@inproceedings{akbik-etal-2019-flair,
title = "{FLAIR}: An Easy-to-Use Framework for State-of-the-Art {NLP}",
author = "Akbik, Alan and
Bergmann, Tanja and
Blythe, Duncan and
Rasul, Kashif and
Schweter, Stefan and
Vollgraf, Roland",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-4010",
doi = "10.18653/v1/N19-4010",
pages = "54--59",
abstract = "We present FLAIR, an NLP framework designed to facilitate training and distribution of state-of-the-art sequence labeling, text classification and language models. The core idea of the framework is to present a simple, unified interface for conceptually very different types of word and document embeddings. This effectively hides all embedding-specific engineering complexity and allows researchers to {``}mix and match{''} various embeddings with little effort. The framework also implements standard model training and hyperparameter selection routines, as well as a data fetching module that can download publicly available NLP datasets and convert them into data structures for quick set up of experiments. Finally, FLAIR also ships with a {``}model zoo{''} of pre-trained models to allow researchers to use state-of-the-art NLP models in their applications. This paper gives an overview of the framework and its functionality. The framework is available on GitHub at https://github.com/zalandoresearch/flair .",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akbik-etal-2019-flair">
<titleInfo>
<title>FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Akbik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanja</namePart>
<namePart type="family">Bergmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Duncan</namePart>
<namePart type="family">Blythe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kashif</namePart>
<namePart type="family">Rasul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Schweter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roland</namePart>
<namePart type="family">Vollgraf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present FLAIR, an NLP framework designed to facilitate training and distribution of state-of-the-art sequence labeling, text classification and language models. The core idea of the framework is to present a simple, unified interface for conceptually very different types of word and document embeddings. This effectively hides all embedding-specific engineering complexity and allows researchers to “mix and match” various embeddings with little effort. The framework also implements standard model training and hyperparameter selection routines, as well as a data fetching module that can download publicly available NLP datasets and convert them into data structures for quick set up of experiments. Finally, FLAIR also ships with a “model zoo” of pre-trained models to allow researchers to use state-of-the-art NLP models in their applications. This paper gives an overview of the framework and its functionality. The framework is available on GitHub at https://github.com/zalandoresearch/flair .</abstract>
<identifier type="citekey">akbik-etal-2019-flair</identifier>
<identifier type="doi">10.18653/v1/N19-4010</identifier>
<location>
<url>https://aclanthology.org/N19-4010</url>
</location>
<part>
<date>2019-jun</date>
<extent unit="page">
<start>54</start>
<end>59</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP
%A Akbik, Alan
%A Bergmann, Tanja
%A Blythe, Duncan
%A Rasul, Kashif
%A Schweter, Stefan
%A Vollgraf, Roland
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)
%D 2019
%8 jun
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F akbik-etal-2019-flair
%X We present FLAIR, an NLP framework designed to facilitate training and distribution of state-of-the-art sequence labeling, text classification and language models. The core idea of the framework is to present a simple, unified interface for conceptually very different types of word and document embeddings. This effectively hides all embedding-specific engineering complexity and allows researchers to “mix and match” various embeddings with little effort. The framework also implements standard model training and hyperparameter selection routines, as well as a data fetching module that can download publicly available NLP datasets and convert them into data structures for quick set up of experiments. Finally, FLAIR also ships with a “model zoo” of pre-trained models to allow researchers to use state-of-the-art NLP models in their applications. This paper gives an overview of the framework and its functionality. The framework is available on GitHub at https://github.com/zalandoresearch/flair .
%R 10.18653/v1/N19-4010
%U https://aclanthology.org/N19-4010
%U https://doi.org/10.18653/v1/N19-4010
%P 54-59
Markdown (Informal)
[FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP](https://aclanthology.org/N19-4010) (Akbik et al., NAACL 2019)
ACL
- Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and Roland Vollgraf. 2019. FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 54–59, Minneapolis, Minnesota. Association for Computational Linguistics.