charter ⳟ|Ҁ࠻ watch|Bejing opera 

× ᠧ| play|hand   䅶|݀㑺 sign|pact ⳟ|ሩ㾜 see|exhibition 

 ᠧ|༈ strike|head   䅶|ᴵӊ order|condition ⳟ|Ҏ see|person 
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 ᠧ|ᵾ fire|gun   䅶|ৠⲳ form|alliance ⳟ|к read|book 

 ᠧ|⚂ use|cannon  × 䅶|ီ attend|wedding ⳟ| read|newspaper 

 ᠧ|䳋 bring|thunder   䅶|к order|book ⳟ|ᇣ䇈 read|novel 

 ᠧ|ֵো send|signal  䅶| order|newspaper ⳟ|᭛ӊ see|document 

 ᠧ|⬉䆱 make|telephone  䅶|ᴖᖫ order|magazine ⳟ|᳟ট see|friend 

× ᠧ|䵊 hit|target  䅶|⼼ order|ticket ⳟ|ᄺ⫳ see|student 

× ᠧ|⇨ strike|air   䅶|ᴎ఼ order|machine × ⳟ|ⴐ see|eye 

× ᠧ|䩜 share|needle  䅶|䋻 order|goods ⳟ|䯂乬 see|problem 

 ᠧ|右 catch|bird × 䅶|ᴀᄤ carry|notebook ⳟ|⦄䈵 see|phenomenon 

 ᠧ|剐 catch|fish × 䅶|㒌 publish|newspaper ⳟ|㜌㡆 see|expression 

× ᠧ|㗕㰢 buy|tiger   |ᠧㅫ make|plan ⳟ|ᴀ䋼 see|nature 

 ᠧ|㳵 strip|wax   |㒧䆎 make|conclusion × 䮼|ߎ put forth|front door 

 ᠧ|㤝〓 make|draft   |ਞ write|report × |ߎ produce|country 

 ᠧ|⸔ make|foundation × |᭫ѝ have|struggle ߎ|䰶 leave|yard 

 ᠧ|Џᛣ catch|decision  |᳆ write|melody × ජ|ߎ issue|city 

× ᠧ|ㅫⲬ work out|abacus  |䆫 write|poem ߎ|⍋ go|sea 

× ᠧ|Ӳ buy|umbrella  |᭛ゴ write|article ߎ|๗ leave|state 

× ᠧ|᮫ᄤ play|banner  خ|䵟 make|shoes × ⋺|ߎ fill|cavity 

× ᠧ|♃ㄐ sell|lantern  خ|㸷᳡ make|clothes × ॖ|ߎ include|works 

× 
ᠧ|佁  
work out|cooked rice 

㺸ᄤ|خ  make|trousers × キ|ߎ make|stop  

 ᠧ|䜦 buy|wine  خ|⌏ do|work × എ|ߎ issue|place 

 ᠧ|䝅⊍ buy|soy   خ|㦰 make|food × 㸔|ߎ produce|blood 

 ᠧ|⼼ buy|ticke × خ|佁 make|cooked-rice × 䔼|ߎ build|rail 

× ᠧ|䝟 prefer|vinegar  خ|䴶ࣙ make|bread ߎ|⬠ exceed|limit 

 ᠧ|᷈ collect|firewood  
ᖗ⚍|خ  
make|refreshments 

Ḑ|ߎ exceed|standard 

 ᠧ|㤝 pack|straw  خ|Ꮉ do|work ߎ|㣗ೈ exceed|scope 

× ᠧ|呺ᄤ buy|wheat × خ|≭থ sit|sofa ߎ|Џᛣ produce|idea  

 ᠧ|㊂亳 collect|grain  خ|⫳ᛣ make|trade ߎ|乬Ⳃ issue|subject 

 ᠧ|⠠ play|cards   خ|фप do|business ߎ|䆕ᯢ produce|proof 

× ᠧ|ᣇ make|fist  خ|Ꮉ do|work × |ߎ produce|power 

 ᠧ|જ draw|yawn  خ|䆩偠 do|test  × 䪅|ߎ issue|money 

 ᠧ|ⳍ have|doze  خ|џᚙ do|business 
ᑓਞ|ߎ  
produce|advertisement  

× ᠧ|ދ work out|cold war 䇒ࡳ|خ  do|homework ࡼࢇ|ߎ put forth|labour 
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 ᠧ|ᅬৌ fight|lawsuit   خ|Ϯ do|homework ߎ|䗮ⶹ issue|notice  

 ᠧ|ѩ dig|well  خ|㒗д do|exercise ߎ|㡖Ⳃ produce|program 

 ᠧ|⋲ make|hole  خ|ᄺ⫳ become|student ߎ|ὰ issue|announcement 

 ᠧ|ࣙ㻍 work out|parcle × خ|㗕Ꮬ give|teacher ߎ|✸ produce|coal 

 ᠧ|㸠ᴢ pack|luggage × خ|⠊҆ do|father ߎ|ẝ㢅 produce|cotton 

× 
ᠧ|↯㸷  
work out|woolen clothes 

Џᐁ|خ  become|chairman ⫳㢅|ߎ produce|peanut 

 ᠧ|↨ᮍ use|analogy × 
ᅬ|خ  
make|government offcial 

㣅䲘|ߎ become|hero 

*The  means correct translation or sometimes acceptable translation, while × means wrong 
translation.  
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The Use of Clustering Techniques for Language 

Modeling – Application to Asian Language 

Jianfeng Gao*, Joshua T. Goodman+, Jiangbo Miao** 

Abstract 

Cluster-based n-gram modeling is a variant of normal word-based n-gram 
modeling. It attempts to make use of the similarities between words. In this paper, 
we present an empirical study of clustering techniques for Asian language 
modeling. Clustering is used to improve the performance (i.e. perplexity) of 
language models as well as to compress language models. Experimental tests are 
presented for cluster-based trigram models on a Japanese newspaper corpus and on 
a Chinese heterogeneous corpus. While the majority of previous research on word 
clustering has focused on how to get the best clusters, we have concentrated our 
research on the best way to use the clusters. Experimental results show that some 
novel techniques we present work much better than previous methods, and achieve 
more than 40% size reduction at the same level of perplexity. 

1. Introduction 

Statistical language modelling (SLM) has been successfully applied in many domains, such as 
speech recognition, optical character recognition, machine translation, spelling correction, 
information retrieval, and spoken language understanding [Jelinek, 1990; Church, 1988; 
Brown et al., 1990; Kernighan et al., 1990; Miller et al., 1999; Zue, 1995]. The dominant 
technology in SLM is n-gram models.  

Typically, n-gram models are trained on very large corpora. In constructing n-gram 
models, we always face two problems.  First, for a general domain model, large amounts of 
training data can lead to models that are too large for realistic applications. On the other hand, 
for specific domains, n-gram models usually suffer from the data sparseness problem because 
large amounts of domain-specific data are usually not available. 

When n-gram models are used, we can define clusters for similar words in a corpus. We 
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thus extend word-based n-gram models to cluster-based n-gram models. This has been 
demonstrated as an effective way to handle the data sparseness problem.  Recent research also 
shows that cluster-based n-gram models are effective for rapid domain adaptation, training on 
small data sets, and reducing the memory requirements for realistic applications. 

Extending our previous work in [Goodman, 2001; Gao et al., 2001; Goodman and Gao, 
2000], this paper presents an empirical study of clustering techniques for Asian language 
modeling. Clustering is used to improve the performance (i.e. perplexity) of language models 
as well as to compress language models. Experimental tests will be presented for cluster-based 
trigram models on a Japanese newspaper corpus of more than 10 million words, and on a 
Chinese heterogeneous corpus of more than 11 million characters. The majority of the 
previous research on word clustering has focused on how to get the best clusters. We have 
concentrated our research on the best way to use the clusters. Experimental results show that 
some novel techniques work much better than previous methods. 

This paper is structured as follows: In the remainder of this section, we present an 
introduction to n-gram models, smoothing, and performance evaluation. In Section 2, we 
briefly review previous work on word clustering and cluster-based n-gram models. In Section 
3, we present our technique of using clusters for trigram models. In Section 4, we describe our 
method for finding clusters. In Section 5, we present the results of our main experiments. 
Finally, we present our conclusions in Section 6. 

1.1 N-gram models 
The classic task of language modeling is to predict the next word given the previous words. 
The n-gram model is the usual approach. It states the task of predicting the next word as 
attempting to estimate the conditional probability: 

)|()( 11 nnn wwwPwP . (1) 

In practice, the cases of n-gram models that people usually use are n=2,3,4, referred to 
as a bigram, a trigram, and a four-gram model, respectively. For example, in trigram models, 
the probability of a word is assumed to depend only on the two previous words: 

)|()|( 1211 nnnnn wwwPwwwP . (2) 

An estimate of the probability )|( 12 iii wwwP  is given by Equation (3), called the 
maximum likelihood estimation (MLE): 
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where )( 12 iii wwwC  represents the number of times the sequence iii www 12  occurs in the 
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training text.  

A difficulty with this approximation is that for word sequences that do not occur in the 
training text, where 0)( 12 iii wwwC , the predicted probability is 0.  This makes it impossible 
for a system, such as a speech recognition system, to accept such a 0 probability sequence. 
Thus, these probabilities are typically smoothed [Chen and Goodman, 1999]: some probability 
is removed from all non-zero counts, and used to add probability to the 0 count items. The 
added probability is typically in proportion to some less specific, but less noisy model. For 
trigram models, typically, a formula of the following form is used: 

otherwisewwPww
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where )( 12 ii ww  is a normalization factor, and is defined in such a way that the 
probabilities sum to 1. The function ))(( 12 iii wwwCD  is a discount function.  It can, for 
instance, have a constant value, in which case the technique is called “Absolute Discounting”, 
or it can be a function estimated using the Good-Turing method, in which case the technique 
is called Good-Turing or Katz smoothing [Katz, 1987; Chen and Goodman 1999]. 

1.2 Performance evaluation 
The most common metric for evaluating a language model is perplexity. Formally, the word 
perplexity PPW of a model is the reciprocal of the geometric average probability assigned by 
the model to each word in the test set. It is defined as 

WN

i
iii

W
wwwP

N
WPP 1

122 )|(log1

2 , 
(5) 

where NW is the total number of words in the test set. The perplexity can be roughly 
interpreted as the geometric mean of the branching factor of the test document when presented 
to the language model. Clearly, lower perplexities are better.  

For applications, such as speech recognition, handwriting recognition, and spelling 
correction, it is generally assumed that lower perplexity correlates with better performance. In 
[Gao et al., 2001], we presented results that indicate this correlation is especially strong when 
the n-gram model is applied to the application of pinyin to Chinese character conversion, 
which is a similar problem to speech recognition. 

2. Word Cluster and Cluster-based N-grams 

For any given assignment of a word wi to a cluster (also called a class) ci, there may be many 
to many mappings; i.e. a word wi may belong to more than one cluster, and a cluster ci will 
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typically contain more than one word. For the sake of simplicity, in this paper, we assume that 
a word wi can only be uniquely mapped to its own cluster ci, which is called hard clustering. 
The cluster-based n-gram model is a variant of the word-based n-gram model that uses the 
frequency of sequences of clusters to help produce a more knowledgeable estimate of the 
probability of word strings. The basic cluster-based n-gram model defines the conditional 
probability of a word wi based on its history as the product of the two factors: the probability 
of the cluster given the preceding clusters, and the probability of a particular word given the 
cluster [Brown et al., 1990]. For example, in cluster-based trigram models, we have 

)|()|()|( 1212 iiiiiiii cccPcwPwwwP . (6) 

The MLE of the probability of the word given the cluster, and the probability of the 
cluster given the two previous clusters can be computed as follows: 

)(
)(

)|(
i

i
ii cC

wC
cwP , (7) 

)(
)(

)|(
12

12
12

ii

iii
iii ccC

cccC
cccP . (8) 

A large amount of previous research has focused on how to best cluster similar words 
together. The proposed methods can be roughly grouped into two categories: (1) knowledge 
based clustering, and (2) data-driven clustering.  

In knowledge based clustering, words are clustered based on the syntactic/semantic 
information we have for the language and the task [Jelinek, 1990; Heeman, 1999; Heeman and 
Allen, 1997; Placeway et al., 1993; Issar and Ward, 1994; Ward and Young, 1993]. For 
example, part of speech (POS) tags can be generally used to produce a small number of 
clusters although this may lead to significantly increased perplexity [Srinivas, 1996; Niesler et 
al., 1998]. Alternatively, if we have domain knowledge, it is often advantageous to cluster 
words that have a similar semantic functional role together. For example, [Issar and Ward, 
1994] used tags like CITY and AIRLINE for an airline information system. There has also 
been some interesting research on word clustering for Chinese language. For example, [Yang 
et al., 1994] present a method in which Chinese words are simply clustered according to their 
starting and ending characters. It assumes that because almost every Chinese character is a 
morpheme with its own meaning, very often words having the same starting or ending 
characters share some common linguistic properties and, thus, can form a word cluster. A 
good example is the cluster containing “yesterday” (ਤ֚), “tomorrow” (֚ࣔ), “everyday” 
  .Sunday” (ਣཚ֚) etc“ ,(֚ޢ)

In data-driven clustering, words are clustered automatically in a such way that the 
overall perplexity of the corpus is minimized [Brown et al., 1992]. A greedy search algorithm 
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is generally used for clustering. It basically works as follows. First, each word is initialized to 
a random cluster. Then, at each iteration, every word is moved to a cluster such that the 
resulting model has the minimum perplexity. The algorithm converges when no single word 
can be moved to another cluster in a way that reduces the perplexity of the cluster-based n-
gram model. Most previous research has found only small differences between different 
techniques for finding clusters [Kneser and Ney, 1993; Yamamoto and Sagisaka, 1999; 
Ueberla, 1996; Pereira et al., 1993; Bellegarda et al., 1996; Bai et al., 1998]. One result, 
however, is that automatically derived clusters outperform POS tags [Niesler et al., 1998], at 
least when there is enough training data [Ney et al., 1994].  

While cluster-based n-gram models often offer no perplexity reduction in comparison to 
word-based n-gram models, it is beneficial to smooth the word-based n-gram model via either 
backoff or interpolation methods (although the improvement is marginal) [Maltese and 
Mancini, 1992; Miller and Alleva, 1997]. One typical example is a combined model where the 
cluster-based n-gram model can be linearly interpolated with a normal word-based n-gram 
model [Brown et al., 1992]: 

)|()|()1()|( 1212 iiiiiiii cccPcwPwwwP  (9) 

where  is the interpolation weight optimized on heldout data. 

In this study, we focused our research on novel techniques for using clusters rather than 
different ways of finding clusters. We also noticed that all realistic applications have memory 
constraints. Therefore, we concentrated our experiments on finding the best way to use 
cluster-based n-gram models together with word-based n-gram models to seek the optimum 
balance between memory storage and perplexity. In Section 5, most of our experimental 
results will be presented in the form of size/perplexity curves. 

3. Using Clusters 

In this section, we will describe our techniques for using clusters, which are a bit different 
than traditional clustering as shown in Equation (6). As a typical example, consider the 
trigram probability P(w3|w1w2), where w3 is the word to be predicted, called the predicted 
word, and w1 and w2 are context words used to predict w3, called the conditional word. Either 
the predicted word or the conditional word can be clustered when building cluster-based 
trigram models. Therefore, there are three basic forms of cluster-based trigram models. When 
using clusters for the predicted word as shown in Equation (10), we get the first kind of 
cluster-based trigram model, called predictive clustering. When using clusters for the 
conditional word as shown in Equation (11), we get the second model, called conditional 
clustering. When using clusters for both the predicted word and the conditional word, we get 
Equation (12), called combined clustering: 
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)|()|()|( 121212 iiiiiiiiii cwwwPwwcPwwwP , (10) 

)|()|( 1212 iiiiii ccwPwwwP , (11) 

)|()|()|( 121212 iiiiiiiiii cccwPcccPwwwP . (12) 

In what follows, each technique will be discussed in detail, and illustrated by an 
example. 

3.1 Predictive clustering 
Consider a probability such as P(Tuesday| party on). Perhaps the training data contains no 
instances of the phrase “party on Tuesday”, although other phrases such as “party on 
Wednesday” and “party on Friday” do appear. We can put words into clusters, such as the 
word “Tuesday” into the cluster WEEKDAY.  Now, we can consider the probability of the 
word “Tuesday” given the phrase “party on”, and also given that the next word is a 
WEEKDAY. We will denote this probability by P(Tuesday | party on WEEKDAY). We can 
then decompose the probability 

P(Tuesday | party on)  =  P(WEEKDAY | party on)  P(Tuesday | party on WEEKDAY).  

When each word belongs to only one cluster, this decomposition is a strict equality. This 
can be trivially proven as follows:  
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Now, since each word belongs to a single cluster, P(ci|wi)=1, it follows that 

)|()()( 121212 iiiiiiiiiii wwwcPwwwPwcwwP   

)|()( 12 iiiii wcPwwwP   

)( 12 iii wwwP . (14) 

Substituting Equation (14) into Equation (13), we get 

)|(
)(
)(

)|()|( 12
12

12
1212 iii

ii

iii
iiiiiii wwwP

wwP
wwwP

cwwwPwwcP . (15) 

Now, although Equation (15) is a strict equality, when smoothing is taken into 
consideration, using the clustered probability will be more accurate than using the non-
clustered probability. For instance, even if we have never seen an example of “party on 
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Tuesday”, perhaps we have seen examples of other phrases, such as “party on Wednesday”; 
thus, the probability P(WEEKDAY | party on) will be relatively high. Furthermore, although 
we may never have seen an example of “party on WEEKDAY Tuesday”, after we backoff or 
interpolate with a lower order model, we may able to accurately estimate P(Tuesday|on 
WEEKDAY). Thus, our smoothed clustered estimate may be a good one. We call this 
particular kind of clustering predictive clustering. The general form is Equation (10). 

3.2 Conditional clustering 
On the other hand, we can also cluster the words we are conditioning on.  For instance, if 
“party” is in the cluster EVENT and “on” is in the cluster “PREPOSITION”, then we can write 

P(Tuesday | party on)  P(Tuesday | EVENT PREPOSITION).  

We call this kind of clustering conditional clustering. The general form is Equation (11). 

3.3 Combined clustering 
It is also possible to combine both predictive and conditional clustering, and, in fact, for some 
applications, this combination works better than either one separately.  Thus, we can compute 

P(Tuesday | party on)  =   
P(WEEKDAY | EVENT PREPOSITION)  P(Tuesday | EVENT PREPOSITION WEEKDAY).  

We call this kind of clustering combined clustering. The general form is Equation (12). 
Equation (12) is a generalization of predictive clustering of Equation (10), in which case we 
used no clustering for conditional words. Equation (12) is also a generalization of conditional 
clustering of Equation (11), in which case we used no clustering for predicted words. Also 
notice that the combined cluster-based trigram model of Equation (12) is actually a 
generalization of a technique invented at IBM (Brown et al., 1992), which uses the 
approximation P(wi|ci-2 ci-1 ci) P(wi|ci) to get 

P(Tuesday | party on)   
P(WEEKDAY| EVENT PREPOSITION)  P(Tuesday | WEEKDAY). 

 

The approximation is suboptimal unless we use high (count) cutoffs for bigrams and 
trigrams. Given that combined clustering uses more information than regular IBM clustering, 
we assumed that it would lead to improvements. As will be shown in Section 5, it works about 
the same or a little better, at least when interpolated with a normal word-based trigram model. 

4. Finding Clusters 

As described in Section 2, a large number of techniques for finding clusters have been 
proposed, but previous studies showed that no one technique outperforms other significantly. 
In this study, we did not explore different techniques for finding clusters, but simply picked 
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one we thought would be good, based on previous research. 

There is no need for the clusters used for different positions to be the same. In particular, 
for a model like IBM clustering, with P(wi|ci) P(ci|ci-2 ci-1), we call the cluster ci  a predictive 
cluster, and the clusters ci-2 and ci-1 conditional clusters. The predictive and conditional 
clusters can be different [Yamamoto and Sagisaka, 1999]. For instance, consider a pair of 
words like “a” and “an”. In general, “a” and “an” can follow the same words, and so, for 
predictive clustering, belong to the same cluster. However, there are very few words that can 
follow both “a” and “an”, and so, for conditional clustering, they belong to different clusters. 
We have also found in experiments that the optimal numbers of clusters used for predictive 
and conditional clustering are different. In this paper, we always optimize both the number of 
conditional and predictive clusters separately, and reoptimize for each technique on each 
training data set. This is a very time consuming task, since each time the number of clusters is 
changed, the models must be rebuilt from scratch. We always try numbers of clusters that are 
powers of 2, e.g. 1, 2, 4, etc. This seems to produce numbers of clusters that are close enough 
to optimal. 

The clusters are found automatically using a tool that attempts to minimize perplexity. 
In particular, for conditional clusters, we try to minimize the perplexity of the training data for 
a bigram of the form P(wi|ci-1), which is equivalent to maximizing 
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1
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For predictive clusters, we try to minimize the perplexity of the training data of P(ci|wi-

1) P(wi|ci). We do not minimize P(ci|wi-1) P(wi|wi-1 ci) because we are doing our 
minimization on unsmoothed training data, and the latter formula would, thus, be equal to 
P(wi|wi-1) for any clustering. If we were to use the method of leaving-one-out (Kneser and Ney, 
1993), then we could use the latter formula, but the approach would be more difficult. Now,  

N

i i

ii

i

ii
N

i
iiii cP

wcP
wP

cwP
cwPwcP

1 1

1

1
1 )(

)(
)(
)(

)|()|(  

  
N

i i

ii

i

ii

cP
cwP

wP
wcP

1

1

1 )(
)(

)(
)(  

  
N

i
ii

i

i cwP
wP
wP

1
1

1

)|(
)(

)(
. 

(17) 

Now, 
)(

)(

1i

i

wP
wP is independent of the clustering used. Therefore, for selection of the best  

clusters, it is sufficient to try to maximize 
N

i ii cwP
1 1 )|( . This is very convenient since it  

is exactly the opposite of what was done for conditional clustering. It means that we can use 
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the same clustering tool for both, and simply switch the order used by the program used to get 
the raw counts for clustering. We give more details about the clustering algorithm in 
Appendix B. 

5. Results and Discussion 

In this section, we will report our main experiments. In Section 5.1, we will describe the text 
corpus we used. In Section 5.2, we will compare the performance of word-based trigram 
models with cluster-based n-gram models. We will give perplexity results of cluster-based n-
gram models alone, as well as of combined models, where the cluster-based n-gram models 
were interpolated with word-based n-gram models. In Section 5.3, we will present a fairly 
thorough comparison of different techniques for using clusters in language model compression. 
We will then show that our novel clustering techniques can produce much smaller models at a 
given level of perplexity. 

5.1 Corpora 
We performed our experiments on both Chinese and Japanese text corpora. In both cases, we 
built language models on training data sets of medial size. We performed parameter 
optimization on a separate set of heldout data, and performed testing on a set of test sets. None 
of the three data sets overlapped. Out-of-vocabulary words were not included in perplexity 
computations. 

For the Chinese corpus, we used the IME corpus for language model training. It is a 
balanced corpus, and it exhibits great variety in domain as well as in style. It was collected 
from the Microsoft input method editor (IME – a software layer that converts keystrokes into 
Chinese character) tasks. It consists of 11 million characters (or 7 million words after word 
segmentation). We used 10,000 words for heldout data, and 20,000 words for testing data. The 
heldout and test data set were every 50th sentence from two non-overlapping sets of an 
independent open test set. The open test set was carefully designed, and contains 
approximately half a million characters that have been proofread and balanced among 
domains, styles, and time [Gao et al., 2001]. The lexicon we used is defined by Chinese 
linguists, with 50,180 entries. The experiments on the Chinese corpus were fairly open tests 
since we used heterogeneous (in terms of domain and style) data sets from different sources 
for language model training and testing. Thus, we assumed that problems due to data 
sparseness and training-test mismatch would be relatively serious. 

For experiments on Japanese language modeling, we used a subset of the Nikkei 
newspaper corpus. In particular, we used the most recent ten million words of the Nikkei 
corpus for training. As in the Chinese case, we used 10,000 words for heldout data, and 
20,000 words for testing data. The heldout and test data sets were every 50th sentence from 
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two non-overlapping sets, taken from another section of the Nikkei corpus. The lexicon we 
used contains 180,187 Japanese words. The experiments on the Japanese corpus were more 
like closed tests since we used homogeneous (at least in terms of style) data sets from the 
same corpus for language model training and testing. We then assumed that data sparseness 
and training-test mismatch would be less serious than they would be for the Chinese corpus. 
We also assumed that the Japanese lexicon was far more complete than the Chinese one. A 
certain number of the entries in the Japanese lexicon are expressions (e.g. of time and date).  

Using the abovementioned Chinese and Japanese text corpora, we sought to test the 
robustness of our clustering techniques for different languages, corpora, and word sets (e.g. 
lexicons). 

5.2 Clustering for language model improvement 
The techniques for finding clusters described in Section 4 were applied to the training corpus 
to determine suitable word clusters. The word clusters obtained were used to define a cluster-
based trigram model and to compute the perplexity on the test sets.  

In the experiments, the clustering technique we used created a binary branching tree 
with words at the leaves. By cutting the tree at a certain level, it was possible to achieve a 
wide variety of different numbers of clusters. For instance, if the tree was cut after the 8th 
level, there would be roughly 2^8=256 clusters. Since the tree would not be balanced, the 
actual number of clusters could be somewhat smaller. Therefore, in what follows, we will use 
the level of the tree to represent approximately the number of clusters, such as 2^1, 2^2, 2^3, 
etc. Many more details about the clustering techniques used are given in Appendix B. 

5.2.1 Using cluster-based trigram models alone 
In the first series of experiments, we used the traditional cluster-based trigram model of 
Equation (6) to compute the perplexity. The results are shown in Table 1 for the Chinese and 
the Japanese corpora. For the sake of comparison, the perplexities of the word trigram models 
are included. In addition, the perplexities of several human defined word clusters sets are 
shown as well. These include (1) the 28 POS tags of the Chinese corpus [Zhou, 1996] and (2) 
the 1428 semantic clusters of the Chinese corpus, which were taken from “ৠН䆡䆡ᵫ” 
(TongYiCi CiLing), a widely used Chinese thesaurus [Mei, 1983]. As shown in Table 1, the 
perplexity was drastically decreased by increasing the number of word clusters. The best 
results on both Chinese and Japanese corpora are still the word-based trigram values. It turns 
out that human defined clusters work much worse than automatically derived clusters with 
similar numbers of word clusters. The results are consistent with those of Ney et al. [1994], 
who observed that for small amounts of training data (100,000 words), hand clustering 
outperformed automatic clustering, but that for larger amounts (1.1 million words), automatic 
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clustering was better. 

Notice that although the perplexity of the hand clustering model is much higher than the 
perplexity of the automatic clustering model, this does not mean that human defined clusters 
are unreasonable or worse than automatically derived clusters. The two cluster sets were 
generated by different criteria and motivations. Hand clustering is usually based on 
semantic/syntactic similarity, while automatic clustering uses the perplexity measurement 
directly. Therefore, the former is more widely used for knowledge systems, such as spoken 
language understanding, while the latter is good for statistical systems, such as speech 
recognition. As shown in table 4, although most of the automatically derived clusters look 
reasonable, there are also clusters which are difficult to interpret from a linguistic point of 
view. 

Table 1. Test set perplexities with cluster-based trigram models. 

Number of clusters  Chinese Japanese 

�A�� ������ �������

�A�� ������ �������

�A�� ������ �������

�A�� ������ �������

�A�� ������ �������

�A��� ������ �������

28 (POS clusters ) ������� �������

1428 (semantic clusters) ������ �������

Word trigram ������ �������

5.2.2 Using combined models 
In the second series of experiments, we used the combined models of Equation (9), where the 
cluster-based trigram model is linearly interpolated with the word-based trigram model. The 
interpolation constant  is optimized on heldout data. The results are shown in Table 2. We 
still used word-based trigram models as baseline systems. It turns out that combined models 
consistently outperform baseline models. Unlike the case shown in the Table 1, the perplexity 
is decreased slowly at first by increasing the number of word clusters. We thus have an 
optimum at about 2^9 clusters for both the Chinese and the Japanese corpus. Beyond these 
numbers, the perplexity increases slightly again. Depending on the corpus, we have different 
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levels of perplexity reduction: about 3% for the Chinese corpus (at 2^9 clusters), and more 
than 10% for the Japanese corpus (at 2^9 clusters).  

Table 2. Test set perplexities with combined trigram models. 

Number of clusters  Chinese Japanese 

�A�� ������ �������

�A�� ������ ������

�A�� ������ ������

�A�� ������ ������

�A�� ������ ������

�A��� ������ ������

�A��� ������ ������

�A��� ������ ������

�A��� ������ ������

Word trigram ������ �������

5.2.3 Using higher-order n-gram models 
While trigram approximation has been proven, in practice, to be reasonable, there is 
disagreement about whether longer contexts can be helpful. This has led to research on using 
n-gram models in which n>3, called higher-order n-grams. Most of the previous experiments 
with higher-order n-grams showed little improvement because of the data sparseness problem. 
For example, [Goodman, 2001] showed that even using a very large corpus for n-gram model 
training (e.g. 280 million words), very small improvements occurred for n-gram models, 
where n is larger than 5. Clustering is an alternative way of dealing with the data sparseness 
problem besides smoothing.  It was, thus, interesting to explore the effectiveness of cluster-
based higher-order n-gram models.  

We performed the third series of experiments on the relationship between cluster-based 
n-gram order and perplexity. We fixed the number of clusters at 2^8, and built a series of n-
gram models, with n ranging from 2 to 20. The cluster-based higher-order n-gram models 
were then linearly interpolated with normal word-based trigram models. The perplexity results 
are shown in Table 3. We can see that although we used training corpora of medial size, 
improvement still occurred even for very high order n-gram models. After 10-gram models 
were used, depending on the corpus, we obtained approximately 10% perplexity reduction for 
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the Chinese corpus, and obtained more than 11% perplexity reduction on the Japanese corpus. 
It then turns out that clustering works significantly better with higher-order n-gram models 
than the traditional smoothing methods as described in [Chen and Goodman, 1999]. 

Table 3. Test set perplexities with cluster-based higher-order n-gram models. 

Order of cluster-based n-gram model Chinese Japanese 

�� ������ ������

�� ������ ������

�� ������ ������

�� ������ ������

�� ������ ������

�� ������ ������

�� ������ ������

�� ������ ������

��� ������ ������

��� ������ ������

��� ������ ������

word trigram ������ �������

5.2.4 Analysis of words in clusters 
We divided the 50,180-entry Chinese lexicon into 2^8� clusters by means of automatic 
clustering. The number of words in each cluster varied greatly from 0 to more than 2000. 
Table 4 gives 11 examples of word clusters. For each cluster from A to C, we randomly 
selected 10 two-character Chinese words, and removed those words that occurred less than 10 
times in the training corpus. For each remaining cluster shown in table 4, we give the top 15 
to 30 two-character Chinese words with the highest frequency (at lest 10 times) in the training 
corpus.  

We can see that most of the words in each cluster belong to the same syntactic class, 
namely, verbs for cluster A, nouns for clusters B and C, etc. Furthermore, there are some 
semantic similarities between the words in a cluster. The majority of the words in cluster A 
are verbs expressing some kind of motion, some of the words in cluster B are titles, and some 
of the words in cluster C are games. There are also words which appear to be in the wrong 
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cluster: words like “earth” and “banquet” are not games, and words like “parsimony” and 
“mournful” are not verbs. Although most of the clusters look reasonable, there are also 
clusters that are difficult to interpret from a linguistic point of view. The other 8 clusters, 
which contain only high frequency words, look quite reasonable. It turns out that, given a 
sufficient large training corpus, the degree to which the clusters capture both syntactic and 
semantic aspects of Chinese is quite impressive although they were constructed from nothing 
more than counts of bigrams. 

Table 4. Most frequent words of some sample clusters from the Chinese corpus. 

Cluster Words 

A 䍄(walk), 亲䎥(run), ༨㝒(rush), 催(climb up), 㗏(overset), 䏇ࡼ
(jump), ⌕⎠(flow), ৱᚰ(parsimony), ޘ✊(mournful), … 

B 㗕Ꮬ(teacher), ܜ⫳(sir), ᇣྤ(miss), ৠᖫ(comrade), ⠊҆(father), ↡҆
(mother), 䅼Ӥ(crusade against), থ䁧(promise), … 

C ㇂⧗(basketball), Ầ⧗(baseball), ЦЧ⧗(ping-pang), 䪙⧗(shot), ഄ⧗
(earth), ᆈӮ(banquet), … 

D 

䖯㸠(conduct), ᓎゟ(build), ᦤߎ(bring forth), ᅲ⦄(accomplish), পᕫ
(gain), ᦤկ(provide), ߎ⦄(advent), ᕫࠄ(annex), ᔶ៤(form), থ⫳
(occur), থ(develop), ѻ⫳(accrue), ᅠ៤(complete), 㦋ᕫ(get), থ㸼
(publish), ߯䗴(create), ীᓔ(convene), ߎᐁ(attend), ᠔᳝(all), … 

E 

㒻㓁(keep on), ݡ(once more), 䞡ᮄ(over again), മއ(determined), 
ϔ(the first time), (several times), 㒣ᐌ(often), 㒋㒋(one after 
another), さ✊(suddenly), ゟे(at once), ߮߮(a moment ago), 䗤⏤
(gradually), ሑᖿ(as soon as possible), Џࡼ(active), ҢЁ(from it), ҆㞾
(personally), ᕏᑩ(thoroughly), ᦤࠡ(advanced), ড(again and again), 偀
Ϟ(immediately), … 

F 

≑䔺(automobile), ⊍(petroleum), ᓎㄥ(architecture), ࠊ䗴
(manufacture), ࡴᎹ(process), 亳ક(food), ࣪ᄺ(chemistry), ࣪Ꮉ(chemical 
engineering), ᴎẄ(mechanics), ᴀഄ(native), ᑓਞ(advertisement), 㟾ぎ
(aerial), ࠊ(manufacture), 㟾(spaceflight), ⼎㣗(demonstration), ⬉
(power), ᳡㺙(garment), 㒎㒛(spinning), 䩶䪕(steel and iron), 䍄⾕
(smuggle), … 
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G 

䞡㽕(important), Џ㽕(dominant), 㕸ӫ(mass), ϔᅮ(certain), ᴀ
(elementary), 䞡(fatal), ᅲ䰙(practical), ϔߛ(the whole), 催ᑺ(high), Ҏ
㉏(mankind), ϔ㠀(general), ԧ(concrete), ḍᴀ(basic), 㞾✊(natural), Ḍ
ᖗ(kernel), ⡍⅞(special), 㞾䑿(oneself), ᅶ㾖(objective), 㞾(respective), 
ଃϔ(unique), ᳔ད(best), 㞾៥(self), ਼ೈ(surrounding), ݯҎ(soldier), 㒱
ᇍ(absolute), ग़ᗻ(historic), ᕐℸ(one another), ᳔Ԣ(lowest), … 

H 

ᑓᎲ(Guangzhou), 䋿ೄ(poor), ⏅ഇ(Shenzhen), ⋹(Tientsin), 㒑㑺(New 
York), फҀ(Nanking), ॺ䮼(Xiamen), 䞡ᑚ(Chongqing), Ꮘ咢(Paris), ϰ࣫
(northeast), 㽓ᅝ(Xi’an), ⽣Ꮂ(Fuzhou), 䭓∳(Yangtze River), ढⲯ乓
(Washington), ϰҀ(Tokyo), ៤䛑(Chengdu), 䖲(Dalian), ⦴⍋(Zhuhai), 
℺∝(Wuhan), ⊓⍋(coastal), 㽓फ(southwest), फᮍ(south), 咘⊇(Yellow 
River), ᭈ乓(put to order), ቅऎ(mountain region), … 

I 

᠔䇧(so-called), ⿄Ў(call), 䁝Ў(call), ৃ䇧(call), িخ(call), ⿄ПЎ(call), 
㟈ߑ(address a letter), 䆘Ў(call), Ҏ⿄(namely), থ㒭(hand out), ⿄
(call), ㋴᳝(have), ো⿄(reputed), 哧(promote by publicity), ᔧ(regard 
as), … 

J 

䖛এ(past), ҹৢ(after), Пৢ(later on), ᔧᯊ(at that time), ϔ(one day), 
ৢᴹ(later on), བҞ(now), Ўℸ(for the purpose), (for the purpose), ᔧ
ᑈ(that year), ᰮϞ(night), ϡЙ(soon), 䴶ࠡ(in front), Пࠡ(before), 䑿Ϟ
(body), 䖭ᯊ(this time), ᢦ㒱(reject), Ё䯈(intermediate), 䱣ৢ(later on), 䙷
(that day), … 

K 

⿃ᵕ(positively), ϡᮁ(constantly), ߚܙ(adequately), 䅸ⳳ(seriously), ᑓ
⊯(widely), ⏅ܹ(deeply), ℷ⹂(correctly), ᳝ᬜ(availably), ⳳℷ(really), 
䗤ℹ(stepwise), عᒋ(healthily), ᯢᰒ(obviously), 䖙䗳(promptly), ϹḐ
(sternly), ᯢ⹂(explicitly), 乎߽(smoothly), ᱂䘡(generally), ⛁⚜(warmly), 
⛁ᚙ(passionately), ড়⧚(reasonably), ঞᯊ(timely), ߛᅲ(practically), 
ད(get better), ᳝(strongly), (greatly), ᰒ㨫(significantly), 㞾㾝
(voluntarily), Ⳍᑨ(correspondingly), … 

5.3 Clustering for language model compression 
As shown in the last subsection, Equation (9) leads to better results (lower perplexities) than a 
simple trigram model does. But at the same time, the combined model is larger, since it 
includes both a cluster-based trigram model and a normal trigram model. In this subsection, 
we will explain how we took memory constraints into consideration, and concentrated our 
experiments on using clustering for language model compression. We performed experiments 
on the three basic cluster-based trigram models described in Section 3, and we found that our 
novel clustering techniques could be combined with language model pruning methods to 



 

 

42              J. Gao et al.  

produce much smaller models at a given level of perplexity than could be produced using 
pruning methods without clustering.  

Since we are seeking the correct balance between memory storage and perplexity, all 
experimental results below are presented in the form of size/perplexity curves. The size was 
measured as the total number of parameters of the language model: one parameter for each 
bigram and trigram one parameter for each normalization parameter  that was needed, and 
one parameter for each unigram. In the pruning experiments, bigrams and trigrams were both 
pruned, unigrams never were. This resulted in the smallest possible number of parameters 
being equal to the vocabulary size, e.g. 50,187 unigrams for Chinese models, and 180,187 
unigrams for Japanese models. 

In our experiments described below, we used Stolcke’s [1998] pruning method to 
produce a series of language models of different sizes. This method is an entropy-based cutoff 
method, and can be considered an extension of the work of Seymore and Rosenfeld [1996] 
and of Kneser [1996].  The basic idea is to remove as many “useless” probabilities as possible, 
and at the same time to keep the perplexity increase as small as possible. This is achieved by 
examining the weighted relative entropy or Kullback-Leibler distance between each 
probability )|( hwP  and its value from the backoff distribution, )|( hwP : 

)|(
)|(

log)|())|(||)|((
hwP
hwPhwPhwPhwPD , (18) 

where h  is the reduced history. When the Kullback-Leibler distance is small, the backoff 
probability is a good approximation, and the probability P(w|h) does not carry much 
additional information and can be deleted. The Kullback-Leibler distance was calculated for 
each n-gram entry, and we removed entries and reassigned the deleted probability mass to 
backoff mass for any n-gram entry whose deletions increased the Kullback-Leibler distance 
by less than a specified threshold value.  Compared to the traditional count cutoff methods, 
Stolcke pruning performed a little better [Goodman and Gao, 2000]. More importantly, the 
Stolcke method could prune a model to a specific size, simply by finding the threshold level 
that resulted in a model of that size. For all the models, we used a smoothing method called 
modified absolute discounting for backoff. We give more details about Stolcke pruning and 
modified absolute discounting in Appendix A.  

We then performed a number of experiments to compare our different models.  In these 
experiments, the baseline system was the word-based trigram model.  

5.3.1 Predictive clustering 
We first used predictive clustering of Equation (10). The results are shown in Figures 1 and 2. 
It turns out that we got the best result at about 2^6 clusters for both the Chinese and Japanese 
corpora. Depending on the corpus, compared to the baseline systems, at the same size, we got 
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a maximum 6.6% perplexity reduction for the Chinese corpus, and a maximum 5.1% 
perplexity reduction for the Japanese corpus; at the same perplexity, we got a maximum 54% 
size reduction for the Chinese corpus, and a maximum 57% size reduction for the Japanese 
corpus. We notice that for these two corpora, although we got the best result at 2^6 clusters 
for both of them, the results at other numbers of clusters (e.g. 2^4, 2^7) were very different. 
For the Chinese corpus, all the predictive clustering models performed about the same. For the 
Japanese corpus, models at larger numbers of clusters performed much better than models at 
small numbers of clusters (e.g. 2^4). In general, with our clustering, when there was only a 
small amount of training data, the clusters became less useful. Perhaps this was because there 
was a more serious data sparseness problem for the Chinese corpus, and many parameters 
were out of training, thus larger clusters did not bring benefits. As for the Japanese corpus, the 
data sparseness problem was much less serious, so a large number of clusters led to significant 
perplexity reduction. 

We also tried to set different pruning threshold values for the two components of the 
predictive clustering models. We could not obtain any improvement. Therefore, in what 
follows, we will always assume that we used the same pruning threshold value for both 
components in the predictive clustering and combined clustering models. 

5.3.2 Conditional clustering 
We used the conditional clustering of Equation (11). As shown in Figures 3 and 4, the results 
for the two languages are qualitatively very similar. The performance was consistently 
improved by increasing the number of clusters. But no conditional clustering model was 
superior to the baseline model. This is not surprising because the conditional clustering model 
always discards information for predicting words, and even with smoothing, it does not bring 
any additional benefits.  
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Figure 1 Comparison of predictive models applied with 
different numbers of clusters to the Chinese corpus. 
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Figure 2. Comparison of predictive models applied with 
different numbers of clusters to the Japanese corpus. 
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Figure 3 Conditional models applied with different numbers 
of clusters to the Chinese corpus. 
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Figure 4 Comparison of conditional models applied with 
different numbers of clusters to the Japanese corpus. 

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2.0E+06

100 110 120 130 140 150 160 170 180

perplexity

si
ze

2^10
clusters

2^12
clusters

2^14
clusters

Baseline:
Word
Trigram



 

 

48              J. Gao et al.  

5.3.3 Combined clustering 
We also used the combined clustering of Equation (12). As mentioned earlier, we can use 
different numbers of cluster for predictive clusters and conditional clusters. This leads to a 
very large number of possible parameter settings. We presented detailed analysis of the 
parameter settings of the combined clustering model in [Goodman and Gao, 2000]. In this 
paper, we will only report the results of some sample parameter settings.  

For the Chinese corpus, as shown in Figure 5, we set the number of predictive clusters 
to 2^4, 2^6, and 2^8, and set the number of conditional clusters to 2^12, 2^14, and 2^16. We 
then built a large number of models. Rather than graph all the points of all the models, we 
show only the outer envelope of the points for each number of predictive clusters in Figure 5. 
That is, if for a model with a given number of predictive clusters, there was some other point 
with the same number of predictive clusters (and perhaps a different number of conditional 
clusters) with both lower perplexity and smaller size than the first model, then we did not 
graph the first, worse point. We show the outer envelope of the size/perplexity curves of 2^4, 
2^6, and 2^8 predictive clusters.   

For the Japanese corpus, as shown in Figure 6, we do not show the outer envelopes as in 
Figure 5. Instead, we show results of the top three best parameter settings we obtained; for 
instance, (2^4, 2^12) represents the combined cluster-based trigram model with 2^4 predictive 
clusters and 2^12 conditional clusters.  

It turns out that, for the Japanese corpus, the best combined clustering models 
outperformed the baseline model. At small model sizes, we got the best result at 2^14 
conditional clusters and 2^6 predictive clusters. At large model sizes, we got the best result at 
2^12 conditional clusters and 2^4 predictive clusters. We achieved the maximum 6.5% 
perplexity reduction at the same size, and the maximum 40% size reduction at the same 
perplexity. But for the Chinese corpus, no improvement over the baseline model was achieved 
until we used models with very large numbers of conditional clusters. This is not difficult to 
explain. Recall that predictive clustering is a special case of combined clustering. Actually, in 
most combined clustering models for Chinese, it turns out to be no less optimal to use 
conditional clusters than the vocabulary size, i.e., no conditional clustering.  

Now, consider the IBM clustering of Equation (6), which is a special case of the 
combined clustering model. As shown in Figure 6, the performance is by far the worst, 
roughly an order of magnitude worse than the performance of the other approaches.  We 
hypothesized that this was because the IBM model throws away too much useful information.  
We thus tried a variation on the IBM model:  

)|()|()1()|( 121212 iiiiiiiiii cccPcccwPwwwP . (20) 
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This model is just like the standard IBM model, but it also conditions the probability of 
the word on the previous clusters.  We compared this model with a standard IBM model.  The 
results are shown in Tables 5 and 6. It turns out that, for the Chinese corpus, models in the 
form of Equation (20) consistently outperformed the standard IBM models (e.g. we achieved 
4% perplexity reduction at 2^9 clusters), while for the Japanese corpus, they worked about the 
same.  Notice that in these experiments, no pruning was done.   

We summarize the results of all the experiments described in this subsection in Figures 
7 and 8. It is clearly seen that our novel clustering techniques produce much smaller models 
than do previous methods (i.e. baseline systems) at the same perplexity level. In addition, 
several more conclusions can be drawn: 

1. Conditional clustering did not help for either the Chinese or the Japanese corpus since it 
always discards information. 

2. For closed tests on homogeneous text corpora (e.g. the Japanese corpus), both 
combined clustering and predictive clustering outperformed the baseline system 
consistently. Combined clustering is better at small model sizes, while predictive 
clustering is better at larger sizes.  

3. For open tests on heterogeneous text corpora (e.g. the Chinese corpus), predictive 
clustering outperformed the baseline system consistently. Although the results presented 
in this paper show that combined clustering achieved no improvement, in [Goodman 
and Gao, 2000], we showed that with more sophisticated techniques, it appears possible 
to make combined clustering better than predictive clustering.  
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Figure 5 Comparison of combined clustering models 
applied with different numbers of clusters to the Chinese 
corpus. 
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Figure 6 Comparison of combined clustering models 
applied with different numbers of clusters to the Japanese 
corpus and the IBM model. 

 
Table 5. Comparison of different combined trigram models applied to the Chinese 
corpus. 

Number of clusters  Equation (9) Equation (20) 

�A�� ������ 226.65 

�A�� ������ 224.65 

�A�� ������ 224.29 

�A�� ������ 224.99 

�A��� ������ 226.53 

�A��� ������ 228.26 

�A��� ������ 230.95 

�A��� ������ 234.78 

word trigram ������ 242.74 
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Table 6. Comparison of different combined trigram models applied to the Japanese 
corpus. 

Number of clusters  Equation (9) Equation (20) 

�A�� ����� 97.06 

�A�� ����� 96.42 

�A�� ����� 96.33 

�A�� ����� 96.41 

�A��� ����� 96.82 

�A��� ����� ������

�A��� ����� ������

�A��� ����� �������

word trigram ������ �������
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Figure 7 Summary of the results obtained by applying 
clustering models to the Chinese corpus. 
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Figure 8 Summary of the results obtained by applying 
clustering models to the Japanese corpus. 

6. Conclusion 

Cluster-based n-gram models are variations on traditional word-based n-gram models. They 
attempt to make use of the similarities between words. In this paper, we have presented an 
empirical study on clustering techniques for Asian language modeling. While the majority of 
the previous research on word clustering has focused on how to get the best clusters, we have 
concentrated our research on the best way to use the clusters. We have studied in detail three 
cluster-based n-gram models, namely, predictive clustering, conditional clustering, and 
combined clustering. In our experiments, clustering was used to improve the performance (i.e. 
perplexity) of language models as well as to compress language models. We performed 
experimental tests on a Japanese newspaper corpus of more than 10 million words, and on a 
Chinese mixed-domain corpus of more than 7 million words. Results show that our novel 
techniques worked much better than previous methods. They not only showed better 
performance when interpolated with normal n-gram models, but could also be combined with 
Stolcke pruning to produce models much smaller than unclustered models with the same 
perplexity level.  

Most language modeling improvements reported previously required significantly more 
space than the normal trigram baseline model, or had higher perplexity. Their practical value 
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is questionable. In this paper, we have proposed a technique that results in lower perplexity 
than the traditional trigram models do at every memory size. In other research [Gao et al., 
2001], we have shown that cluster-based models of this form can be applied effectively to 
pinyin to Chinese character conversion. One area we consider promising for future research is 
the combination of human defined and automatically derived clustering.  While human 
defined clusters alone generally work worse than automatically derived clusters, there has 
been little research on their combination. It is an open question whether such a combination 
can lead to further improvements. 
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A. Methods of Trigram Training 

We will describe methods for language model training below. These include the modified 
absolute discounting smoothing method and Stolcke’s entropy-based pruning method.  

Absolute Discounting 
Trigram Language models make the assumption that the probability of a word depends only 
on the identity of the immediately two preceding words, say P(wi|w1 w2�… wi-1)  P(wi|wi-2 wi-

1).  

Smoothing is used to address the problem of data sparseness. Experimental results show 
that a novel variation of absolute discounting, Kneser-Ney smoothing, consistently 
outperforms all others [Chen and Goodman, 1999]. However, because Kneser-Ney smoothing 
is less commonly used, slightly more difficult to implement, and, we suspect, may not work as 
well when pruning is done, we used a slightly different technique in this research, modified 
absolute discounting.  First, we will describe basic absolute discounting.  Letting D represent 
a discount, we set the probability as follows: 
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0)(:
1

0)(:
12

12

12

12

)|(1

)|(1
)(

iiii

iiii

wwwCw
iiabsolute

wwwCw
iiiabsolute

ii wwP

wwwP
ww

. (22) 

The trigram backs off to the bigram, and the bigram backs off to the unigram.  The 
unigram does not need to be smoothed although it can be smoothed with the uniform 
distribution.  In practice, different D’s are used for the bigram and trigram.   

A further improvement is to use multiple discount D. Taking the trigram as an example, 
D1 stands for counts 1)( 12 iii wwwC , D2 for 2)( 12 iii wwwC , and a final one, D3 for 

3)( 12 iii wwwC . Chen and Goodman [1999] introduced an estimate for the optimal D for 
absolute discounting smoothing as a function of training data counts1. In practice, we can use 
Equation (23) to Equation (26) to approximately estimate the optimal values for D1, D2, and 
                                                 
1 Thanks to Ries, K. 
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D3:  
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where n1, n2, n3, and n4 are total numbers of trigrams with exactly one, two, three, and four 
counts, respectively.  

Notice that for the experiments conducted in this study, we did not use this 
approximation, but instead optimized the discounts on heldout data. This led to very limited 
improvement. 

Entropy-based Pruning 
Stolcke [1998] proposed a criterion for pruning n-gram language models based on the relative 
entropy between the original and the pruned model. The relative entropy measure can be 
expressed as a relative change in training data perplexity. All n-grams that change perplexity 
by less than a threshold are removed from the model. 

Formally, let P denote the trigram probabilities assigned by the original model, say 
P=P(wi|wi-2wi-1), and let P�’= P(wi| wi-1) denote the probabilities in the pruned model, 
assuming that we have pruned the trigram probability.  Then, the relative entropy between the 
two models is 
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where )(' 12 ii ww  is the revised backoff weight after pruning. Recall that )( 12 ii ww is 
estimated by Equation (22), and that )(' 12 ii ww is obtained by dropping the term for the 
pruned trigram (wi-2wi-1wi) from the summation in both numerator and denominator. 

B. Clustering Algorithm 

There is no shortage of techniques for generating clusters, and there appears to be little 
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evidence that different techniques that optimize the same criterion result in significantly 
different quality of clusters. We note, however, that different algorithms may require 
significantly different amounts of run time. We used several techniques to speed up our 
clustering significantly. 

The basic criterion we followed was to minimize entropy. In particular, we assumed that 
the model we were using was of the form P(z|Y); we wanted to find the placement of words y 
into clusters Y that minimized the entropy of this model. This is typically done by swapping 
words between clusters whenever such a swap reduces the entropy. 

The first important approach we took to speeding up clustering was a top-down 
approach. We note that agglomerative clustering algorithms – those which merge words 
bottom up – may require significantly more run time than top-down, splitting algorithms. 
Thus, our basic algorithm is top-down. However, in the end, we sometimes perform four 
iterations of swapping all words between all clusters. Notice that for the experiments reported 
in this paper, we used the basic top-down algorithm without swapping. 

Another technique we used is Buckshot [Cutting et al., 1992]. The basic idea is that 
even with a small number of words, we are likely to have a good estimate of the parameters of 
a cluster. Therefore, we proceeded top down, splitting clusters. When we were ready to split a 
cluster, we randomly picked a few words, and put them into two random clusters, and then 
swapped them in such a way that entropy was decreased, until convergence occurred (no more 
decrease could be achieved). Then we added a few more words, typically 2  more, put each 
one into the best bucket, and then swapped again until convergence occurred. This was 
repeated until all words in the current cluster had been added and split. We haven’t tested this 
particularly thoroughly, but our intuition is that it should lead to large speedups. 

We used one more important technique that speeds up computations, adapted from an 
earlier work by [Brown et al., 1992]. We attempted to minimize the entropy of our clusters. 
Let v represent words in the vocabulary, and let W represent a potential cluster. We minimize 

v

WvPWvC )|(log)( . 

The inner loop of this minimization considers adding (or removing) a word x to cluster 
W. What will the new entropy be? On its face, this would appear to require computation 
proportional to the vocabulary size to re-compute the sum. However, letting the new cluster W 
+ x be called X, 

0)(|0)(|

)|(log)()|(log)()|(log)(
xvCvxvCvv

XvPXvCXvPXvCXvPXvC .         (28) 

The first summation in Equation 28 can be computed relatively efficiently, in an amount 
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of time proportional to the number of different words that follow x; it is the second summation 
that needs to be transformed: 
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Now, notice that 
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and that 
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Substituting Equation 30 and 31 into Equation (29), we get 
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Now, notice that 
v

WvPWvC )|(log)(  is just the old entropy, before adding x. 

Assuming that we have pre-computed/recorded this value, all the other summations only sum 
over words v for which C(xv) > 0, which, in many cases, is much smaller than the vocabulary 
size.   

Many other clustering techniques [Brown et al., 1992] attempt to 

maximize
ZY ZP

ZYPYZP
, )(

)|(log)( , where the same clusters are used for both. The original 

speedup formula uses this version, and is much more difficult to minimize. Using different 
clusters for different positions not only leads to marginally lower entropy, but also leads to 
simpler clustering. 
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Abstract 

This paper proposes a three-tier prosodic hierarchy, including prosodic word, 
intermediate phrase and intonational phrase tiers, for Mandarin that emphasizes the 
use of the prosodic word instead of the lexical word as the basic prosodic unit. Both 
the surface difference and perceptual difference show that this is helpful for 
achieving high naturalness in text-to-speech conversion. Three approaches, the basic 
CART approach, the bottom-up hierarchical approach and the modified hierarchical 
approach, are presented for locating the boundaries of three prosodic constituents in 
unrestricted Mandarin texts. Two sets of features are used in the basic CART method: 
one contains syntactic phrasal information and the other does not. The one with 
syntactic phrasal information results in about a 1% increase in accuracy and an 11% 
decrease in error-cost. The performance of the modified hierarchical method 
produces the highest accuracy, 83%, and lowest error cost when no syntactic phrasal 
information is provided. It shows advantages in detecting the boundaries of 
intonational phrases at locations without breaking punctuation. 71.1% precision and 
52.4% recall are achieved. Experiments on acceptability reveal that only 26% of the 
mis-assigned break indices are real infelicitous errors, and that the perceptual 
difference between the automatically assigned break indices and the manually 
annotated break indices are small. 

1. Introduction 

The state-of-the-art text-to-speech (TTS) systems are able to produce very natural synthesized 
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speech if they are provided with a correct phonetic string and with prosodic features extracted 
from human pronunciation of the string [Chu and Lu, 1996; Dutoit et al., 1996]. Automatic 
prosody generators, however, cannot yet deliver high quality prosody. One of the main 
obstacles to automatic generation of prosody is the difficulty of identifying the hierarchical 
prosodic constituents from texts automatically. It has been proven through many experiments 
[Liberman and Prince, 1977; Gee and Grosjean, 1983; Selkirk, 1984; Ladd and Campbell, 1991] 
that prosody constituents are not always identical to those of the surface syntax. The 
relationship between prosody and syntax is not well understood. While, representing prosodic 
constituents by means of syntactic constituents directly cannot produce very natural prosody, 
the boundaries of prosodic constituents can be derived from syntactic information. Some early 
studies used rules to parse prosodic structures. Stochastic models have been used more 
frequently in recent studies. In some works [Wang and Hirschberg, 1991; Hirschberg and Prieto, 
1996;  Lee and Oh, 1999], break indices have been predicted using the automatic classification 
and regression tree(CART) from information such as four-word part-of-speech(POS) windows, 
pitch accent types, the sentence length, the distance from the beginning of the sentence and the 
end of the sentence, etc. A Markov model is used in works done by Veilleux et al. [Veilleux et 
al., 1990], which predicts the most likely sequence of break indices from the input POS 
sequence based on the assumption that the current index is only related to the previous index. 
Ostendorf and Veilleux [Ostendorf and Veilleux, 1994] proposed a hierarchical stochastic 
model for locating prosodic boundaries. Most of the publications on locating prosodic 
boundaries have focused on alphabet-based languages, such as English, which are very different 
from Mandarin in nature.   Chou et al. [Chou et al., 1996; Chou et al., 1998] presented a 
top-down procedure for labeling break indices in Mandarin from both acoustic features, such as 
f0, duration and energy, and features derived from text transcriptions. They reported that the 
acoustic features are helpful for predicting prosodic phrases. Since the prosodic boundary 
detecting approach presented in this paper is meant to be used in the Mandarin TTS system, 
where no acoustic features are available, only features that can be derived from text 
transcriptions will be used.  

There are many reports specifying various hierarchical structures for prosodic 
constituents. The intonational phrase (INP) and the intermediate phrase (IMP) are the most 
commonly accepted levels in English. An English sentence consists of a sequence of INPs and 
each INP, in turn, is composed of a sequence of IMPs. INPs should have boundary tones at their 
ends, and IMPs are theoretically marked with phrase accents. Both types of phrases are cued by 
lengthening of the final syllables. With the above definition of prosodic hierarchy in English, 
studies have been done on predicting either one of the two prosodic phrases or both. The two 
prosodic constituents have been referred to as the major phrase and minor phrase in some papers. 
The word is used as the basic unit in all prosodic-phrase detecting algorithms in English. 
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Though Ostendorf and Veilleux [Ostendorf and Veilleux, 1994] mentioned the usefulness of 
considering the prosodic word (LW) rather than the lexical word (LW) as possible sites for 
break indices, they did not use them in their prosody model since it was difficult to define PWs 
relative to LWs. Most prosody related studies on Mandarin [Chou et al., 1996; Shen and Xu, 
2000] have borrowed the two levels of prosodic phrases from English. In addition to the IMP 
and the INP, Chou et al. [Chou et al., 1998] defined a breath group boundary and a prosodic 
group boundary for short paragraphs. The two groups often contain more than one simple 
sentence. In this paper, only prosodic constituents smaller than sentences will be studied. Only 
the INP and the IMP are kept. However, our study shows that the PW word is a very important 
prosodic unit for Mandarin. The surface difference and perceptual difference between the PW 
and the LW will be introduced in Section 2. These differences show that using PWs instead of 
LWs as the basic unit of prosody will lead to improved naturalness of the synthesized speech. 
Thus, in our approach, a three-tier hierarchy is defined for prosody below the sentence level in 
Mandarin. The PW is the lowest constituent in the prosodic hierarchy. The middle tier is the 
IMP, which has a perceptive minor break at the end. The INP is the top tier with a major break at 
the end. The concepts of phrase accent and boundary tone in English are not easy to use in the 
definition of the IMP and the INP in Mandarin since Mandarin is a tonal language. The degree 
of break becomes the main cue for identifying them in real speech. The aim of this study was to 
locate the boundaries for the three-tier prosodic constituents automatically in unrestricted 
Chinese texts, using only information that can be derived from the texts.  

The remainder of this paper is organized as follows. Section 2 discusses the surface 
difference and perceptive difference between the PW and the LW. Section 3 defines the 
three-tier prosodic constituents in Mandarin. Section 4 presents the three approaches to locating 
prosodic boundaries. Experiments and results are given in Section 5. Section 6 gives 
conclusions.  

2. Prosodic Word vs. Lexicon Word 

Since in many Asian languages, such as Chinese, Japanese or Korean, texts do not contain any 
visual cues for word boundaries, word segmentation becomes a basic requirement for almost all 
text analyses in these languages. Many studies had been done on word segmentation. Chinese 
has a very flexible list of words. The size of the lexicon used for word segmentation changes 
from 40,000 items to several hundreds of thousands of items. Most Chinese characters are 
words by themselves and also parts of longer words. The length of a word in characters ranges 
from 1 to 10 or more. However, in spoken Chinese, there exists a disyllabic rhythm. Succeeding 
mono-character words are often uttered as one disyllabic unit of rhythm, and long words are 
often uttered as several units. The unit of rhythm in Mandarin is referred as the prosodic word, 
which is defined as a group of syllables that should be uttered closely and continuously. 
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Although, in real speech, not all boundaries of PWs have breaks, it is tolerable if there is a break 
at the end of each PW. However, any inner PW break will make the speech unintelligible or 
unnatural. To distinguish then from PW, words listed in a lexicon used in word segmentation are 
referred to as lexical words. A PW may contain one or more LWs and it may also be only part of 
an LW. For example, in the Chinese sentence, “我买了一本好书 (I brought a good book),”  each 
character itself is an LW. Yet, in natural speech, the sentence is grouped as “我\买了\一本\好
书.”  There are four PWs. Since a PW is formed dynamically according to the context, many 
possible combinations of characters exist in real texts. It is impossible to list all the PWs in a 
lexicon as has been done for LWs. However, PW strings can be predicted from LW strings 
[Qian et al., 2001].  

In an exploratory experiment, three annotators were asked to label the PW boundaries in 
1348 utterances, with text transcriptions provided for these utterances. Table 1 lists the main 
guidelines for labeling PWs in speech. PW boundaries were labeled by both listening to the 
utterances and reading the text transcriptions. A 96.9% agreement ratio was achieved across 
three of them. The agreement ratio among at least two of them reached 99.9%. The high 
agreement ratio shows consistency in PW labeling across different people.  

Table 1. The main guidelines for labeling PWs by listening to the utterances and 
reading the text transcriptions. 

1. 
A disyllabic or tri-syllabic LW is a PW if it has no 
proclitic or enclitic. Otherwise, it forms a PW with 
its clitic. Examples of enclitics are “的、了、着、
（楼）上、（地）下、（物理）学、（革命）性”；
examples of proclitics are “副（所长）、半（正式）.” 

2. A mono-syllabic LW often forms a PW with the 
LW coming before or after it. Only when a 
mono-syllabic LW is lengthened enough to 
balance the disyllabic rhythm does it become a 
mono-syllabic PW. 

3. All LWs containing more than 3 syllables should 
be segmented into several disyllabic or tri-syllabic 
PWs according to their structures. When there are 
proclitics or enclitics, the clitics merge into the 
first or last PW in the long LW. 

Comparing LW boundaries obtained by a well developed word segmentation tool with the 
PW boundaries labeled manually, we found that only 70.7% of the LW boundaries coincided 
with the PW boundaries, and that 6.4% of the PW boundaries are not LW boundaries. Figure 1 
shows the histogram of the lengths of PWs and LWs counted in a large corpus. It can be seen 
that there are less mono-syllabic PWs than mono-syllabic LWs because most of the 
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mono-syllabic LWs form disyllabic or tri-syllabic PWs with their neighbors dynamically. Only 
1.3% of the PWs contain more than three characters, and the longest PW found in the corpus 
contains 5 characters. They are often disyllabic or tri-syllabic LWs followed by several clitics, 
such as “煮熟的了吗？” The higher ratio of disyllabic PWs shows that the PWs reflects the 
disyllabic rhythm in Mandarin better than the LWs. If speech is synthesized from LWs, the high 
ratio of mono-syllabic words will decrease the level of naturalness achieved. 

 

 
Figure 1 Histogram of lengths of PWs and LWs in number of 
characters. 

To investigate the differences between PWs and LWs from the perceptual point of view, a 
preference experiment was conducted. Speech waveforms were synthesized from two types of 
input by the MSRCN Mandarin TTS engine [Chu et al., 2001]: 

A. Sentences were segmented into LW strings, and the LW was used as the basic unit for 
prosody. 

B. Sentences were segmented into PW strings, and the PW was used as the basic unit for 
prosody. 

108 pairs of synthesized speech were played to 15 subjects, who were asked to choose a more 
natural utterance from each pair. The preference percentages for type A and type B utterances 
were 21% and 79%, respectively. Speech synthesized from PW strings sounds significantly 
better than that synthesized from LW strings.  

Both the surface difference and perceptual difference between LWs and PWs show that 
segmenting a sentence into a string of LWs precisely is far from sufficient to generate natural 
and beautiful prosody in Mandarin TTS systems; it is necessary to re-segment LW strings into 
PW strings.  
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3. Prosodic Constituents in Mandarin 

As noted in Section 2, it is very helpful to use the PW instead of the LW as the basic prosody 
unit. A three-tier instead of the conventional two-tier prosodic hierarchy is defined for a 
sentence in Mandarin. A sentence consists of one or more INPs. An INP is decomposed into 
several IMPs and the building blocks for an IMP are PWs. The PW is the lowest constituent in 
the hierarchy. An INP boundary necessarily coincides with an IMP boundary, and an IMP 
boundary is inevitably a PW boundary, but the opposite is not true.  

Though prosodic constituents should have some relationships with syntactic constituents, 
the relationships between them are unclear.  Figure 2 shows an example sentence “在这里我见
到了作曲家王酩 (We saw Wangming, a composer, here),” which is decomposed into a 
syntactic hierarchy and a prosodic hierarchy. The differences between them are obvious.  

A corpus with both prosodic and syntactic labeled structures was prepared.  Three-level 
prosody boundaries were labeled manually after listening to the speech and reading the text 
transcriptions. Details about the labeling process will be given in Section 5.1. A block-based 
robust dependency parser [Zhou, 2000] was used to parse all these sentences into syntactic trees. 
On one hand, only 56.9% of the INP boundaries and 56.4% of the IMP boundaries coincided 
with the boundaries of top-level syntactic phrases. On the other hand, less than half of the 
top-level syntactic phrase boundaries were INP boundaries. Figure 3 shows the percentage of 
syntactic phrase boundaries that coincided with INP boundaries for 7 major syntactic phrase 
tags. Since great mismatching exists between prosodic phrases and syntactic phrases, directly 
mapping syntactic phrases to prosodic phrases will cause many unsuitable breaks in synthesized 
speech. Section 4 will present three approaches to locating prosodic boundaries. 
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(a) 

 
(b) 
 

Figure 2 (a) The prosodic hierarchy and (b) the syntactic 
hierarchy for the sentence, “在这里我见到了作曲家王酩 
(We saw Wangming, a composer, here).” 
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Figure 3 The percentage of syntactic phrase boundaries that 
coincided with INP boundaries for 7 major syntactic phrase 
types. NP - Noun phrase; VP - Verb phrase; IP - Preposition 
phrase; LP - Post-position phrase; DP - Frame structure; 
AP - Adjective phrase; FP - Adverb phrase. 

4. Approaches to Locating  Prosodic Boundaries  

Though, representing prosodic structures by means of syntactic structures directly cannot 
produce very natural prosody, syntactic information is still helpful for detecting prosodic 
boundaries. POS has been used in many studies on prosodic phrase prediction. Veilleux et al. 
[Veilleux et al., 1990] modeled prosodic group labels and phrase breaks as a six-state Markov 
chain. Both first- and second- order Markov models were investigated. They reported that using 
the second-order model did not improve the results. Taylor and Black [Taylor and Black, 1998] 
used the Markov model in a different way. In their model, state observation probabilities were 
estimated using a POS sequence model, and the state transition probabilities were estimated 
using a phrase break model. Wang and Hirschberg [Wang and Hirschberg, 1991] used CART to 
predict INP boundaries. In Ostendorf and Veilleux’ s study [Ostendorf and Veilleux, 1994], 
CART was used to determine the probability of the occurrence of a minor break at some 
locations, and a hierarchical stochastic model was used to find the prosodic parse with the 
highest probability. The Markov model based approaches are based on the assumptions that the 
current break index is only related to previous indices, and that the state probability and 
transition probability can be estimated from POS tags of the word sequences. It is difficult to use 
other syntactic information and length information of phrases and sentences in them. CART 
based approaches were used in our studies because they can handle data samples with high 
dimensions, mixed data types and nonstandard data structures. CART based methods also have 
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the advantage of being comprehensible in the prediction phase. Three predicting models will be 
presented in this section, and two sets of features will be applied in the training of CART.  

Since many Chinese sentences do not have exclusive solutions for LW segmentation and 
it is possible to have breaks inside some long LWs, each character in a text is assumed to be 
followed a potential boundary site (PBS). Four break indices (BI) are used to label the types of 
PBS. BI0 represents a non-boundary site. If a PBS is only a PW boundary, it is labeled BI1. BI2 
represents an IMP boundary, and BI3 represents an INP boundary.  The problem of locating 
boundaries of prosodic constituents is then changed to the problem of predicting BI for each 
PBS. 

4.1 The basic CART method 

CART is used to predict BI for each PBS first. In early CART based approaches [Wang and 
Hirschberg, 1991; Ostendorf and Veilleux, 1994], features that took continuous values or many 
discrete values were classified into a limited number of categories first to prevent the 
excessively dense trees. In many cases, this was done by experts according to their experiences. 
The number of categories and the way of doing classification would affect the final results. In 
our approach, the composite-question construction technique [Huang et al., 2001] is used to 
generate complex questions for the tree. The construction of composite questions not only 
enables flexible clustering of discrete variables, but also produces complex rectangular 
partitions for continuous variables. Thus, only simple questions about the details of all the 
features are presented for growing the tree in the training phase.  

4.2 The bottom-up hierarchical approach 

In the basic CART method, the four BI are treated as being the same, although they have  
hierarchical relationships. Error analyses show that, sometimes, a BI3 or BI2 is assigned to a 
non-boundary PBS. This kind of error will decrease not only the naturalness, but also the 
intelligibility of the synthesized speech. Since PW boundaries can be predicted from LW 
boundaries with pretty high accuracy [Qian et al., 2001], a bottom-up hierarchical approach was 
proposed. In the new approach, PW boundaries are first detected from all PBS. Then, IMP 
boundaries are detected only from PBS that are judged to be PW boundaries. Finally, INP 
boundaries are picked up only from the predicted IMP boundaries. Figure 4 shows the flowchart 
of the hierarchical approach. Three CARTs were trained separately to make boundary or 
non-boundary decisions for PWs, IMPs and INPs, respectively. The training procedures for the 
three CARTs were the same as that described in Section 4.1. However, the data used for training 
were different. To train the PW-CART, all the PBS with BI0 were treated as non-boundary 
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samples and all the others were boundary samples. To train the IMP-CART, only PBS with BI1 
were used as non-boundary samples, and those with BI2 and BI3 were boundary samples. To 
train INP-CART, only PBS with BI2 were used as non-boundary samples, and PBS with BI3 
were boundary samples.  

 
 

Figure 4 Flowchart of the bottom-up hierarchical 
approach for detecting boundaries of prosody 
constituents. 

 
Table 2. The average length (ALC) of PWs IMPs and INPs, and their correlation 
coefficients (CCO) with the lengths of their carrying sentences.  

 PW IMP INP 
ALC 2.2 3.3 6.7 
CCO 0.059 0.155 0.488 
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Figure 5 The probability of a PBS being an INP boundary in 
terms of its distance to the beginning and the end of a 
sentence. 

4.3 The modified hierachical approach 

In the above two approaches, INP boundaries and IMP boundaries are often confused. We have 
found that the lengths of sentences in characters, a very important factor that affects the 
positions of INP boundaries, has not been used sufficiently. The correlation coefficients 
between the lengths of PWs, IMPs and INPs and the lengths of their carrying sentences, and the 
average lengths of the three prosodic constituents are listed in Table 2. It can be seen that the 
length of a PW is uncorrelated with the length of its carrying sentence. The length of an IMP is 
weakly correlated with the length of its carrying sentence, and the length of an INP is positively 
correlated with the length of its carrying sentence and tends to increase with it. Statistical results 
show that the location of an INP boundary is not only related to the length of its carrying 
sentence, but is related to its distance to the beginning and the end of the sentence. Figure 5 
shows two curves revealing the relationship between the probability of a PBS being an INP 
boundary and its distance to the beginning and the end of its carrying sentence. It  is obvious that 
the PBS at the middle part of a sentence has a higher probability of being an INP boundary than 
those at the beginning or the end of the sentence. A modified hierarchical approach is proposed 
based on this observation and another assumption that finding the most likely location for INP 
boundaries in a sentence one by one is more accurate than finding all INP the boundaries in one 
loop. In the modified approach, the PW and IMP detecting procedures are the same as those 
described in Section 4.2. However, the INP detecting procedure is modified to be a recursive 
detecting method. The output of INP-CART is no longer a boundary or non-boundary decision. 
Instead, a probability of a PBS being an INP boundary (denoted as BP ) is generated. The use of 
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INP-CART is similar to that in Ostendorf and Veilleux’ s works. BP  for each leaf of the CART 
is calculated during the training phase. It is defined as the number o f boundary samples over the 
number of total samples in the leaf. In the prediction phase, when a leaf is selected for an input 
PBS, its BP  is output as the probability of the PBS being an INP boundary. A confidence 
measure (denoted as ConfM) for a PBS being an INP boundary is defined by equation (1): 

endstartB PPPConfM **= ,      (1) 

where startP  and endP  are the probabilities of the PBS being an INP boundary in terms of its 
relative distance to the beginning and the end of the sentence. Their values are defined by the 
two curves shown in Figure 5, when the distance is smaller than 20. Otherwise they are equal to 
1.  

The recursive INP boundary detecting algorithm is decomposed into four steps. 

Step1: ConfM values are calculated for all PBS that have been detected as IMP boundaries by 
the IMP-CART. BI3 is assigned to the one with the highest ConfM value, if its ConfM 
value is larger than the pre-set threshold ConfMθ . If no PBS with a ConfM value larger 

than ConfMθ  is found, go to Step 4. 

Step2: Split the sentence into two parts at the found INP boundary. 

Step3: Repeat Step1 and Step 2 for the two new sub-sentences recursively until all paths reach 
Step 4. 

Step4: Stop. 

The performance changes with the value of ConfMθ , and it is set according to previous 
experience or experiments. In our case, the best result was achieved when 105.0=ConfMθ .  

5. Experiments 

Experiments using the three methods described in Section 4 were carried out on a large speech 
corpus. The speech corpus, features used, and results from the experiments will be discussed in 
this section. 

5.1 Speech corpus 

Since there was no public Mandarin speech database available for this study, we designed and 
collected a large phonetically and prosodically enriched Mandarin speech corpus. The corpus 
contains about 12,000 utterances (sentences), which were uttered by a professional female 
speaker. Prosodic indices BI1 to BI3 were annotated manually by listening to these utterances 
and reading the text transcriptions. BI1 was annotated according to the guidelines listed in Table 
1. BI2 and BI3 were labeled according to the breaks heard. When a minor break was perceived, 
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a BI2 was assigned. When a major break was heard, a BI3 was assigned. BI2 and BI3 were 
assumed to correspond to IMP and INP boundaries, respectively. The end of each utterance was 
labeled with BI3, and each non-boundary PBS was labeled with BI0 automatically. 

To check consistency of annotation across different people, an exploratory experiment 
was carried out. Three annotators were first trained on the same 100 sentences. At this stage, 
they were required to discuss criteria for annotation so that they could achieve agreement on 
most of the annotations in the 100 sentences. Then, they were asked to annotate a small subset of 
the corpus, which included 1,348 sentences and 1,8983 PBS. All three annotators achieved 
agreement on 82.9% of BIs, and 99.1% of BIs were agreed to by at least two of them. That is to 
say pretty good consistency existed among the three annotators. To reduce costs, the whole 
speech corpus was only annotated by one of them.  

Investigating the relationship between BI types and punctuation, such as commas, colons 
and semicolons, we found that there were altogether 5,718 items of punctuation in the corpus 
(full stops at the ends of sentences were excluded), 5,693 (99.6%) of which were related to BI3 
and the rest related to BI2. These kinds of punctuation are referred to as breaking punctuation 
(BP). Since BPs almost always imply INP boundaries, no learning process is needed for them. 
All PBS with BPs were assigned to BI3. This has been done in many Mandarin TTS systems. 
However, placing major breaks only at PBS with BPs is not adequate for synthesizing high 
quality speech. The ability to predict INP boundaries at PBS without BPs is more important. 
Thus, accuracy for INP boundaries is calculated using two constraints in this paper. In one 
constraint, all predicted INP boundaries, including INP boundaries at PBS with BPs, are 
considered. In the other constraint, only INP boundaries at PBS without BPs are taken into 
account.  

Most of the early studies on detecting prosodic phrases experimented on small databases. 
Wang and Hirschberg used a 298-utterance corpus, and Ostendorf and Veilleux used 312 
sentences in their experiments. Only a limited number of INP boundaries can be found in such 
small corpora. Thus, only a few features can be used in the training and testing phase to avoid 
sparsity of training data. A larger training and testing data set was used in this study. 2,583 
sentences with 38,499 characters from the corpus we collected were used for training, and 
another 1,000 sentences with 15,618 characters were used for testing.  

5.2 Feature set  

Although both acoustic f eatures [Wightman and Ostendorf, 1994; Chou et al., 1998], such as f 0, 
duration and energy, and syntactic features [Hirschberg and Prieto, 1990; Wang and Hirschberg, 
1991; Ostendorf and Veilleux, 1994; Lee and Oh, 1999 ], such as POS tags and syntactic phrasal 
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information, have been used to label break indices, only features that can be derived from texts 
were used in this study. The reason is that no acoustic feature is available when we predict 
prosodic boundaries in TTS systems. Two feature sets with or without syntactic phrasal 
information were used. Set 1 is the one without syntactic phrase information. Features used in 
Set 1 are listed as follows: 

1) POS for LWs around each PBS are the most commonly used features in prosodic phrase 
prediction. A window of three words is used in our approach: two words before and one 
after the PBS.  26 POS tags are used. Among them, 9 are the normal POS tags used by 
Zhou’ s parser [Zhou, 2000]. The others are characters or words that often have special 
effects on prosodic boundaries. These characters and words are obtained through data 
analyses and should be considered individually. All 26 tags are listed in Table 3. 

 
Table 3. The 26 POS tags used in our experiments 
Tags Explanation Tags Explanation Tags Explanation 

N Noun Char1 Mono-syllabic LW 
“电” 

Char 
10 

Mono-syllabic LW 
“从” 

V Verb Char2 Mono-syllabic LW 
“中” 

Word1 Disyllabic LW “但是” 

A Adjective Char3 Mono-syllabic LW 
“后” 

Word2 Disyllabic LW “目前” 

F Adverb Char4 Mono-syllabic LW 
“的” 

Word3 Disyllabic LW “今天” 

DM Place name Char5 Mono-syllabic LW 
“在” 

Word4 Disyllabic LW “短波” 

RM Person name Char6 Mono-syllabic LW 
“于” 

Word5 Disyllabic LW “简讯” 

QM Organization 
name 

Char7 Mono-syllabic LW 
“了” 

Word6 Disyllabic LW “接着” 

E-I-L
-J 

Auxiliary, 
preposition, 

post-preposition 
and junction 

Char8 Mono-syllabic LW 
“等” 

Word7 Disyllabic LW “就是” 

Other All other POS Char 9 Mono-syllabic LW 
“着” 

  

 
2) The length in characters of the LW in the window is very important for predicting PW 

boundaries. It takes 5 discrete values: 1- 4 represent LWs containing 1-4 characters, 
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respectively. 5 represents all LWs containing more than 4 characters. 
3) The distance in characters from the current PBS to the beginning or the end of a sentence. 

The shorter one among the two is used. As shown in Figure 5, the lengths are divided into 
four groups, which are <=2, 3-6, 7-10 and >10, respectively. 

4) The lengths in characters of the carrying sentences are divided into three groups, which 
are <=10, 11-20 and >20, respectively. 

 Set 2 contains all the features in set 1 and the phrasal features listed below:  

1) Whether the current PBS is a top-level major syntactic phrase boundary or not. 
2) The phrase category for the carrying phrase of the current PBS. The 7 categories 

used by Zhou [Zhou, 2000] are used. The seven phrase categories are NP - Noun 
phrase; VP - Verb phrase; IP - Prepositional phrase; LP - Post-position phrase; DP - 
Frame structure; AP - Adjective phrase; FP - Adverb phrase. 

3) The length of the carrying phrase of the current PBS. The lengths are divided into 
five groups, which are <=5, 6-10, 11-15, 16-20 and >20, respectively. 

 

5.3 Evaluation criteria 

There is no commonly accepted measure for evaluating the performance of prosodic parsers. 
Wang and Hirschberg used accuracy. Accuracy reflects the average performance in both 
breaking and non-breaking cases. However, what we really care about is the performance in 
breaking cases. Furthermore, the ratio of the number of breaking samples to that of 
non-breaking samples greatly affects the overall accuracy. For example,  95% and 94% 
accuracy for English and Spanish were reported by Hirschberg and Prieto. However, from the 
CART prediction tree for Spanish given in their paper, we find that only about 16.4% of the total 
samples had breaks. That is to say if all the samples are predicted to be non-breaking, then 
83.6% accuracy is still obtained. The same measure was used by Lee and Oh in their 
experiments on Korean. Only 85% accuracy was reported. We find the reason for the drop in 
accuracy is that their testing set contained many more breaking samples (37%). Several 
measures were used together for evaluation in Taylor and Black’ s study. They were 
breaks-correct, the ratio of correctly predicted breaks to all real breaks, junctures-correct, which 
is the same as the accuracy measure used by Wang and Hirschberg, and juncture-insertion, the 
total number of insertion errors over the number of data. Juncture-insertion is not an efficient 
measure. In this study, four measures were used together to evaluate performance. Precision and 
recall were calculated for each BI type separately, and they are defined by equation (2) and (3), 
respectively: 

)(/)(Pr pjcpjj BCountBCounte =  ,      (2) 
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)(/)(Re rjcpjj BCountBCountc =  ,      (3) 

where j = 0, 1, 2 or 3 denotes the type of BI, )( pjBCount  is the total number of predicted 
boundaries for BIj, )( cpjBCount  is the number of BIj that are predicted correctly and 

)( rBCount  is the number of real BIj.  

Overall accuracy for all BI is calculated using equation (4): 

∑∑
==

=
3

0

3

0
)(/)(

j
rj

j
cpj BCountBCountAccu  .       (4) 

In our study, we found that different types of errors would reduce the naturalness of the 
synthesized speech to different extents. The larger the BI error, which is defined as the 
difference between the assigned index and the real one, the larger the decrease in quality. 
Therefore, an overall error cost is defined by equation (5): 

∑= )( ii ECountWErrCost  ,      (5) 

where iE  represents the case where the number of BI errors equals i.  In our case, only three 
types of errors, 1E , 2E  and 3E , exist. )( iECount  is the total number of iE errors, and iW  
represents the weight for iE . In this study, 5.01 =W , 12 =W   and 23 =W . 

5.4 Results 

5.4.1 Basic CART method 
CART was trained with both feature sets over the same training set. Only simple questions 
about each individual category of each feature in the feature set were provided manually. 
Composite questions were constructed automatically. A composite question was formed by first 
growing the tree with several simple questions and then clustering the leaves into two sets 
[Huang et al., 2001].  Multiple OR and AND were used to form a composite question for each 
set. In our case, the depth for search a composite question was five split. The growing of the tree 
stopped when 40 composite questions had been formed. We have compared the results from 20, 
40 and 60 composite questions. 40 was better than 20 in most cases. However, 60 was not better 
than 40. Thus, 40 composite questions were used in all the training phases for CART in this 
study. 

The four measures obtained by testing the CARTs growing from the two feature sets are 
listed in Table 4. Column BI3NP shows the precision and recall for BI3 at PBS without BPs. 
The precision and recall for BI3 in this column is more meaningful than that in column BI3. 
According to Table 4, feature set 2 produced 1% increase in overall accuracy and 11% decrease 
in the error cost, compared to set 1. Table 4 also shows that syntactic phrasal information 
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benefited the precision and recall results for BI2 and BI3 more. However, this improvement was 
achieved at the cost of using a syntactic parser in on-line systems. Furthermore, the online 
syntactic parse cannot always provide reliable phrasal information. The phrasal information 
used in this study was checked manually. If the tags generated from the syntactic parser had 
been used directly, much worse results would have been obtained. Thus, only feature set 1 was 
used in the experiments with the other two approaches. 

Table 4. The performance of prosodic boundary prediction with the basic CART 
method for the two feature sets. 

5.4.2 Bottom-up hierarchical method 
The three CARTs shown in Figure 4 were trained separately from the same training set. Only 
feature set 1 was used. The precision and recall results for each individual CART are listed in 
Table 5. The integrated results are listed in Table 6. A significant decrease in the precision and 
recall performance for BI1, BI2 and BI3 were observed when the outputs from the three CARTs 
were integrated. The reason may be that errors from PW-CART were promulgated into IMP- 
and INP-CART, and errors from IMP-CART were promulgated into INP-CART. Comparing 
Table 6 and Table 4, the same overall accuracy was obtained on feature set 1. However, a 7.2% 
reduction in the error-cost was achieved, which means that errors with larger BI differences 
were reduced.   

Table 5. The performance of each individual CART. 
 PW-CART IMP-CART INP-CART 

Precision (%) 95.74 80.96 84.77 
Recall (%) 96.15 87.68 64.90 

 

 

 

Feature set Evaluation Criteria BI0 BI1 BI2 BI3 BI3NP 
precision(%) 93.19 63.95 57.41 81.12 65.66 

recall(%)  95.92 69.1 55.68 59.43 39.47 
overall accuracy (%) 82.48  

Set 1 

overall error-cost 1694.5  
precision(%) 95.01 65.06 57.77 83.67 69.85 

recall(%)  95.98 66.13 64.18 60.22 40.64 
overall accuracy (%) 83.41  

Set 2 

overall error-cost 1508  
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Table 6. The integrated results for the bottom-up hierarchical method. 

Feature set Evaluation Criteria BI0 BI1 BI2 BI3 BI3NP 
precision(%) 95.30 65.61 53.27 81.44 67.48 

recall(%)  95.73 58.57 65.61 62.58 44.17 
overall accuracy(%) 82.49  

Set 1 

overall error-cost 1590  

5.4.3 Modified hierarchical method 
The three CARTs trained as described in Section 5.4.2 were also used in this modified version. 
BI1 and BI2 were predicted step by step as described in the previous section. However, INP 
boundaries were predicted using the recursive method described in Section 4.3. The final results 
are listed in Table 7. Comparing Table 7 with Table 6, the precision and recall performance for 
BI0 and BI1 are unchanged and that for BI2 and BI3 are improved. A 0.6% increase in overall 
accuracy and a 5.6% reduction in the error-cost are observed. The best precision and recall 
performance was obtained for BI3 at PBS without BP. All these improvements show that the 
recursive prediction method benefits the prediction of BI3. 

Table 7. The performance of BI assignment at PBS using the modified hierarchical 
approach. 
Feature set Evaluation Criteria BI0 BI1 BI2 BI3 BI3NP 

precision(%) 95.30 65.61 54.70 82.68 71.12 
recall(%) 95.73 58.57 65.61 68.10 52.41 

overall accuracy (%) 82.99  
Set 1 

Overall error-cost 1550.5  

5.5 Experiment on acceptability 

While manually annotated break indices are used as a reference for evaluating the results 
obtained using automatic methods, they are not the only correct indices since the same sentence 
can be spoken in different ways by human. Two experiments were conducted to evaluate the 
acceptability of the mis-assigned BI.  

5.5.1 Experiment 1 
All the errors generated by the modified hierarchical method were presented to three subjects. If 
at least two of them thought that the mis-assigned break index was acceptable, then, it was 
considered as a felicitous error. Otherwise, it was considered as an infelicitous error. Among the 
2,657 errors, only 698 (26.3%) were infelicitous. 



 

 

Locating Boundaries for Prosodic Constituents in Unrestricted Mandarin Texts      79 

5.5.2 Experiment 2 
100 sentences in the testing set were used in this experiment. Two sets of waveforms were 
synthesized using a data-driven TTS system [Chu et al., 2001]. Set A was synthesized from the 
scripts with manually annotated break indices, and Set B was generated from the scripts with the 
automatically labeled break indices. The two versions of synthetic waveforms of one sentence 
formed two pairs of stimuli in the sequence AB, BA. The 200 stimuli were played to 12 subjects, 
who had to select one from each pair that sounded more natural. The preference rate was 
calculated as  ∑= )(/)( jjj TcountTcountP  ,     
            (6) 

where  )( jTcount  is the total number of times type jT  is preferred; j=A or B.  

The preference rates for the two sets of synthetic sounds are shown in Figure 6. It can be 
seen that AP  was higher than BP , but that the difference between them was not very large. This 
result shows that our automatic method generated rather natural break indices, which were 
acceptable in most cases. 

 
Figure 6 Preference rates for the two types of synthesized 
speech. TA, speech synthesized from scripts with manually 
annotated BI; TB, speech synthesized from scripts with 
automatically generated BI. 

 

5.6 Discussion 

Three approaches have been proposed in this section for locating the three-tier prosodic 
boundaries in unrestricted Mandarin texts. Because of differences in language, training and 
testing corpora, and the definition of prosodic constituent to be predicted, comparing results 
obtained in different experiments is not easy. The overall accuracy (83%) achieved in our study 
is not as high as that reported by Hirschberg and Prieto (95%), Lee and Oh (85%). However, 
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their experiments only involved making decisions between breaks and non-breaks. However, 
three levels of prosodic boundaries were detected in this study. Another reason for the drop in 
overall accuracy is the difference in the ratio of the number of break samples to that of 
non-break samples. In Hirschberg and Prieto’ s experiment, about 16.4% of the total samples 
were breaks. That is to say, if all the testing data are assigned a non-break index, then 83.6% 
accuracy can still be obtained. In Lee and Oh’ s experiment in Korean, the 37% break samples 
caused a significant drop in accuracy. In our testing data, only 54% were non-boundary samples. 
Thus, the 83% overall accuracy for the four BI is not poor performance. In all the previous 
studies, punctuation was used as a very important feature. However, we found that a piece of 
breaking punctuation almost always implied an INP boundary. Thus, predicting boundaries 
from non-punctuation PBS should be the focus of studies on locating boundaries. The precision 
and recall results obtained in several studies on BI3 at PBS with or without BP are listed in 
Table 8. We derived these results from the tables listed in their papers. From Table 8, the 
advantages of our method for PBS without BP are obvious. 
 
Table 8. A comparison of the performance achieved in predicting major breaks with 
previous results. A “+” means that the corresponding number can not be derived from 
the original paper. 

Comparing 
condition 

Evaluation 
Criteria 

Hirschberg   
and Prieto 

Lee and Oh Taylor and 
Black 

Ours 

Precision 92.3% 77.1% 72.3% 82.68% BI3 
Recall 72.4% 85.4% 79.3% 68.10% 

Precision  72.1% + 49.3% 71.12% BI3NP 
Recall  31.5% + 54.7% 52.41% 

 

6. Conclusion 

This paper has proposed a three-tier prosodic hierarchy, which emphasizes the use of the PW 
instead of the LW as the basic prosodic unit. Both the surface difference and perceptual 
difference show the advantages of this prosodic hierarchy. Three approaches to locate the 
boundaries of prosody constituents in unrestricted Mandarin texts have been presented. The 
syntactic phrasal information produced a 1% increase in accuracy and an 11% decrease in the 
error cost for the basic CART method. The improved hierarchical method achieved the best 
performance on feature set 1. It also produced the best performance in finding INP boundaries. 
The two acceptability experiments revealed that only 26.3% of the mis-assigned break indices 
were actually infelicitous errors, and that the perceptual difference between the automatically 
assigned break indices and the manually annotated break indices was not large.  
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In this study, modified hierarchical approach, INP-CART was used to generate the 
probability of each PBS being a boundary. It may not be the best algorithm for generating this 
probability. A better algorithm may be found in our future work.  
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Automatic Translation Template Acquisition Based on 
Bilingual Structure Alignment1 
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Abstract 

Knowledge acquisition is a bottleneck in machine translation and many NLP tasks.  
A method for automatically acquiring translation templates from bilingual corpora 
is proposed in this paper. Bilingual sentence pairs are first aligned in syntactic 
structure by combining a language parsing with a statistical bilingual language 
model. The alignment results are used to extract translation templates which turn 
out to be very useful in real machine translation.  

Keywords: Bilingual corpus, Translation template acquisition, Structure alignment, 
Machine translation 

1. Introduction 

Bilingual corpora have been recognized as a valuable resource for knowledge acquisition in 
machine translation and many other NLP tasks. To make better use of them, bilingual corpora 
are often aligned first. Intensive researches have been done on sentence and word level 
alignment  [Brown et al. 1991, Church 1993, Ker et al. 1997, Huang et al. 2000]. These 
alignments have been proven to be very useful in machine translation, word sense 
disambiguation, information retrieval, translation lexicon extraction, and so on. With a 
sentence aligned parallel English-Chinese corpus ready in hand, this paper extends word-level 
alignment to syntactic structure alignment with the aim of acquiring structural translation 
templates automatically. 
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Numerous researches have been done to acquire knowledge from bilingual corpora. 
Many of these studies aimed to acquire word or phrase translation lexicons [Shin et al. 1996, 
Fung et al. 1997, Ralf 1997, Turcato 1998]. This paper focuses on the automatic learning of 
translation templates, which are especially useful for machine translation. In [Guvenir et al. 
1998], [Malavazos et al. 2000] and [Cicekli et al. 2001], analogical models were proposed to 
learn translation templates. By grouping similar translation examples and replacing their 
difference with a variable, they could obtain translation templates. Structure alignment has 
been studied by several researchers for use in structural translation template acquisition. Most 
of the approaches have followed what may be called a “parse-parse-match” procedure [Wu 
1997]. The main idea is that each language of the parallel corpus is first parsed individually 
using a monolingual grammar, and then the corresponding constituents are matched using 
some heuristic procedures. The works by [Kaji et al. 1992], [Almuallim et al. 1994], 
[Grishman et al. 1994], [Matsumoto et al. 1995], [Meyers et al. 1998], [Watanabe et al. 2000] 
etc. can be considered such approaches. Differences between them are in their parsing 
grammars and heuristic procedures. Kaji and Watanabe used phrase structure grammar, while 
Grishman employed a regularized syntactic structure. The dependency structure is used in 
most of the other systems. In [Watanabe 1993], bilingual structure matching was used to 
improve the existing transfer rules by comparing in incorrect translation and correct 
translation. Wu [Wu 1995a, Wu 1997] proposed a bilingual language model to represent a 
bilingual corpus and parse bilingual sentences simultaneously. Because of the lack of a 
suitable bilingual grammar, their system is used to acquire phrase translation examples, not 
templates. In all these studies, structure-aligned bilingual corpora were shown to be very 
useful for translation knowledge acquisition. 

The method proposed in this paper differs from the previous approaches in two ways: (1) 
The bilingual structure alignment is based on a bilingual language model and uses only one 
language parsing result. Compared with the “parse-parse-match” procedure, monolingual 
parsing is particularly suitable when there is no robust parser for one of the languages (such as 
Chinese). (2) The translation templates we acquire are integrated with the processes of 
transfer and generation, which are the usual two phases in machine translation systems. Two 
types of templates are obtained: structure translation templates and word selection templates.  

This paper is organized as follows: In the next section, we propose a bilingual structure 
alignment algorithm by combining a language parsing with a statistical bilingual language 
model. Then, the learning of translation templates is described in section 3. A translation 
experiment based on the acquired knowledge is described in section 4. We conclude our work 
in section 5. Although this paper is related to English-Chinese structure alignment and 
template acquisition, the proposed method is also applicable to other language pairs because it 
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is language independent. 

2. Bilingual structure alignment using monolingual parsing 

The “parse-parse-match” procedure for bilingual structure alignment is susceptible to three 
weaknesses: [Wu 1995a] 

 Appropriate, robust, monolingual grammars may not be available for both languages. This 
is the case when Chinese is one of the languages. 

 The parsing grammars used in the two languages may be incompatible. 
 The process of selecting between multiple possible arrangements may be arbitrary. 

To overcome these weaknesses, Wu [Wu 1995d, Wu 1997] has proposed a bilingual 
language model called the Inversion Transduction Grammar  (ITG), which can be used to 
parse bilingual sentence pairs simultaneously. Subsection 2-1 will give a brief description. For 
details please refer to [Wu 1995a, Wu 1995b, Wu 1995c, Wu 1995d, Wu 1997]. Based on this 
model, a bilingual structure alignment algorithm guided by one language parsing will be 
presented in subsection 2-2.  

2.1 ITG bilingual language model  

The Inversion Transduction Grammar is a bilingual context-free grammar that generates two 
matched output languages (referred to as L1 and L2). It also differs from standard context-free 
grammars in that the ITG allows right-hand side production in two directions: straight or 
inverted. The following examples are two ITG productions: 

C -> [A B], 
C -> <A B>. 

In the above productions, each nonterminal symbol stands for a pair of matched strings. 
For example, the  nonterminal A stands for the string-pair (A1, A2). A1  is a sub-string in L1, and 
A2 is A1’ s corresponding translation in L2. Similarly, (B1, B2) denotes the string-pair generated 
by B. The operator [ ] performs the usual concatenation, so that C ->  [A B] yields the 
string-pair (C1, C2), where C1=A1B1 and C2=A2B2. On the other hand, the operator <> performs 
the straight concatenation for language 1 but the reversing concatenation for language 2, so 
that C -> <A B> yields C1=A1B1, but C2=B2A2. The inverted concatenation operator permits the 
extra flexibility needed to accommodate many kinds of word-order variation between source 
and target languages [Wu 1995b]. 

There are also lexical productions of the following form in ITG: 

                                 A -> x/y, 
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which means that a symbol x in language L1 is translated by the symbol y in language L2. The 
x, y may be a null symbol e, which means there may be no counterpart string in the other 
language.  

Parsing, in the case of an ITG, means building matched constituents for an input 
sentence-pair. For example, Figure 1 shows an ITG parsing tree for an English-Chinese 
sentence-pair.  The inverted production is indicated by a horizontal line in the parsing tree. 
The English text is read in the usual depth-first left to right order, but for the Chinese text, a 
horizontal line means the right sub-tree is traversed before the left. The generated parsing 
results are: 

(1)  a. [[[The game]BNP [[will start ]VBP [on Wednesday]PP ]VP ]S .]S 

b. [[比赛 [星期三 开始]VP ]S 。]S 

We can also represent the common structure of the two sentences more clearly and 
compactly with the aid of <> notation: 

(2) [[[The/e game/比赛]BNP < [will/e start/开始]VBP [on/e Wednesday/星期三 ]PP >VP ]S ./。]S  

where the horizontal line from Figure 1 corresponds to the <> level of bracketing. 

. 

S 

BNP 

BVP PP 

VP 

The/e game/比赛 

will/e start/开始 on/e Wondesday/星期三 

S 

./。 

 
Figure 1 Inversion transduction grammar parsing tree. 

Any ITG can be converted to a normal form, where all productions are either lexical 
productions or binary-fanout nonterminal productions [Wu 1995b, Wu 1995c, Wu 1997]. If 
probability is associated with each production, the ITG is called the Stochastic Inversion 
Transduction Grammar (SITG). 

Because of the difficulty of finding a suitable bilingual syntactic grammar, a practical 
ITG is a generic Bracketing Inversion Transduction Grammar (BTG), which has been used by 
Wu in several experiments on bilingual bracketing and to extract phrasal translation examples 
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[Wu 1995a, Wu 1995b, Wu 1995c]. BTG is a simplified ITG that has only one nonterminal 
and does not use any syntactic grammar. A Statistical BTG (SBTG) grammar is as follows: 

j
b

i
b

ji
baa veAeuAvuAAAAAAA ejieij /    ;/   ; /    ;    ];[ ⎯→⎯⎯→⎯⎯→⎯><⎯→⎯⎯→⎯ .  

SBTG employs only one nonterminal symbol A that can be used recursively. Here, “a” 
denotes the probability of syntactic rules. However, since those constituent categories are not 
differentiated in BTG, it has no practical effect here and can be set to an arbitrary constant. 
The remaining productions are all lexical. bij is the translation probability that source word ui 
translates into target word vj. bij can be obtained using a statistical word-translation 
lexicon[Wu 1997] or statistical word alignment[Lü et al. 2001]. The last two productions 
denote that the word in one language has no counterpart in another language. A small constant 
can be chosen for the probabilities bie and bej.   

In BTG, no language specific syntactic grammar is used. The maximum-likelihood 
parser selects the parse tree that best satisfies the combined lexical translation preferences, as 
expressed by the bij probabilities. Because the expressiveness characteristics of ITG naturally 
constrain the space of possible matching in a highly appropriate fashion, BTG achieves 
encouraging results for bilingual bracketing using a word-translation lexicon alone [Wu 
1995a]. 

Since no syntactic knowledge is used in SBTG, output grammaticality can not be well 
guaranteed. In particular, if the corresponding constituents appear in the same order in both 
languages, both straight and inverted, then lexical matching does not provide the 
discriminative leverage needed to identify the sub-constituent boundaries. For example, 
consider an English-Chinese sentence pair: 

(3) English: That old teacher is our adviser. 
Chinese: 那个老教师是我们的顾问。 

The SBTG parsing tree is shown in Figure 2(a), and the corresponding bracketing result 
is shown in Figure 2(b). The result does not accord with the syntactic structure as we expected. 
In this case, grammatical information about one or both of the languages can be very helpful. 
For example, if we know the English parsing result shown in (a) in Figure 3, then the bilingual 
parsing can be determined easily; the result should be that shown in (b), and the corresponding 
bracketing result is that shown in (c). 
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. 
 
 
 
 
 
 
 
 
 (b) [[[[[[The/那个 old/老] teacher/教师] is/是] our/我们的] adviser/顾问] ./。] 

That/那个 old/老 

./。 

teacher/教师 

is/是 

our/我们的 
adviser/顾问 (a) 

 
Figure 2 Bilingual parsing with SBTG. 

 

 (a) English parsing: [[That old teacher]BNP [is [our adviser]BNP ]VP .]S 
 
 
 
 
 
 
 
 
 (c) [[That/那个 old/老 teacher/教师]BNP [is/是 [our/我们的 adviser/顾问]BNP ]VP ./。]S 

(b) 

That/那个 old/老 teacher/教师 
is/是 

our/我们的 adviser/顾问 

./。

S 

BNP VP 

BNP

 
Figure 3 Bilingual parsing guided by English parsing. 

 

Statistics in a corpus of 20,000 word-aligned sentence-pairs indicates that nearly 72% of 
the sentence-pairs contain the corresponding constituents, which include more than three 
continuous sub-constituents in identical order. These constituents often lead to ungrammatical  
parsing with SBTG. Therefore, it is necessary to introduce a language grammar in ITG instead 
of not using any grammar as in BTG. 
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2.2 Integrating monolingual parsing with a bilingual language model 

From the above discussion, we can see that if one language parser is available, then the 
bilingual bracketing result can be more grammatical. This is important for syntactic 
translation template acquisition.  

English parsing methods have been well studied. We have also developed an 
incremental English parser using statistic and learning methods [Meng et al. 2001]. A 
structure alignment algorithm guided by English parsing will be described in this section.  

Here, structure alignment guided by English parsing means using an English parser’ s 
bracketing information as a boundary restriction in the ITG language model. But this does not 
necessarily mean parsing the other language completely according to the same parsing 
boundary. If a parsing structure is fixed according to one language, it is possible that the 
structure is not linguistically valid for the other language under the formalism of Inversion 
Transduction Grammar. To illustrate this, see the example shown in Figure 4.  

The sub-trees for each blacked underlined part are shown in Figure 4(a) and (b). We can 
see that the Chinese constituents do not match the English counterparts in the English 
structure. In this case, our solution is that shown in Figure 4 (c): the whole English constituent 
of “VP” is aligned with the whole Chinese correspondence; i.e., “eat less bread” is matched 
with “少吃面包.”  At the same time, we give the inner structure matching according to SITG 
regardless of the English parsing constraint. An “X” tag is used to indicate that the 
sub-bilingual-parsing-tree is not consistent with the given English sub-tree. 

 

If you want to lose weight, you had better eat less bread . 

如果 你 想 减轻 体重，最好 少  吃  面包  。 

                     

eat 
less bread 

VP 

BNP

吃   少     面包 
 (a) 

少 吃 

面包

BVP 

VP 

 (b) 

VP 

eat/吃 less/少 
bread/面包 

X 

 (c) 

 
Figure 4 An example of mismatched sub-trees. 
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The main idea is that the given parser is only used as an boundary constraint for 
bilingual parsing. When the constraint is incompatible with the bilingual model ITG, we use 
ITG as the default result. This process enables parsing go on regardless of some failures in 
matching.  

We heuristically define a constraint function Fe(s, t) to denote the boundary constraint, 
where s is the beginning position and t is the end. There are three cases of structure matching: 
violate match, exact match and inside match. Violate match means the bilingual parsing 
conflicts with the given English bracketing boundary. (1,2), (1,3), (2,3), (2,5) etc. in the 
following English sentence (4) are examples. We assign a minimum Fe(s, t) (0.0001 at present) 
to prevent the structure match from being chosen when an alternative match is available. 
Exact match means the match falls exactly on the English parsing boundary, and we assign a 
high Fe(s, t) value (10 at present) to emphasize it. (1,6), (2,5), (3,5) are examples. (3,4), (4,5) 
are examples of inside match, and the value 1 is assigned to these Fe(s, t) functions. 

(4)                [She/1 [is/2 [a/3 lovely/4 girl/5] ] ./6]    

[Wu 1997] introduced an algorithm to compute an optimal parsing tree for a given 
sentence-pair using dynamic programming (DP). This algorithm is similar in spirit to the 
recognition algorithm of HMM [Rabiner 1989] and to the parsing algorithm of PCFG [Lari et 
al. 1990]. The difference from the usual PCFG parsing is that the DP in SITG parses a 
sentence-pair simultaneously rather than a sentence only. The basic idea of DP is to divide a 
problem into several sub-problems, and to calculate the final solution according to the 
solutions of the sub-problems. In bilingual parsing, dynamic programming is used to calculate 
the bilingual parsing tree of a sentence-pair by decomposing it into several 
sub-bilingual-parsing-trees of sub-string-pairs. The whole process is that of calculating the 
local optimization function from the sub-parsing-tree to the whole parsing tree, recording the 
preceding path and back tracking along the best path in the end. 

Let the input English and Chinese sentences be Tee ,...1  and Vcc ,...1 . As an 
abbreviation we write tse ...  for the sequence of words tss eee ..., ,21 ++ , and similarly write 

vuc ... . The local optimization function ]/[max),,,( .... vuts cePvuts =δ denotes the maximum 
probability of sub-parsing-tree of node q and that both the sub-string tse ...  and vuc ...  derive 
from node q. Thus, the best parser has the probability ),0,,0( VTδ . In [Wu 1995b], 

),,,( vutsδ was calculated as the maximum probability combination of all possible sub-tree 
combinations as given below:  
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where S is the split point used to break tse ...  into two constituent sub-trees, Sse ...  and tSe ... . 
U is the split point used to break vuc ...  into two constituent sub-trees, Uuc ...  and vUe ... .The 
condition 0))(())(( ≠−−+−− UvuUStsS  serves to specify that the sub-string in one, but 
not both languages may be split into an empty string. Because ITG permits production in two 
directions, the combination of sub-trees has two corresponding directions. We use [] and <> to 
denote the straight and reverted production, respectively. 

We integrate the constraint function Fe(s, t) into the local optimization function to insert 
English parsing constraints in bilingual parsing. The computation of the local optimization 
function is modified as follows:  
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    (2) 

The other symbols in the algorithm are defined as follows: )/( vt ceb is the probability of 
translating English word te  into Chinese word vc  obtained from word alignment [Lü et al. 
2001]. We assign a minimal probability (0.0001 at present) to empty word alignment b( eet / ) 
and b( vce / ). ),,,( vutsθ , ),,,( vutsσ  and ),,,( vutsγ are variables used to record the 
production direction, the split point in English and the split point in Chinese, respectively, 
when ),,,( vutsδ  is achieved. These variables are used to reconstruct the bilingual parsing 
tree in the final step. Suppose node q = (s,t,u,v); then, ),,,( vutsλ = )(qλ is the nonterminal 
label of q. LEFT(q) is the left sub-tree of q, and RIGHT(q) is the right sub-tree of q. 

The algorithm is as follows: 

1. Initialization 

V1,1                 ),/(),1,,(
V1,1                 ),/(),,,1(
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≤≤≤≤=−
≤≤≤≤=−
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v
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δ
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2. Recursion 
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3.  Reconstruction 
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After the bilingual parsing tree is created, the post-process consisting of rotation and 
flattening operations is used to restore the fanout flexibility [Wu 1997].  

Using this improved SITG (ISITG), we can obtain the bilingual parsing result shown in 
Figure 3(b) for the given sentence-pair (3); when SBTG is used, the parsing result is that 
shown in Figure 2. Comparing the two results, we can see that by integrating English parsing 
constraints into ITG，the bilingual parsing becomes more grammatical. In the next section, we 
will give a quantitative experimental comparison of SBTG with ISITG. 

It should be pointed out that the proposed algorithm can also be used with 
one-language-partial parsing, as well as with both-language parsing.  

2.3 Experiments on bilingual structure alignment 

To find out how important it is to include at least one language parsing, four experiments were 
carried out using (1) no parser (E+C); (2) only an English parser (E-parsing+C); (3) an 
English parser and a Chinese base phrase parser (E-parsing+C-base); (4) an English parser 
and a Chinese parser (E-parsing+ C-parsing). Experiment (1) followed the model of SBTG, 
and the other three experiments used ISITG. 

The test set consisted of 2,000 English-Chinese bilingual  sentence-pairs. 1,000 of the 
sentence pairs were collected from English textbooks for junior and senior middle school or 
college. The others came from the machine translation evaluation corpus of the Institute of 
Computational Linguistics at Peking University [Duan et al. 1996]. The lengths of the English 
sentences varied from 4 to 25 words. The test sentence pairs were first aligned at the word 
level based on statistics and a lexicon [Lü et al. 2001]. The English sentences were parsed 
using an incremental parser [Meng et al. 2001]. Both the word alignment and the English 
parsing were post revised manually. The Chinese parser used here is being developed by our 
research group. The whole parsing results are not yet robust with a precision of less than 80%. 
But its first stage—base phrase parsing— is quite good with a precision rate of 91.1%[Zhao 
et al. 2000]. The Chinese parsing results were not manually revised. 

We evaluated the structure alignment results using a syntactic criterion. This means the 
matching must be grammatical. For example, for the sentence pair shown below:  

(5)  English:  The student will get a pen .  
Chinese:  这学生将得到一支钢笔。 

the matchings “The student <--> 这学生”, “will get<-->将得到”, and “a pen <-->一支钢笔” are 
grammatical, while “student will<-->学生将” and “get a<-->得到一支” are ungrammatical. 
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All the phrases in the test set with grammatical structure matching were manually edited.  
These phrases were regarded as the standard structure correspondences in the evaluation. We 
obtained 7,812 standard structure pairs in total. The accuracy rate is defined as 

     
      

structuresstandardofnumberstotal
testinobtainednumbersstructurestandardrateAccuracy = .          (3) 

Table 1. Comparison of accuracy in bilingual structure alignment. 

Experiment 
type E+C 

E-parsing

+C 

E-parsing+C-ba

se 

E-parsing+C-pas

ing 

Accuracy 
rate(%) 64.62 85.05 90.55 88.25 

 
Table 1 shows the results of the four experiments. From the comparison of accuracy, we 

can see that when no parsing was conducted, the quality of alignment could not be guaranteed. 
The result is hardly usable for syntactic translation template acquisition. An English parsing 
could improve the result greatly. When a Chinese base parsing was also used, the result was 
even better. However, if both English and Chinese parsing were used, the result worsened 
slightly. This is not surprising. One reason is that Chinese parsing is still not robust. Another 
reason is that the two languages are parsed separately in different grammars, which may be 
incompatible in some respects. In the general “parse-parse-match” approach, this problem 
cannot be avoided. 

Following is an example to illustrate the changes of the bilingual structure alignments 
obtained from the four experiments (Here we use the bracketing format and do not show the 
parsing tree in figures to save space. Readers can draw bilingual parsing trees easily according 
to the bracketing results.) 

(6)  English:  This new method was brought into existence in the fifties.  
Chinese:  这一新方法出现于五十年代。 
English parsing:  [[This new method]BNP [[was brought into existence]VBD [in [the 
fifties]BNP ]PP ]VP . ]S 
Chinese base phrase parsing :  [这 一 [新 方法]BNP]BNP 出现 于 [五十 年代]BNP 。  
Chinese pasrsing:  [[[这 一 [新 方法]BNP ]BNP 出现]SS [于 [五十 年代]BNP ]PP 。]S  
Result 1 (E+C):  [[[[[[[[[[This/这 e/一] new/新] method/方法] was/e] brought into 
existence/出现] in/于] the/e] fifties/五十] e/年代] ./。] 
Result 2 (E-pasing+C):  [[This/这 e/一 [new/新 method/方法]BNP ]BNP [[was/e brought 
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into existence/出现]VBD [in/于 [the/e fifties/五十]BNP ]PP e/年代 ]VP ./。]S 
Result 3 (E-parsing+C-base):  [[This/这 e/一 [new/新 method/方法]BNP ]BNP [[was/e 
brought into existence/出现]VBD [in/于 [the/e fifties/五十 e/年代]BNP ]PP ]VP ./。]S 
Result 4 (E-parsing+C-parsing):  [[[This/这 e/一 [new/新 method/方法]BNP ]BNP [was/e 
brought into existence/出现]VBD ]SS [in/于 [the/e fifties/五十 e/年代]BNP ]PP ./。]S 

In experiment 1, since no grammar was used, result 1 is ungrammatical. English parsing 
was a big help in determining the syntactic boundary of structure alignments in experiment 2. 
Result 2 is much better than result 1. When the Chinese base phrase parsing was also added, it 
helped eliminate some Chinese boundary errors( such as “[五十 年代]BNP” in result 3). But for 
experiment 4, the result contradicts the English parsing result because the given Chinese 
parsing result is incompatible with the English parsing result. 

The errors in structure alignment were mainly due to empty word alignment, where a 
word in one language has no counterpart string in another language. Idiomatic expressions and 
paraphrases usually introduce many empty word alignment errors. For example, the following 
two sentence-pairs, (7) and (8), can not be parsed correctly because no word is aligned in the 
paraphrases “has an eye 有鉴赏力” and “in hunger and cold  在饥寒交迫中”. We can 
not recover these structure alignments using our algorithm for the time being. 

(7) English:  She has an eye for color. 
Chinese:  她对颜色很有鉴赏力。 

(8) English:  Before liberation, peasants were struggling in hunger and cold. 
Chinese:  解放前，农民在饥寒交迫中挣扎着。 
Another limitation of the formalism is that it can not deal with separate two-part matches, 
such as the “when” match with “当……时” in the follow example:  

(9) English:  Water freezes when the temperature falls below 0℃. 
Chinese:  当温度下降至摄氏零度以下时，水会结冰。                                                                                                                                                         

It is necessary to build special productions to handle these match patterns. 
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Table 2. Some examples of bilingual structure alignment. 

[<Mr./先生 Wu/吴>BNP <[play/拉 accordion/手风琴]VP [very/很 well/会]ADVP >VP ./。]S 

S[He/他 [will/将 <come/来 [in/在 [the/e afternoon/下午]BNP ]PP >VP ]./。 ] 

[<Will/愿意 you/你>X [tell/告诉 me/我 [your/你的 age/年龄]BNP e/吗 ]VP ?/？ ]SQ 

[[His/他的 punishment/判刑]BNP <[[was/e commuted/减轻]VBD [to/为 life imprisonment/无
期徒刑]PP ]X [by/由 [the/e judge/法官]BNP ]PP >VP ./。]S 

[<[We/我们 e/还是 had/e e/度过 e/了 <quite/相当 an/一个>X enjoyable/愉快的 holiday/
假日]S ,/， [in spite of/尽管 <the/如此 weather/气候>BNP ]PP >S ./。 ]S 

Some bilingual alignment results based on E-parsing+C-base are given in table 2. The 
syntactic structure alignments obtained with this method were later used to extract translation 
templates as described in the next section. 

3. Translation template acquisition 

When a sentence-pair is aligned using the proposed bilingual structure alignment method, the 
corresponding words and syntactic structures are determined. These correspondences can be 
used directly in translation template acquisition.  

A translation template is a bilingual translation pair in which the corresponding units 
(words or phrases) may be replaced by variables. Two types of templates are extracted: 
structure translation templates and word selection templates. We take phrase or POS tag 
categories of noun(NN, NNS in our POS tag), verb(VB,VBP,VBZ,VBD,VBN), pronoun(PRP, 
PRP$)，adjective(JJ) and adverb(RB)  as variables. (Our phrase symbols and POS tags  are the 
same as those of the Penn Treebank [Marcus et al. 1993].) 

Structure translation templates are created from phrase nodes. Each phrase node 
corresponds to a template. A structure translation template consists of two parts: the left side 
contains the component conditions of the phrase in the source language, and the right side 
contains the structure transfer and the translation pattern in the target language. The phrase 
itself is used as an index.  
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play/拉/VBP in/在/IN 

afternoon/下午/NN 

./。

S 

VP 

PP 

He/他/PRP 

VP 

accordion/手风琴/NN 

the/e/ART 

BNP 

 
    Figure 5 A bilingual parsing tree used in translation template acquisition. 

For a bilingual structure alignment like that shown in Figure 5, five translation templates 
can be extracted corresponding to the five phrase nodes: 

#S :   1:C=PRP+2:VP+3:W=. -> T(1)+T(2)+。; 
#VP:  1:VP+2:PP ->T(2)+T(1); 
#VP:  1:C=VBP+2:C=NN ->T(1)+T(2); 
#PP:  1:W=in+2:BNP->在+T(2); 
#BNP: 1:W=the+2:C=NN ->T(2). 

The left side of the template (before ->) contains component conditions of the phrase in 
the source language connected with “+”. “+” denotes the relation of “and”, which means that 
the left side of the template is satisfied only when all the sub-conditions are satisfied. The 
numbers before “:” represent the order of the node. “W=”means the word itself; “C=” means 
the POS category; otherwise, it is a phrase tag. The right side of the template contains the 
corresponding translation pattern in the target language. The function T(order) means the 
translation of the node “order”. If the node is a phrase, the function returns the phrase 
translation by calling a structure translation template. If the node is a word, the function 
returns the word translation by calling a word selection template. Thus, a template “#S: 
1:C=PRP+2:VP+3:W=. -> T( 1 )+T (2) + 。” means that if the phrase tag is “S” and its 
components satisfy the conditions that 1) the first node’ s category is “PRP”, 2) the second 
node is a phrase with tag “VP” and 3) the third word is “.”, then the translation should be the 
first node’ s translation plus the second node’ s translation, plus the punctuation mark “。”. If 
the bilingual structure is inversely matched (with a horizontal line or “<>” notation), we write 
the right hand side of the template in inverse order, too. As in template “#VP: 
1:VP+2:PP->T(2)+T(1)”, the translation should be the second node’ s translation, followed by 
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the first node’ s translation. 

It can be seen that the translation templates transfer a source structure to a target 
structure by changing the order of nodes on the right side. At the same time, by connecting 
node translation on the right side, the target translation can also be generated. Therefore, the 
template is a union of transfer and generalization.  

The word selection template is created from the leaf node. We first get the default 
translation —statistically the most frequent translation in a bilingual corpus. If the current leaf 
node translation is not the same as the default one, we create a word selection template. For 
example, the word “play” has the default translation “玩” when it is a verb, while in the given 
example, the translation is “拉”, so we get a new word selection template as follows : 

#play: -1:C=PRP+0:C=VBP+1:W= accordion ->拉 . 

The format of a word select template is similar to that of a structure translation template 
except that 1) the index entry is a word; 2) the left side of the template contains the context 
conditions of the word. A negative number indicates that the node is to the left of the word; 3) 
the right side of the template contains the translation of the word. We resolve ambiguities by 
adding more context words as constraints on the left side. This strategy is also used in the 
structure translation template. 

Using the previous structure alignment corpus for the test set, we obtained a total of 
7,266 templates, including 4,805 structure translation templates and 2,461 word selection 
templates. At present, we assume that specific templates (having the “W=” condition on the 
left side) have higher priority than the common templates. The frequency information of 
templates is also used to solve ambiguities. These acquired templates are stored in a template 
base. Structure translation templates and word selection templates are indexed individually by 
means of phrases and words. The system deals with structure translation templates and word 
selection templates in the same way during translation.  

Translation is a recursive template matching procedure as shown in Figure 6. The input 
is an English parsing tree. The translation starts from the root node and works recursively 
top-down and from left to right. The output in the target language is generated bottom-up. It is 
a post-order-traverse process. When the current node is processing, all its child nodes have 
been processed and their translations have been determined. If no translation templates can be 
matched, the system uses the bilingual dictionary as the default word translation, and the 
structure is translated from left to right. The translation result is generated in the root node’ s 
translation field after the recursive procedure is performed. 

Because the transfer and generation are combined in structure of a translation template, 
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the translation architecture is simpler than those of most existing translation systems, which 
include two separate processes for transfer and generation. The obtained translation templates 
are similar in format with manually edited rules, and the templates are easy to understand, so 
they can be modified easily and integrated into an existing machine translation system. 

procedure Translation(ParsingTree * pnode)  // pnode is the current translation node 

{ 

if( IsLeafNode(pnode) )             // decide if pnode is a leaf node 

 {                                 // process for leaf node 

 if ( MatchWordSelRule(pnode, rule)) //find word selection template, success return true 

   pnode->translation=GetTrans(pnode, rule); //get translation according to the rule 

  else 

       pnode->translation=GetDefaultTrans(pnode); //get default translation 

         return; 

} 

     for(all pcnode, pcnode is pnode’s child node )  // translate all child node 

Translation(pcnode); 

         If(MatchStructureTransRule(pnode,rule))      //Find structure translation template  

    pnode->translation=GetTrans(pnode, rule); //Get translation according to the rule 

else 

     pnode->translation=GetDefaultTrans(pnode); //Get default translation 

} 

  
Figure 6 Translation procedure. 

4. Experiments on translation using the acquired templates 

In this section, we will describe translation experiments conducted based on the acquired 
templates to evaluate the quality of these templates.  
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4.1 System architecture 
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English sentence 
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  Translation by 
template matching 

Chinese sentence 

English morph restoration 
and POS tagging 

 
Figure 7 System Architecture. 

An overview of the machine translation system with auto acquired translation templates 
is shown in Figure 7. The left part contains the learning process for translation template 
acquisition. The right part contains a machine translation process that uses the acquired 
templates. In the learning process, the bilingual sentence pairs are first aligned at the word 
level based on statistics and a lexicon [Lü et al. 2001]. Then, word alignment is extended to 
structure alignment as mentioned in section 2. Based on the structure alignment, translation 
templates are acquired and stored in a template base. In the translation process, an English 
sentence is parsed first; then, the template matching procedure as shown in Figure 6 is used to 
translate the English sentence into Chinese.  

4.2 Translation experiments and evaluation 

Translation experiments were conducted on the 2,000 English sentences in the test set. Some 
translation results and the templates used are presented in the following examples. The first 
line in each example is the original English sentence to be translated. The second line is the 
sentence’ s parsing result. The last line is the Chinese translation result, and the other lines are 
the templates used in the translation procedure. 
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1) He abandoned the plan of going abroad.  
[He\PRP [abandoned\VBD [the\ART plan\NN]BNP [of\IN [going 
abroad\VBG]BNP ]PP ]VP .\FSP ]S 
#S: 1:C=PRP+2:VP+3:W=. ->T(1)+T(2)+。; 
#VP: 1:C=VBD+2:BNP+3:PP ->T(1)+了+T(3)+T(2); 
#BNP: 1:W=the+2:C=NN ->T(2); 
#PP: 1: W=of+2:BNP->T(2)+的; 
#BNP: 1:W=going abroad ->出国; 
#abandon: -1:C=PRP+1:W=the+2:W=plan ->放弃; 
他放弃了出国的计划。 

2) We passed our time pleasantly.  
[We\PRP [passed\VBD [our\PRP$ time\NN]BNP pleasantly\RB]VP .\FSP ]S 
#S: 1:C=PRP+2:VP+3:W=. ->T(1)+T(2)+。; 
#VP: 1:C=VBD+2:BNP+3:C=RB ->T(3)+T(1)+了+T(2); 
#BNP: 1:C=PRP$+2:C=NN ->T(1)+T(2); 
#pass: -1:C=PRP+0:C=VBD+1:W=our+2:W=time ->度过; 
我们愉快地度过了我们的时间。 

3) The policeman demanded his name and address .  
[[The\ART policeman\NN ]BNP [demanded\VBD [his\PRP$ name\NN and\CC 
address\NN]BNP ]VP . ]S 
#S: 1:BNP+2:VP+3:W=.->T(1)+T(2)+。; 
#BNP: 1:W=the+2:C=NN->T(2); 
#VP: 1:C=VBD+2:BNP->T(1)+T(2) 
#BNP: 1:C=PRP$+2:C=NN+3:W=and+4:C=NN->T(1)+T(2)+和+T(3) 
#demand: -1:W=警察+0:C=VBD+1:W=他的->询问 
警察询问他的名字和地址。 

To evaluate the quality of the acquired templates, we compared the translation results 
based on these acquired templates with those based on our existing manually edited 
translation knowledge base. This translation knowledge based system has the same parsing 
input as the learned template based system. The difference is that the system’ s translation 
process is directed by knowledge base that is totally edited by linguistic engineers. There are 
more than 35,000 knowledge rules in the system’ s knowledge base at present. The previous 
test set was also used as reference translation examples when the translation knowledge base 
was manually defined in this knowledge-based machine translation system. The evaluation 
followed the standards of The National High Technology Research and Development Program 
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(the 863 Program) machine translation evaluation project conducted in 1997 [Duan et al. 
1996]. In the standards, translations are ranked in 6 grades, named A, B, C, D, E and F. They 
are defined as follows: A denotes an accurate and fluent translation; B denotes a translation 
that is approximately correct except for a few unimportant problems; C is a translation that 
can express the meaning of the source text, but some segments are ill-formed; D is a 
translation that is only partially correct, and separate word translations are given; E is a bad 
translation except that some word translations are correct; F denotes that no translation is 
obtained. In our evaluation, no F type translation appeared. We converted A, B, C, D and E 
into 100, 80, 60, 40 and 20 when calculating the average scores. 200 English sentences were 
random selected from test set for the manual test. These sentences were translated using the 
learned template-based system (LTBS) and the manually edited knowledge-based system 
(MEKBS), respectively. The same evaluator gave evaluations for both translations. Table 3 
shows a comparison of the results. Table 4 gives some translation examples and the 
corresponding evaluation grades based on the acquired translation templates. 

Table 3. Translation test results. 
                

Type 
System  A B C D E Average 

score 
LTBS 60% 21% 12% 4% 3% 86.2 

MEKBS 48% 41.5% 8.5% 1% 1% 86.9 

The results show that without any manual encoding of translation knowledge, we were 
able to achieve  performance nearly equal to that of traditional knowledge based machine 
translation.  The system generated more perfect translations (A) than manually constructed 
translation rules did. This is because the templates were all learned automatically from real 
translation texts, so it could produce correct translations exactly when no ambiguities occurred. 
Although it also produced some bad translations (D, E), the translation results seem quite 
promising. 
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Table 4. Some translation and evaluation grades. 

English Translation Grade 
I will not be able to go to the movies tomorrow. 我明天不能去看电影。 A 

The singer was accompanied at the piano by her pupil. 演唱者由她的学生用钢琴伴奏。 A 

Which of them arrived first? 他们中哪个人第一个到达的? A 

He is having his breakfast. 他正在吃他的早饭。 B 

The air here is very good. 这里空气是很好。 B 

They started at night. 在晚上他们开始。 C 

Will you tell me your age? 你愿意告诉我你的那个时代吗? C 

The student has a pen. 这学生长一支钢笔。 D 

Some fish jump out of the water to catch insects. 一些鱼跳来自水抓住昆虫。 D 

You don't like him, and I don't either. 你做也喜欢它，我做不也不喜欢。 E 

Bad translations were produced because there were conflicts between templates. This 
disambiguation between templates is a difficult problem for any knowledge-based or 
example-based machine translation system. In our learning process, we solve this problem in 
two steps: firstly, we use the template with the highest frequency as the default template; then, 
when a candidate template conflicts with the default template, we add context words or 
categories as restrictions for this template. In the translation process, specific templates that 
contain a word restriction are given higher priority; otherwise the templates with highest 
frequency are chosen. This simple strategy works well when the training corpora are small. 
But when the training corpora are large, conflicts will occur more frequently. Finding a more 
robust method for disambiguation will be a goal of future research. 

4.3 Discussion 

We have developed a method for learning translation templates from bilingual corpora. These 
learned translation templates lead to good performance in real machine translation. Our study 
has shown that it is possible to reduce the need for manually encoding of translation templates, 
which is a difficult task in traditional knowledge-based machine translation. In addition, our 
method also has the following advantages: 
 Compared with statistic-based machine translation(SBMT)， the translation templates 

obtained using our method are easier to understand than the abstract probability used by 
Brown [Brown et al. 1993].  
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 Unlike pure example-based machine translation (EBMT), our translation templates replace 
the same categories of parts-of-speech and phrases with variables, making it more general 
than the sentence or phrase translation examples given in [Nagao 1984]. 

 Unlike the traditional knowledge based (KBMT) systems, our translation templates are 
acquired from translation examples automatically. This can reduce the effort required for 
manual compilation of translation rules to a minimum.  

 The learning method can easily be adapted to a new domain if only domain specific 
bilingual corpora are provided. 

5. Conclusion and future work 

Translation knowledge acquisition has been a bottleneck in machine translation. This paper 
has presented a method for automatic acquisition of translation templates from a bilingual 
corpus. The bilingual corpus is first aligned in syntactic structures using an alignment 
algorithm that is based on a bilingual language model and only one language parsing. The 
algorithm is particularly useful when a full bilingual grammar is not available. It also can be 
used to acquire a parsing grammar for a language lacking a well-studied grammar from a 
second language with a well-studied grammar. Based on the alignment result, both structure 
translation templates and word selection templates are extracted. Application of such 
templates in machine translation has demonstrated their superior performance in describing 
translation knowledge. 

Although the results we have obtained are quite promising, there is still much to do in 
the near future. The corpus we used in our experiments is relatively small, and its contents are 
normative. We will increase the scale and extend the domain of the corpus to improve the 
quality and quantity of acquired translation templates. In addition, disambiguation of 
conflicting templates is a key problem. When the training corpus becomes large, this problem 
becomes serious. To solve it, we will try to introduce semantic restrictions and statistical 
information into templates in our future work. 
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Improving the Effectiveness of Information Retrieval 

with Clustering and Fusion 

Jian Zhang*, Jianfeng Gao+, Ming Zhou**, Jiaxing Wang++ 

Abstract 

Fusion and clustering are two approaches to improving the effectiveness of 
information retrieval. In fusion, ranked lists are combined together by various 
means. The motivation is that different IR systems will complement each other, 
because they usually emphasize different query features when determining 
relevance and retrieve different sets of documents. In clustering, documents are 
clustered either before or after retrieval. The motivation is that similar documents 
tend to be relevant to the same query so that this approach is likely to retrieve 
more relevant documents by identifying clusters of similar documents. In this 
paper, we present a novel fusion technique that can be combined with clustering to 
achieve consistent improvements over conventional approaches. Our method 
involves three steps: (1) clustering similar documents, (2) re-ranking retrieval 
results, and (3) combining retrieval results. 

 

1. Introduction 

In terms of the overall performance on a large query set, none of the typical IR systems 
outperform others substantially, while for each individual query, the performance that 
different systems achieve varies greatly [Voorhees 1997]. This observation leads to the idea 
of combining results obtained by different IR systems to improve overall performance. 

Fusion is a technique that combines retrieval results (or ranked lists) obtained by 
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different systems. However, conventional fusion techniques only consider retrieval results, 
while the information embedded in the document collection (e.g. the similarity between 
documents) is ignored. On the other hand, document clustering applies the structure of a 
document collection, but it usually considers each individual ranked list separately and is not 
able to take advantage of multiple ranked lists.  

In this paper, we present a novel fusion technique that can be combined with clustering. 
Given multiple retrieval results obtained by different IR systems, we first perform clustering 
on each ranked list and obtain a set of clusters. We then identify the clusters that contain the 
most relevant documents. Each of these clusters is evaluated based on a metric called 
reliability. Documents in reliable clusters are re-ranked. That is, we set higher scores for 
these documents. Finally, a conventional fusion method is applied to combine multiple 
retrieval results, which are re-ranked. Our experiments on the TREC-5 Chinese collection 
show that the above approach achieves consistent improvements over conventional 
approaches. 

The remainder of this paper is organized as follows. Section 2 gives a brief survey of 
related work. In Section 3, we describe our method in detail. In Section 4, a series of 
experiments are presented to show the effectiveness of our approach. Finally, we present our 
conclusions in Section 5. 

2. Related Work 

Fusion and clustering have been important research topics for many researchers.    

Fox and Shaw [Fox 1994] reported on their work on result sets fusion. Their method for 
combining the evidence from multiple retrieval runs is based on document-query similarities 
in different sets. Five combining strategies were investigated, as summarized in Table 1. In 
their experiments, CombSUM and CombMNZ were better than the others.  
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Table 1. Formulas proposed by Fox & Shaw. 
Name Combined Similarity = 

CombMAX MAX(Individual Similarities) 

CombMIN MIN(Individual Similarities) 

CombSUM SUM(Individual Similarities) 

CombANZ 

esSimilariti Nonzero ofNumber 

es)Similariti dualSUM(Indivi
 

CombMNZ SUM(Individual Similarities) * Number of Nonzero 
Similarities 

 

Thompson’s work [Thompson 1990] includes assigning to each ranked list a variable 
weight based on the prior performance of the system. His idea is that a retrieval system 
should be considered preferable to others if its prior performance is better.  Thompson’s 
results were slightly better than Fox’s. 

Bartell [Bartell 1994] used numerical optimization techniques to determine optimal 
scalars (weights) for a linear combination of results. The idea is similar to Thompson’s 
except that Bartell obtained the optimal scalars from training data, while Thompson 
constructed scalars based on their prior performance. Bartell achieved good results on a 
relatively small collection (less than 50MB).  

To perform fusion more effectively, researchers began to investigate whether two result 
sets are suitable for fusion by examining some critical characteristics. Lee [Lee 1997] found 
that the overlap of the result sets was an important factor for fusion. Overlap ratios of 
relevant and non-relevant documents are calculated as follows: 

,2

,2

BA

common
overlap

BA

common
overlap

NN
NN

RR
RR

 

where AR  and AN  are, respectively, the numbers of relevant and irrelevant documents in 
result set ARL 1. commonR  is the number of common relevant documents in ARL and BRL . 

commonN  is the number of common irrelevant documents in ARL and BRL . 

                                                 
1 ARL  means ranked list returned by retrieval system A. 
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Lee observed that fusion works well for result sets that have a high overlapR  and a low 

overlapN . Inspired by this observation, we also incorporate commonR  into our fusion approach.  

Vogt [Vogt 1998, 1999] tested different linear combinations of several results from 
TREC-5. 36,600 result pairs were tested. A linear regression of several potential indicators 
was performed to determine the potential improvement for result sets to be fused. Thirteen 
factors including measures of individual inputs, such as average precision/recall, and some 
pairwise factors, such as overlap and unique document counts, were considered. Vogt 
concluded that the characteristics for effective fusion are: (1) at least one result has high 
precision/recall; (2) a high overlap of relevant documents and a low overlap of non-relevant 
documents; (3) similar distributions of relevance scores; and (4) each retrieval system ranks 
relevant documents differently. Conclusion (1) and (2) are also confirmed by our experiments, 
as will be shown in Section 4.3.  

Clustering is now considered to be a useful information retrieval method for not only 
documents categorization but also interactive retrieval. The use of clustering in information 
retrieval is based on the Clustering Hypothesis [Rijsbergen, 1979]: “closely associated 
documents tend to be relevant to the same requests”. Hearst [Hearst 1996] showed that this 
hypothesis holds for a set of documents returned by a retrieval system. According to this 
hypothesis, if we do a good job of clustering the retrieved documents, we will likely separate 
the relevant and non-relevant documents into different groups. If we can direct the user to the 
correct group of documents, we can enhance the likelihood of finding interesting information 
for the user. Previous works [Cutting et al, 1992], [Leuski 1999] and [Leuski 2000] focused 
on clustering documents and let users select the clusters they were interested in. Their 
approaches are interactive. Most of the clustering methods mentioned above work on 
individual ranked lists and do not take advantage of multiple ranked lists. 

In this paper, we combine clustering with fusion. Our approach differs from interactive 
approaches in three ways. First, we use two or more ranked lists, while others usually use one 
in clustering. Second, user interactive input is not needed in our approach. Third, we provide 
a ranked list of documents to the user instead of a set of clusters. 

3. Fusion with Clustering 

Our method is based on two hypotheses: 

Clustering Hypothesis: Documents that are relevant to the same query can be clustered 
together since they tend to be more similar to each other than to non-relevant documents. 

Fusion Hypothesis: Different ranked lists usually have a high overlap of relevant 
documents and a low overlap of non-relevant documents. 
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The Clustering Hypothesis suggests that we might be able to roughly separate relevant 
documents from non-relevant documents with a proper clustering algorithm. Relevant 
documents can be clustered into one or several clusters, and these clusters will contain more 
relevant documents than others. We call such a cluster a reliable cluster.  

The Fusion hypothesis presents the idea of identifying reliable clusters. The reliable 
clusters from different ranked lists usually have a high overlap. Therefore, the more relevant 
documents a cluster contains, the more reliable the cluster is. We will describe the 
computation of reliability in detail in Section 3.3.  

Fig.1 shows the basis idea behind our approach. Two clusters (a1 and b1) from 
different ranked lists that have the largest overlap are identified as reliable clusters.  

 

 
Figure 1 Clustering results of two ranked lists. 

Our approach consists of three steps. First, we cluster each ranked list. Then, we 
identify the reliable clusters and adjust the relevance value of each document according to 
the reliability of the cluster. Finally, we use CombSUM to combine the adjusted ranked lists 
and present the result to user. 

In the following sections, we will describe our approach in more detail. For conciseness, 
we will use some symbols to present our approach, which are listed in Table 2 with their 
explanations. 
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Table 2. Notations. 
Symbol Explanation 
q  A query 
d  A document 

ARL , BRL  Ranked list returned by retrieval systems A and B, 
respectively 

iAC ,  i th cluster in ARL  

),(_ ,, jBiA CCCCSim
 

Similarity between iAC , and jBC ,  

),(_ ,iACqqCSim  Similarity between query q and iAC ,  

),(_ ji ddddSim  Similarity between two documents, id and jd  

)( ,iACr  Reliability of cluster iAC ,  

)(drelA  Relevance score of document d  given by retrieval 
system A 

)(* drelA  Adjusted relevance score of document d  

)(drel  Final relevance score of document d  

3.1 Clustering 

The goal of clustering is to separate relevant documents from non-relevant documents. To 
accomplish this, we need to define a measure for the similarity between documents and 
design a corresponding clustering algorithm.  

3.1.1 Similarity between documents 

In our experiments, we used the vector space model to represent documents. Each document 
is represented as a vector of weights ),...,( 21 imii www , where ikw is the weight of term kt in 
document id . The weight ikw  is determined by the occurrence frequency of kt in document 

id and its distribution in the entire collection. More precisely, the following formula is used 
to compute ikw : 

,
)]/log()0.1)[(log(

)/log(]0.1)[log(
2

j
jij

kik
ik

nNf
nNfw  

(1) 

where ikf is the occurrence frequency of term kt in document id , N is the total number of 
documents in the collection and kn is the number of documents that contain term kt . 
Actually, this is one of the most frequently used tf*idf weighting schemes in IR. 
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For any two documents id and jd , the cosine measure as given below is used to 
determine their similarity: 

.
)(

),(_
22

k
jk

k
ik

k
jkik

ji
ww

ww
ddddSim  (2) 

3.1.2 Clustering algorithm 

There are many clustering algorithms for document clustering. Our goal is to cluster a small 
collection of documents returned by an individual retrieval system. Since the size of the 
collection was 1,000 in our experiments, the complexity of the clustering algorithm was not a 
serious problem. 

Fig.2 shows our clustering algorithm. The LoopThreshold and ShiftThreshold value were set 
to 10 in our experiments. 

 

Randomly set document id to cluster jC ; 

LoopCount =0; ShiftCount = 1000; 

While (LoopCount < LoopThreshold and ShiftCount > ShiftThreshold) Do 

      Construct the centroid of each cluster, i.e. 

Centroid of jC =
j

Cd
i

C

d
ji ; 

        Assign id to its nearest cluster(the distance is determined by the similarity 
between id and the centroid of the cluster); 

        ShiftCount = the number of documents shifted to other cluster; 

        LoopCount++; 

Figure 2 Algorithm for document clustering. 

The ideal result is obtained when clustering gathers all relevant documents into one 
cluster and all non-relevant documents into the other cluster. However, this is unlikely to 
happen. In fact, relevant documents are usually distributed in several clusters.  After 
clustering, each ranked list is composed of a set of clusters, say 1C , 2C … nC . 
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3.1.3 Size of a cluster 

The size of a cluster is the number of documents in the cluster. The clustering algorithm 
shown in Fig.2 cannot guarantee that the clusters will be of identical size. This causes many 
problems because the overlap depends on the size of each cluster.  

To solve this problem, we force the clusters to have the same size using the following 
approach. For clusters that contain a larger number of documents than the average, we 
remove the documents that are far from the cluster’s centroid. These removed documents are 
added to clusters that are smaller than average2. 

Since all the clusters are of the same size, the size of a cluster becomes a parameter in 
our algorithm. Thus, we need to set this parameter to an optimal value to achieve the best 
performance. We will report experiments conducted to determine this value in Section 4.3. 

3.2 Re-ranking 

After clustering each ranked list, we obtain a group of clusters, each of which contains more 
or less relevant documents. Through re-ranking, we expect to determine reliable clusters and 
adjust the relevance scores of the documents in each ranked list such that the relevance scores 
become more reasonable. To identify reliable clusters, we assign to each cluster a reliability 
score. According to the Fusion Hypothesis, we use the overlap between clusters to compute 
the reliability of a cluster. The reliability )( ,iACr of cluster iAC ,  is computed as follows (see 
Table 2 for definitions of the symbols): 

 

,),(_
),(_

),(_
)( ,,

,

,
,

j
jBiA

t
tB

jB
iA CCCCSim

CqqCSim
CqqCSim

Cr  (3) 

where 
,),(_ ,,,, jBiAjBiA CCCCCCSim  (4) 

.
)(

),(_
,

,
,

iA

Cd
A

iA C

drel
CqqCSim iA  (5) 

                                                 
2 The size of a cluster and the number of clusters are critical issues in clustering and have been studied 
by many researchers. This paper focuses on how to combine fusion and clustering together and shows 
the potential of this combination approach. Therefore, we use a very simple method to solve the 
problem. Our clustering algorithm is also very simple. Our future work will be to investigate the 
impacts of different algorithms. 
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In equation (4), the similarity of two clusters is estimated based on the common 
documents they both contain. In equation (5), the similarity between a query and a cluster is 
estimated based on the average relevance score of the documents that the cluster contains. In 
equation (3), for each cluster iAC , in ARL , its reliability )( ,iACr is defined as the weighted 
sum of the similarity between cluster AiC and all the clusters in BRL . The intuition 
underlying this formula is that the more similar two clusters are, the more reliable they are, as 
illustrated in Fig.1.  

Since reliability represents the precision of a cluster, we use it to adjust the relevance 
score of the documents in each cluster. Formula (6) adjusts the relevance score of a document 
in a highly reliable cluster: 

)],(1[)()( ,
*

tAAA Crdreldrel  (6) 

where tACd , . 

3.3 Fusion 

So far, each original ranked list has been adjusted by means of clustering and re-ranking. We 
next combine these improved ranked lists together using the following formula (i.e. 
CombSUM in [Fox 1994]): 

).()()( ** dreldreldrel BA  (7) 

In equation (7), the combined relevance of document d is the sum of all the adjusted 
relevance values that have been computed in the previous steps.  

4. Experimental Results 

In this section, we will present the results of our experiments. We will first describe our 
experimental settings in Section 4.1. In Section 4.2, we will verify the two hypotheses 
described in Section 3 using the results of some experiments. In Section 4.3, we will compare 
our approach with the other three conventional fusion methods. Finally, we will examine the 
impact of cluster size. 

4.1 Experiment settings 

We used several retrieval results from the TREC-5 Chinese information retrieval track in our 
fusion experiments. The document collection contains articles published in the People's Daily 
and news released by the Xinhua News Agency. Some statistical characteristics of the 
collection are summarized in Tables 3. 
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Table 3. Characteristics of the TREC-5 Chinese collection. 
Number of docs 164,811 
Total size (Mega Bytes) 170 
Average doc length (Characters) 507 
Number of queries 28 
Average query length (Characters) 119 
Average number of relevant docs/query 93 

 

The 10 groups who took part in TREC-5 Chinese provided 20 retrieval results. We 
randomly picked seven ranked lists for our fusion experiments. The tags and average 
precision are listed in Table 4. It is noted that the average precision is similar except for 
HIN300. 

Table 4. Average precision of individual retrieval system 
Ranked list AvP (11 pt) 
BrklyCH1 0.3568 
CLCHNA 0.2702 
Cor5C1vt 0.3647 
HIN300 0.1636 
City96c1 0.3256 
Gmu96ca1 0.3218 
gmu96cm1 0.3579 
Average : 0.3086 

 

Since the ranges of similarity values of the different retrieval results were quite 
different, we normalized each retrieval result before combining them. The bound of each 
retrieval result was mapped to [0,1] using the following formula [Lee 1997]: 

.
lminimum_relmaximum_re

lminimum_reed_relunnormaliz_relnormalized  

4.2 Examining the hypotheses 

We will first examine the two hypotheses we mentioned in Section 3.  

In relation to Clustering Hypothesis, we clustered each ranked list into 10 clusters using 
our clustering algorithm. Table 5 shows some statistical information for the clustering results. 
The first row lists four kinds of clusters containing no, 1, 2-10 and more than 10 relevant 
document(s). The second row shows the corresponding percentage of each kind of cluster. 
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The third row shows the percentage of relevant documents in each kind of cluster.  

From Table 5, we can make two observations. First, about 50% of the clusters contain 1 
or no relevant document. Second, most relevant documents (more than 60%) are in a small 
number of clusters (about 7%).  According to these observations, we can draw the conclusion 
that relevant documents are concentrated in a few clusters.  

Thus, in our experiments, the Clustering Hypothesis holds in terms of the initial 
retrieval result when a proper algorithm is adopted. 

Table 5. Distribution of relevant docs. 
Different kinds of 
clusters 

Containing 
no relevant 

doc 

Containing 
1 relevant 

doc 

Containing  
2-10 relevant 

docs 

Containing 
>10 relevant 

docs 
Percentage of each 
kind of cluster 38.3% 15.0% 35.0% 7.0% 
Percentage of 
relevant docs 
contained in this kind 
of cluster 0% 3.7% 35.8% 60.5% 

 

To test the Fusion Hypothesis, we computed overlapR and overlapN for each combination 
pair. Table 6 lists some results. The last row shows that the average overlapR is 0.7688, while 
the corresponding average overlapN is 0.3351. It turns out that the Fusion Hypothesis holds for 
the retrieval results we obtained.  

Table 6 will also be used in Section 4.3 to confirm that overlapR  is the most important 
factor determining the performance of fusion. We mark those rows whose overlapR scores are 
higher than 0.80 with the character *. 
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Table 6. overlapR and overlapN values of combination pairs. 
Combination pair 

overlapR  overlapN  
BrklyCH1 & CLCHNA � *  0.8542 0.3398
BrklyCH1 & Cor5C1vt � *  0.9090 0.4393
BrklyCH1 & HIN300 � 0.4985 0.2575
BrklyCH1 & City96c1 � *  0.8996 0.4049
BrklyCH1 & Gmu96ca1 � *  0.8784 0.3259
BrklyCH1 & gmu96cm1 � *  0.8871 0.3292
CLCHNA & Cor5C1vt � *  0.8728 0.4118
CLCHNA & HIN300 � 0.4652 0.2172
CLCHNA & City96c1 � *  0.8261 0.2668
CLCHNA & Gmu96ca1 � *  0.8447 0.3090
CLCHNA & gmu96cm1 � *  0.8585 0.3412
Cor5C1vt & HIN300 � 0.4961 0.2392
Cor5C1vt & City96c1 � *  0.8763 0.2943
Cor5C1vt & Gmu96ca1 � *  0.9193 0.4742
Cor5C1vt & gmu96cm1 � *  0.9185 0.4525
HIN300 & City96c1 � 0.4813 0.1555
HIN300 & Gmu96ca1 � 0.4636 0.1854
HIN300 & gmu96cm1 �   0.4701 0.2004
City96c1 & Gmu96ca1 � *  0.8698 0.2854
City96c1 & gmu96cm1 � *  0.8860 0.3005
Gmu96ca1 & gmu96cm1 � *  0.9687 0.8064
Average  0.7688 0.3351

4.3 Comparison with conventional fusion methods 

First, we studied three combination methods that were proposed by Fox, namely, CombMAX, 
CombSUM, and CombMNZ. Their fusion results for the same data set are listed in Table 7. 
The last row lists the average precision of each combination strategy. Since the average 
precision of the individual retrieval systems is 0.3086 (see Table 4), each of these three 
fusion methods has improved significantly in terms of the average precision.  CombSUM 
appears to be the best one among them. This confirms the observation in [Fox 1994]. 

Then, we compared the performance of our approach with that of the other three 
methods, as shown in the last row in Table 7. Our new approach achieved 3% improvement 
over CombSUM. We also find that among all the 21 combination pairs, 17 of them are 
improved, compared to the results obtained using the CombSUM approach. We mark these 
rows with the character *. 
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Table 7. Average precision of each combination pair. 

Combination pair Comb 
MAX 

Comb 
SUM 

Comb 
MNZ 

Our Approach 
(Cluster size=100) 

BrklyCH1 & CLCHNA 0.3401 0.3627 0.3549 * 0.3755�
BrklyCH1 & Cor5C1vt 0.3832 0.3976 0.3961 * 0.4107�
BrklyCH1 & HIN300 0.3560 0.3243 0.2618 0.3107�
BrklyCH1 & city96c1 0.3650 0.3833 0.3856 * 0.3912�
BrklyCH1 & gmu96ca1 0.3753 0.4028 0.3999 * 0.4022�
BrklyCH1 & gmu96cm1 0.3979 0.4234 0.4201 * 0.4243�
CLCHNA & Cor5C1vt 0.3434 0.3560 0.3492 * 0.3707�
CLCHNA & HIN300 0.2746 0.2478 0.2154 0.2579�
CLCHNA & city96c1 0.3007 0.3459 0.3573 * 0.3931�
CLCHNA & gmu96ca1 0.3269 0.3667 0.3634 * 0.3690�
CLCHNA & gmu96cm1 0.3555 0.3864 0.3783 * 0.3883�
Cor5C1vt & HIN300 0.3778 0.3081 0.2520 0.3139�
Cor5C1vt & city96c1 0.3709 0.4091 0.4104 * 0.4285�
Cor5C1vt & gmu96ca1 0.3568 0.3684 0.3676 * 0.3724�
Cor5C1vt & gmu96cm1 0.3831 0.3926 0.3911 * 0.3975�
HIN300 & city96c1 0.2616 0.2565 0.2444 0.3036�
HIN300 & gmu96ca1 0.3466 0.2942 0.2464 0.2954�
HIN300 & gmu96cm1 0.3764 0.3205 0.2613 0.3150�
city96c1 & gmu96ca1 0.3310 0.3764 0.3854 * 0.3939�
city96c1 & gmu96cm1 0.3595 0.3970 0.4047 * 0.4090�
gmu96ca1 & gmu96cm1 0.3451 0.3514 0.3511 * 0.3505�
Average:  0.3489 0.3557 0.3426 0.3654 

 

Comparing the results shown in Table 7 with those listed in Table 6, we find that the 
pairs with a overlapR  of over 0.80 correspond to better combination performance. We call this 
kind of pair a combinable pair. For example, BrklyCH1 & CLCHNA is a combinable pair. 
Although the average combination performance is 0.3654 (using our approach), almost all the 
combinable pairs exceed the average performance3. This again confirms the conclusion in 
both [Lee 1997] and [Vogt 1998] that the performance of fusion heavily depends on overlapR . 
It also reveals the limitation of our approach and of other linear fusion techniques in that a 
high overlap of relevant documents is a pre-requisite for performance enhancement. For those 
pairs that don’t satisfy this pre-requisite, normal fusion may even decrease retrieval 
performance.  

We also compared our approach with the optimal linear combination. Since ranked lists 

                                                 
3 “gmu96ca1 & gmu96cm1” is an exception because their related overlapN score is very high. 
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are combined linearly, only the ratio of the two weights affects the final performance: 

.BAcombined wRLRLRL  

CombSUM can be taken as a special case of linear combination where w  is set to be 1. 
When the relevant documents are known, the weight w  can be optimized using some 
numerical method. In our experiment, the weight w  was optimized using golden section 
search [Press 1992]. This approach was adopted in [Vogt 1998]. The average precision for 
the optimal linear combination we obtained is 0.3714. As shown in Fig.3, our approach 
performs better than CombSUM and CombMAX and is very close to CombBest. 
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Figure 3 Performance of different approaches. 

To summarize, we can draw three conclusions from the above experiments. First, in 
most cases, our new approach shows better performance than most of the conventional 
methods, including CombSUM and CombMNZ. Second, overlapR  strongly affects the 
performance of linear fusion. Third, the performance of our approach is very close to that of 
the optimal linear combination approach. 

4.4 Impact of cluster size  

We also studied the impact of cluster size. Table 8 shows the experimental results. 
When the cluster size varied from 200 to 5, the average precision did not change much. The 
maximum value was 0.3675 when the cluster size was 25 and the minimum value was 0.3621 
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when the cluster size was 200. This shows that the cluster size setting has very little impact in 
our approach.  

Table 8. Impact of cluster size. 
Size of Cluster  200 100 50 25 10 5 
11pt AvP 0.3621 0.3654 0.3661 0.3675 0.3668 0.3661 

 

Another interesting question is what will happen when the cluster size is set to 1000 or 
1. 

When the cluster size is set to 1000, each ranked list becomes a single cluster. Then, the 
reliability of AC  and BC can be computed as follows: 

.),(_)()( BABABA CCCCCCSimCrCr  

Since )( ACr and )( BCr are equal, the re-ranking and fusion step becomes a normal 
CombSUM approach, and the average precision is equal to that of the CombSUM approach.  

When the cluster size is set to 1, each document forms a cluster by itself. Those 

documents appearing in both ranked lists will be improved. For those documents that only 

appear in one ranked list, their relevance will remain unchanged. On the other hand, the 

relevance score of those documents that appear in both ranked lists will be improved with a 

factor of 
),(_

),(_1
jdqddSim

dqddSim .  The final result will be close to that of the CombSUM 

approach because this factor is close to 1. 

The impact of the cluster size setting is illustrated in Fig.4. From this figure, we find 
that fusion combined with clustering is consistently better than the approaches that do not 
include clustering (where cluster size = 1000). We find that a setting size to 25 gives the best 
combination when the ranked list has a size of 1,000. 
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Figure 4 Impact of cluster size. 

 

5. Conclusion  

Combining multiple retrieval results is certainly a practical technique for improving the 
overall performance of information retrieval systems. In this paper, we have proposed a novel 
fusion method that can be combined with document clustering to improve retrieval 
performance. Our approach consists of three steps. First, we apply clustering to the initial 
ranked document lists to obtain a list of document clusters. Then, we identify reliable clusters 
and adjust each ranked list separately using our re-ranking approach. Finally, conventional 
fusion is carried out to produce an adjusted ranked list. 

Since our approach is based on two hypotheses, we first verified them by means of 
experiments. We also compared our approach with other conventional approaches. The 
results show that each of them achieves some improvement, and that our approach compares 
favorably with them. We also investigated the impact of cluster size. We found that our 
approach is rather stable under variation in the size of clusters. 

Although our method showed good performance in our experiments, we believe it still 
can be improved further. A better clustering algorithm for identifying more reliable clusters 
and more elaborate formula for re-ranking ranked lists should lead to further improvement. 
These will be topics for our future work. 
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